Exercise Sheet 10

Exercise 10.1.

Consider the RS code defined as the image of the map

$$\mathbb{F}_7[x]_{\leq k} \quad \to \quad \mathbb{F}_7^n f(x) \quad \mapsto \quad (f(x_1), \dots, f(x_n)),$$

for k = 3, n = 5, and $x_i = i \in \mathbb{F}_7$.

Assume we have the guarantee that at most one error occurs during transmission. Decode the received vector y = (5, 2, 6, 3, 5).

Exercise 10.2. Let $C = RS(k; \gamma_0, ..., \gamma_{n-1})$ be a Reed-Solomon code over \mathbb{F}_{16} with n = 15 and k = 6.

- 1. What is the minimum distance of *C* ? How many errors can one decode by maximum likelihood ? How many errors can one decode with the Welch–Berlekamp decoder ?
- 2. Let $r \in \mathbb{F}_{16}^{15}$ be a received message. Let $\mathcal{A} = \{(\gamma_0, r_0), \dots, (\gamma_{n-1}, r_{n-1})\}$ To do list decoding, we would like to find a polynomial p(x, y) of total degree δ that vanishes on \mathcal{A} with multiplicity m.

If we choose m = 2, how many linear equations do the coefficients of p need to satisfy ? What is the smallest (1, k - 1)-degree δ that ensures that these conditions on p can always be satisfied ?

How many errors can be corrected ?

3. Same questions with m = 6. (Hint : try $\delta = 53$)

Exercise 10.3. We say that a code *C* is (e, l)-list decodable if for any pattern of *e* errors, there exists a list of size *l* that includes the transmitted codeword, i.e., if $\forall c \in C, |\{B(c, e) \cap C\}| \leq l$, where B(c, e) denotes the ball of radius *e* centered at *c*.

- 1. What are e and l such that any (n, M, d)-code is (e, l)-list decodable and vice-versa?
- 2. Recall the Johnson bound from last exercise sheet: for an [n, k, n k + 1]-RS code, if a vector y is received such that l codewords agree with y on at least t positions, then

$$l \le \frac{n(t - (k - 1))}{t^2 - (k - 1)n}$$
 provided that $t^2 > n(k - 1)$.

Deduce that an [n, k, n - k + 1]-RS code is $(n - \sqrt{n(k-1)} - 1, n^2)$ -list decodable.

Exercise 10.4. The purpose of this exercise is to develop an efficient algorithm for finding roots of the form y - f(x), $\deg(f) < k$, of a given bivariate polynomial $Q(x, y) \in \mathbb{F}_q[x, y]$.

1. Write $Q(x, y) = A_0(y) + xA_1(y) + \cdots$. Assume that y - f(x) is a factor of Q(x, y) with $f(x) = f_0 + f_1x + \cdots + f_{k-1}x^{k-1}$, and suppose that $f(0) = f_0 = \beta$ in \mathbb{F}_q . Show that $A_0(\beta) = 0$. Hence $(y - \beta)$ is a factor of $A_0(y)$.

2. Assume now that β is a simple root of A_0 . By writing

$$(y - f_0 - f_1 x - \dots - f_{k-1} x^{k-1})(\psi_0(y) + \psi_1(y) x + \dots) = A_0(y) + A_1(y) x + \dots$$

show that $\psi_0(y) = A_0(y)/(y - \beta)$, and that $f_1 = -A_1(\beta)/\psi_0(\beta)$. Compute $\psi_1(y)$ from this.

3. Similarly, show the recursive formulas

$$f_{i} = -\frac{A_{i}(\beta) + f_{1}\psi_{i-1}(\beta) + \dots + f_{i-1}\psi_{1}(\beta)}{\psi_{0}(\beta)}$$
$$\psi_{i}(y) = \frac{A_{i}(y) + f_{i}\psi_{0}(y) + \dots + f_{1}\psi_{i-1}(y)}{y - \beta}.$$

Use this to develop an algorithm for finding the factors of the form y - f(x) of Q(x, y).

4. Apply the algorithm you developed to the polynomial

$$\begin{array}{lll} Q(x,y) &=& x^7+y^3x^5+y^3x^4+(y^4+y^2+y+1)x^3+(y^3+y^2+1)x^2+\\ && (y^2+y)x+y^5+y^4+y^3+y \end{array}$$

 $\in \mathbb{F}_2[x, y]$ to obtain all factors of the form y - f(x) of this polynomial with $\deg(f) \leq 3$.