Exercise Sheet 8

Exercise 8.1. Let C be a (generalized) [n, k, d] Reed-Solomon code over \mathbb{F}_q with parity check matrix

$$
H_{\mathcal{C}} = \begin{pmatrix} 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \\ \alpha_1^2 & \alpha_2^2 & \dots & \alpha_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{d-2} & \alpha_2^{d-2} & \dots & \alpha_n^{d-2} \end{pmatrix},
$$

where the α_i are distinct and nonzero.

- 1. Suppose that a codeword $c = (c_1, \ldots, c_n)$ is sent and $y = (y_1, \ldots, y_n) := c + e$ is received, where $e = (e_1, \ldots, e_n)$ is the error vector of weight at most $\tau := \left\lfloor \frac{d-1}{2} \right\rfloor$ $\frac{-1}{2}$. Define the *syndrome vector* $S = (S_0, S_1, \dots, S_{d-2}) := yH^\top$, and show that the knowledge of S (without knowing y) is sufficient to determine e .
- 2. For the rest of the exercise, we develop a *syndrome decoding* algorithm to determine the error vector *e* from *S*. First, show that $S = eH^{\top}$.
- 3. Suppose that the set of error positions (where y differs from c) is $J \subseteq \{1, \ldots, n\}$. Show that, for $\ell = 0, \ldots, d - 2$,

$$
S_{\ell} = \sum_{j \in J} e_j \alpha_j^{\ell}.
$$

4. Define $S(x) := \sum_{\ell=0}^{d-2} S_{\ell} x^{\ell}$, and show that

$$
S(x) \equiv \sum_{j \in J} \frac{e_j}{1 - \alpha_j x} \mod x^{d-1}.
$$

(Hint: what is the multiplicative inverse of $1 - \alpha_j x$ modulo x^{d-1} ?)

5. Define the *error locator polynomial* by

$$
\Lambda(x) := \prod_{j \in J} (1 - \alpha_j x)
$$

and also

$$
\Gamma(x) := \sum_{j \in J} e_j \prod_{m \in J \setminus \{j\}} (1 - \alpha_m x)
$$

(summations and products over an empty set are treated as 0 and 1, respectively). Show that $\deg(\Gamma) < \deg(\Lambda) \leq \tau$. Show that $\gcd(\Lambda(x), \Gamma(x)) = 1$.

(Hint: for the second part, it is enough to show that $\Lambda(x)$ and $\Gamma(x)$ have no common roots. Why?)

6. Show that $\Lambda(x)S(x) \equiv \Gamma(x) \mod x^{d-1}$.

7. Suppose that there are polynomials $\lambda(x)$ and $\gamma(x)$ that satisfy

$$
\lambda(x)S(x)\equiv \gamma(x)\mod x^{d-1}
$$

and degree constraints $\deg(\gamma) < \tau$ and $\deg(\lambda) \leq \tau$. Show that $\Lambda(x) | \lambda(x)$. (Hint: prove and use the fact that $\Lambda(x)$ has a multiplicative inverse in the ring $\mathbb{F}_q[x]/x^{d-1}$).

8. Conclude that any nonzero solution to

$$
\begin{pmatrix}\nS_{\tau} & S_{\tau-1} & \dots & S_0 \\
S_{\tau+1} & S_{\tau} & \dots & S_1 \\
\vdots & \vdots & \ddots & \vdots \\
S_{d-2} & S_{d-3} & \dots & S_{d-\tau-2}\n\end{pmatrix}\n\begin{pmatrix}\n\lambda_0 \\
\lambda_1 \\
\vdots \\
\lambda_{\tau}\n\end{pmatrix} = 0
$$

can be used to identify the error vector e.

Exercise 8.2. [Some properties of MDS codes] Let C be an $[n, k, d]_q$ -code. Let G and H be a generator and a check matrix for C , respectively. Prove the following statements.

- 1. *C* is MDS if and only if every $n k$ columns of *H* are linearly independent.
- 2. $\,C$ is MDS if and only if its dual C^{\perp} is MDS.
- 3. C is MDS if and only if C has a minimum weight codeword in any d coordinates.

Exercise 8.3. [Johnson Bound for MDS Codes] Consider encoding using a Reed-Solomon code of length n and dimension k . Given a received vector y , construct a bipartite graph with *n* left nodes *L*, one corresponding to each symbol of the *y*, and ℓ right nodes *R*, corresponding to ℓ codewords of the RS code that agree with at least t positions with the received y.

- 1. Connect with an edge $i \in L$ with $j \in R$ iff $y_i = (c_j)_i$, i.e., if the received vector agrees with codeword c_i at the *i*th coordinate. Show that the bipartite graph cannot have as subgraph a complete bipartite graph $\mathcal{K}_{k,2}$ (i.e., a bipartite graph with k vertices on the left and 2 vertices on the right).
- 2. Note that each codeword has at least t coordinates that agree with y . Remove some edges in the graph so that the right vertices have degree exactly t . Show that then $\ell t = \sum_i u_i$, where u_i is the degree of $i \in L$.
- 3. Calculate the average number of common neighbors C that two distinct codewords have, in terms of l , t , and the u_i . (Hint: Let p_i denote the probability that two distinct codewords picked uniformly at random from *R* are both adjacent to $i \in L$. Then start by writing *C* in terms of the p_i).
- 4. Observe that we can upper bound C as $C \leq k 1$. Show that

$$
\ell \le \frac{n(t-(k-1))}{t^2-(k-1)n}
$$
 provided that $t^2 > n(k-1)$.

(Hint: from the Cauchy-Schwarz inequality it holds that $\sum u_i^2 \geq (\sum u_i)^2/n$.)