Mock Exam

Introduction to Coding Theory

May 12, 2011

- Any document or material is forbidden, except a hand-written recto verso A4 formula sheet.
- If you are using additional sheets, write your name and the number of the problem solved on that sheet clearly on top of the page.
- Use a separate sheet of paper for every problem you are working on. Number additionnal sheets.
- This mock exam will have no impact on your final grade.
- You have exactly 120 minutes and 120 points. Good luck!

Name:

Problem 1	Problem 2	Problem 3	Problem 4	Problem 5
/ 27 points	/ 32 points	/ 10 points	/ 18 points	/ 33 points

Total						
/	120 points					

Problem 1 [27 points]. Let C be a $[n, k]_q$ -linear code over the field \mathbb{F}_q . We denote

$$\widetilde{C} = \{(x_0, x_1, \dots, x_n) \in \mathbb{F}_q^{n+1}; (x_1, \dots, x_n) \in \mathcal{C} \text{ and } x_0^2 + \dots + x_n^2 = 0)\}$$

- 1. Assume q is a power of 2, show that $\widetilde{\mathcal{C}}$ is linear.
- 2. Assume C is self-dual, show that \widetilde{C} is linear.
- 3. Assume n = k = 1 and $\mathcal{C} = \mathbb{F}_q$ (q odd), is $\widetilde{\mathcal{C}}$ linear ?
- 4. [Bonus] Under what condition is $\widetilde{\mathcal{C}}$ linear ?

Solution :

1. Let x and x' be codewords of $\widetilde{\mathcal{C}}$, we need to show that $x + x' \in \widetilde{\mathcal{C}}$. But

$$(x_0 + x'_0)^2 + (x_1 + x'_1)^2 + \dots + (x_n + x'_n)^2 = x_0^2 + x'_0^2 + x_1^2 + x'_1^2 + \dots + x_n^2 + x'_n^2 = 0$$

Besides $0 \in \widetilde{C}$. So linearity is satisfied.

- 2. If C is self-dual, for any $x \in \tilde{C}$, $x_1^2 + \cdots + x_n^2 = 0$ and x_0 has to be zero. So \tilde{C} is clearly linear.
- 3. If $\mathcal{C} = \mathbb{F}_q$, and $x \in \mathcal{C}$, x can be extended if x = 0 or if -1 is a square. Suppose $-1 = \alpha^2$ (that is the case iff $q \equiv 1 \mod 4$), then x can be extended to $y = (\alpha x, x)$ and $y' = (-\alpha x, x)$. But by linearity (y + y')/2 = (0, x) should also belong to \widetilde{C} which is not the case. To sum up, either -1 is a square and then, \widetilde{C} is not linear or else \widetilde{C} is just reduced to the zero codeword.
- 4. We show that the only conditions under which $\tilde{\mathcal{C}}$ is linear form three cases : the characteristic is two, or the characteristic is odd and the code is self-dual, or -1 is not a square and the restriction of the quadratic form $-x_1^2 + \cdots - x_n^2$ to \mathcal{C} has rank one and represents only non-square.

We can assume that the characteristic is not two. Then, if $x \in \tilde{\mathcal{C}}$, then both $x = (x_0, x_1, \ldots, x_n)$ and $x' = (-x_0, x_1, \ldots, x_n)$ belong to $\tilde{\mathcal{C}}$. By linearity, $x + x' \in \tilde{\mathcal{C}}$, thus $4(x_1^2 + \cdots + x_n^2) = 0$. Thus for any codeword $x \in \mathcal{C}$, $x_1^2 + \cdots + x_n^2$ is 0 or the opposite of a non-square.

Now, if -1 is a square, we can use the previous question to show that $x_1^2 + \cdots + x_n^2$ is zero on \mathcal{C} . Otherwise, $\widetilde{\mathcal{C}}$ cannot be linear. Thus, \mathcal{C} is a self-dual code. If -1 is a non-square and the form is not zero on \mathcal{C} , then, we need to use the fact that any quadratic form of rank 2 represents -1 (this is a consequence of the theorem of Chevalley-Warning for instance), so if $k \geq 2$, we could find codewords $x = (x_0, x_1, \ldots, x_n)$ and $x' = (-x_0, x_1, \ldots, x_n)$ that belong to $\widetilde{\mathcal{C}}$ which would contradict linearity. We are left with the last case we had announced.

Problem 2 [32 points]. Let C be an $[n, k, 7]_2$ perfect binary code.

1. Using the sphere packing bound (or Hamming bound), prove that

$$(n+1)\left((n+1)^2 - 3(n+1) + 8\right) = 3 \cdot 2^{n-k+1}.$$

- 2. Prove that n+1 is either 2^b or $3 \cdot 2^b$ with $b \le n-k+1$.
- 3. Prove that b < 4.
- 4. Prove that n = 23 or n = 7.
- 5. Give the name of a perfect code with n = 7 and n = 23.

Solution :

1. The sphere packing bound gives :

$$\left(1+n+\frac{n(n-1)}{2}+\frac{n(n-1)(n-2)}{6}\right)2^k = 2^n$$

which is equivalent to what is expected. (To do the computation, you should pose n + 1 = m).

- 2. Since n+1 divides $3 \cdot 2^{n+1-k}$, it has to be of the form 2^b or $3 \cdot 2^b$ with $b \le n-k+1$.
- 3. We note that $8 = 2^3$. Thus if $n + 1 = 3^{\alpha} \cdot 2^b$ and $b \ge 4$, we have $3^{\alpha} \cdot 2^{b+3}(3^{2\alpha} \cdot 2^{2b-3} 3^{\alpha+1} \cdot 2^{b-3} + 1) = 3 \cdot 2^{n-k+1}$. For $b \ge 4$, the second factor is equal to 1 modulo 2, so it contains a prime factor > 3 which is impossible. So we need to have $b \le 3$.
- 4. We test all the possibilities (using the fact that $n \ge 7$) :

α	b	$(n+1)[(n+1)^2 - 3(n+1) + 8]$	n	k
0	3	$2^7 \cdot 3$	7	1
1	2	$3\cdot 2^4\cdot 29$		
1	3	$3 \cdot 2^{12}$	23	12

We deduce that we must have n = 23 or n = 7.

5. For n = 7, we can have the repetition code; for n = 23, the Golay code.

Problem 3 [10 points]. Show that a binary cyclic code of blocklength n is invariant under the transformation $c(x) \mapsto c(x^2) \mod x^n - 1$.

Solution :

Note that $c(x^2) = c(x)^2$ on a field of characteristic 2. If the codeword c(x) is given as $c(x) = m(x) \cdot g(x)$, then $c(x^2) = c(x)^2 = m(x)^2 \cdot g(x)^2$, which is also a multiple of g(x) and thus a codeword.

Problem 4 [18 points]. Let g(x) be the generator polynomial of a binary cyclic code of length n.

- a Show that if (x + 1) is a factor of g(x), the code contains no odd-weight codewords.
- b If n is odd and (x + 1) is not a factor of g(x), show that the code contains the all-ones codeword (Hint: recall that if h(x) is a check polynomial for a cyclic code C of dimension k, then $x^k h(x^{-1})$ is a generator polynomial for C^{\perp}).

Solution :

- a If (x + 1) is a factor of g(x), it is a factor of every codeword $c(x) = \sum_i c_i x^i$, so that c(1) = 0 and thus $\sum_i c_i = 0$. This implies that the codeword c is of even weight.
- b Let h(x) be the check polynomial for the code. As $g(x)h(x) = x^n 1$ and x + 1 divides $x^n 1$, if x + 1 is not a factor of g(x) then it must be a factor of h(x). It is thus a factor of the generator polynomial $x^k h(x^{-1})$ of the dual code. Therefore, all words of the dual code have even weight, which means that the all-ones vector must belong to the original code.

1	[0, 1, 0, 0, 0]	2	[0, 0, 1, 0, 0]	3	$\left[0,0,0,1,0 ight]$	4	[0, 0, 0, 0, 1]
5	[1,0,1,0,0]	6	[0, 1, 0, 1, 0]	7	$\left[0,0,1,0,1 ight]$	8	[1, 0, 1, 1, 0]
9	[0,1,0,1,1]	10	[1, 0, 0, 0, 1]	11	$\left[1,1,1,0,0 ight]$	12	[0, 1, 1, 1, 0]
13	[0,0,1,1,1]	14	[1, 0, 1, 1, 1]	15	$\left[1,1,1,1,1 ight]$	16	$\left[1,1,0,1,1 ight]$
17	[1, 1, 0, 0, 1]	18	[1, 1, 0, 0, 0]	19	$\left[0,1,1,0,0 ight]$	20	$\left[0,0,1,1,0\right]$
21	[0, 0, 0, 1, 1]	22	[1, 0, 1, 0, 1]	23	[1, 1, 1, 1, 0]	24	[0, 1, 1, 1, 1]
25	[1,0,0,1,1]	26	[1, 1, 1, 0, 1]	27	[1, 1, 0, 1, 0]	28	[0, 1, 1, 0, 1]
29	[1, 0, 0, 1, 0]	30	[0, 1, 0, 0, 1]	31	$\left[1,0,0,0,0 ight]$	$-\infty$	[0, 0, 0, 0, 0]

Problem 5 [33 points]. We work in the field $\mathbb{F}_{32} = \mathbb{F}_2[\alpha]$ given by the following log table.

For example, you can read from the table that $\alpha^{25} = 1 + \alpha^3 + \alpha^4$.

- 1. Find the minimal polynomial of α , α^2 , α^3 and α^4 .
- 2. Check that the generator polynomial of the BCH code of length 31 and designed distance 5 is

$$g(x) = x^{10} + x^9 + x^8 + x^6 + x^5 + x^3 + 1.$$

How many errors can this code correct?

- 3. The following message has been received : $r(x) = x^{13} + x^8 + x^7$. Does it belong to the code ? If not, find the most likely codeword m(x) that was sent.
- 4. What are the parameters of the code ?

Solution :

1. The elements α , α^2 , and α^4 are conjugate and thus have the same minimal polynomial. The field extension in 5, so we need to express α^5 in terms of the lower powers of α . We have directly from the table that $g_1(x) = x^5 + x^2 + 1$ is the minimal polynomial. The minimal polynomial of α^3 requires more work. We could of course develop the conjugates :

$$g_3(x) = (x - \alpha^3)(x - \alpha^6)(x - \alpha^{12})(x - \alpha^{24})(x - \alpha^{17}) = x^5 + x^4 + x^3 + x^2 + 1.$$

An other way to obtain g_3 is to look directly for coefficients $(\epsilon_0, \ldots, \epsilon_4) \in \mathbb{F}_2^5$ such that $\alpha^{15} + \epsilon_4 \alpha^{12} + \cdots + \epsilon_1 \alpha^3 + \epsilon_0 = 0$. This is equivalent to the system :

$$\begin{cases} \epsilon_0 &= 1\\ \epsilon_2 + \epsilon_3 + \epsilon_4 &= 1\\ \epsilon_4 &= 1\\ \epsilon_1 + \epsilon_2 + \epsilon_3 + \epsilon_4 &= 1\\ \epsilon_3 &= 1 \end{cases}$$

which is easy to solve.

2. We develop the product $g_1 \cdot g_3$ to obtain g. This code has minimal distance at least 5, so it can correct 2 errors.

3. The received message cannot belong to the code as it is of weight 3. At least two errors must have occured. We have $r(x) = m(x) + x^r + x^s$ for a certain r and s. We have

$$r(\alpha) = \alpha^r + \alpha^s = \alpha^5 =: S_1$$
$$r(\alpha^2) = \alpha^{2r} + \alpha^{2s} = \alpha^{10} =: S_2$$
$$r(\alpha^3) = \alpha^{3r} + \alpha^{3s} = \alpha^{27} =: S_3$$
$$r(\alpha^4) = \alpha^{4r} + \alpha^{4s} = \alpha^{20} =: S_4$$

Fix the notation $X = \alpha^r$ and $Y = \alpha^s$, we have $X + Y = S_1 = 1 + \alpha^2$ and $XY = \frac{S_1^3 - S_3}{S_1} = S_2 + S_3/S_1 = \alpha^2$. We solve the equation

$$(z - X)(z - Y) = z^{2} + S_{1}z + S_{2} - S_{3}/S_{1} = z^{2} + (1 + \alpha^{2})z + \alpha^{2}$$

which have the two trival solutions 1 and α^2 . So, up to permutation, r = 1 and s = 2. So the sent message was :

$$m(x) = x^{13} + x^8 + x^7 + x^2 + 1.$$

4. This code is [31, 21, 5]₂. The minimal distance comes from the fact that we have indeed found a codeword of weight 5 in the previous question.