
Introduction to Coding Theory - Spring 2011 Exercise Sheet 8

Exercise Sheet 8

Exercise 8.1. Let C be a (generalized) [n, k, d] Reed-Solomon code over Fq with parity check
matrix

HC =


1 1 . . . 1
α1 α2 . . . αn
α2

1 α2
2 . . . α2

n
...

...
. . .

...
αd−2

1 αd−2
2 . . . αd−2

n

 ,

where the αi are distinct and nonzero.

1. Suppose that a codeword c = (c1, . . . , cn) is sent and y = (y1, . . . , yn) := c + e is
received, where e = (e1, . . . , en) is the error vector of weight at most τ :=

⌊
d−1
2

⌋
. Define

the syndrome vector S = (S0, S1, . . . , Sd−2) := yH>, and show that the knowledge of S
(without knowing y) is sufficient to determine e.

2. For the rest of the exercise, we develop a syndrome decoding algorithm to determine the
error vector e from S. First, show that S = eH>.

3. Suppose that the set of error positions (where y differs from c) is J ⊆ {1, . . . , n}. Show
that, for ` = 0, . . . , d− 2,

S` =
∑
j∈J

ejα
`
j .

4. Define S(x) :=
∑d−2

`=0 S`x
`, and show that

S(x) ≡
∑
j∈J

ej
1− αjx

mod xd−1.

(Hint: what is the multiplicative inverse of 1− αjx modulo xd−1?)

5. Define the error locator polynomial by

Λ(x) :=
∏
j∈J

(1− αjx)

and also
Γ(x) :=

∑
j∈J

ej
∏

m∈J\{j}

(1− αmx)

(summations and products over an empty set are treated as 0 and 1, respectively).
Show that deg(Γ) < deg(Λ) ≤ τ . Show that gcd(Λ(x),Γ(x)) = 1.
(Hint: for the second part, it is enough to show that Λ(x) and Γ(x) have no common
roots. Why?)

6. Show that Λ(x)S(x) ≡ Γ(x) mod xd−1.
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7. Suppose that there are polynomials λ(x) and γ(x) that satisfy

λ(x)S(x) ≡ γ(x) mod xd−1

and degree constraints deg(γ) < τ and deg(λ) ≤ τ . Show that Λ(x) | λ(x).
(Hint: prove and use the fact that Λ(x) has a multiplicative inverse in the ring Fq[x]/xd−1).

8. Conclude that any nonzero solution to
Sτ Sτ−1 . . . S0

Sτ+1 Sτ . . . S1
...

...
. . .

...
Sd−2 Sd−3 . . . Sd−τ−2



λ0

λ1
...
λτ

 = 0

can be used to identify the error vector e.

Exercise 8.2. [Some properties of MDS codes] Let C be an [n, k, d]q-code. Let G and H be a
generator and a check matrix for C, respectively. Prove the following statements.

1. C is MDS if and only if every n− k columns of H are linearly independent.

2. C is MDS if and only if its dual C⊥ is MDS.

3. C is MDS if and only if C has a minimum weight codeword in any d coordinates.

Exercise 8.3. [Johnson Bound for MDS Codes] Consider encoding using a Reed-Solomon
code of length n and dimension k. Given a received vector y, construct a bipartite graph
with n left nodes L, one corresponding to each symbol of the y, and ` right nodes R, corre-
sponding to ` codewords of the RS code that agree with at least t positions with the received
y.

1. Connect with an edge i ∈ L with j ∈ R iff yi = (cj)i, i.e., if the received vector agrees
with codeword cj at the ith coordinate. Show that the bipartite graph cannot have as
subgraph a complete bipartite graph Kk,2 (i.e., a bipartite graph with k vertices on the
left and 2 vertices on the right).

2. Note that each codeword has at least t coordinates that agree with y. Remove some
edges in the graph so that the right vertices have degree exactly t. Show that then
`t =

∑
i ui, where ui is the degree of i ∈ L.

3. Calculate the average number of common neighbors C that two distinct codewords
have, in terms of l, t, and the ui.
(Hint: Let pi denote the probability that two distinct codewords picked uniformly at
random from R are both adjacent to i ∈ L. Then start by writing C in terms of the pi).

4. Observe that we can upper bound C as C ≤ k − 1. Show that

` ≤ n(t− (k − 1))
t2 − (k − 1)n

provided that t2 > n(k − 1).

(Hint: from the Cauchy-Schwarz inequality it holds that
∑
u2
i ≥ (

∑
ui)2/n.)
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