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What is an Algorithm?

We haven’t really answered this question in this course.

Informally, an algorithm is a step-by-step procedure for computing a set of outputs
from a set of inputs.

But formally, to define what an algorithm is, we need to concept of a Turing Machine.

This cannot be developed fully in this course, and is typically part of a course in Theoretical 
Computer Science.

Will work with the informal concept instead.
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Turing Machine

Alan Turing, 1912-1954

Bare bone abstraction of a computer.

Consists of
• Input/Output alphabet (0-1)
• Infinite tape (memory)
• Read/Write head (I/O)
• Control (program)

0 1 1 0 0 1 0 1 0 1 1 1 0 0 1 0 1 0

Control
Upon reading tape, and consulting internal state, 
decides what to write on tape, what to do with the 
head (left/right/stay), and how to change internal 
state
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Dictionary

Turing machine Computer

Alphabet 0-1

Tape Memory

Read/Write head I/O

Control Program

State Program variables

# head movements “Running time”

# cells visited Space requirement

Suited for electronic circuits
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Turing machines provide a very good abstraction of the notion of computing, and a framework for 
studying the complexity of computational problems.

They lie at the heart of the theory of NP-completeness, which we are going to discuss in this class.

However, for time reasons we will not be able to use them. Instead, we rely on an intuitive 
concept of an algorithm and its running time (as the number of “operations” they use).

Turing Machines
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Computational Problem

I

O

R ⊆ I ×O

Set of inputs

Set of outputs

Relational dependency

Computational problem:

Given         , find           , such that      ι ∈ I ω ∈ O (ι,ω) ∈ R

I = set of graphs

O = {true,false}

(G,true) in R iff G is connected

(G,false) in R iff G is not connected

Example

Given G, decide whether it is 
connected.

Example
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Decision Problem

I

R ⊆ I ×O

R is equivalent to subset of I mapping to true.

O = {true, false}

I

true false

R is equivalent to this 
part
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Examples

I = N
R = {n ∈ I | n is prime}

I = set of graphs× N
R = {(G,n) | G has an independent set of size ≥ n}

R = {(G,n) | G has a clique of size ≥ n}
I = set of graphs× N

170141183460469231731687303715884105727 is in R

10384593717069655257060992658440191 is not in R

(G,3) is not in R

(G,2) is in R
G =

(G,4) is not in R

(G,3) is in R
G =

Independent set

Set of vertices no two of which 
are connected

Clique

Set of vertices any two of 
which are connected
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Algorithms for Decision Problems

An algorithm for a decision problem            is an algorithm which for every input  
decides whether 

R ⊆ I ι ∈ I
ι ∈ R

R = set of all connected graphs

Decision problem: given G, decide whether it is connected

Algorithm: DFS

Example

R = set of all prime numbers

Decision problem: given n, decide whether it is prime

Algorithm: primality testing

Example

R = {(G,n) | G graph, n integer, G has an independent set of size ≥ n}

Decision problem: decide whether G has independent set of size at least n

Algorithm: ?????

Example
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Input Lengths

The length     of an input           is the number of bits sufficient to represent it.ι ∈ I|ι|

G graph on n vertices, |G| = O(n2)

To represent G, we need n, and a list of n2 bits representing the adjacency matrix of G

n integer, |n| = O(log(n))

Need O(log(n)) bits to write down n

Example

Example
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Polynomial Functions

A function                   is said to be polynomial in                   if there is a a polynomial p such 
that f(n) = O(p(g(n)))

f : N → N g : N → N

• f(n)=n is polynomial in g(n) = n2

• f(n) = n3 is polynomial in g(n) = n

• Any polynomial is polynomial in the function f(n) = n (identity function)

• The identity function is polynomial in any polynomial function

• The function f(n) = 2n is not polynomial in the identity function

Examples
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The Class P

Class of all decision problems            for which there is an algorithm which decides for every 
given           whether            and for which the running time is polynomial in   

R ⊆ I
ι ∈ I ι ∈ R |ι|

CONNECTIVITY = {G | G is a connected graph}

CONNECTIVITY is in P (Running time of DFS is polynomial in number of vertices)

Example

I = {(G,s,t,c,M) | G directed graph, c:E -> N integer capacities, s,t distinct vertices, M integer}

FLOW = {(G,s,t,c,M) | G has an s-t flow of value at least M}

FLOW is in P:

• Size of input on n vertices is ϴ(n2 log(C)+log(M)) where C is max capacity

• The algorithm of Ford and Fulkerson with BFS shortest path selection has running time 
polynomial in the input size.

Example

P is the class of all decision problems for which there is a polynomial time decision algorithm.
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Why Polynomial Time?

Captures the notion of “efficiency”

Is robust with respect to common theoretical transformations
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The Class P

PRIMALITY = {n | n is a prime number}

PRIMALITY is in P ?

CLIQUE = {(G,n) | G has a clique of size at least n}

CLIQUE is in P ?

INDEP-SET = {(G,n) | G has an independent set of size at least n}

INDEP-SET is in P ?
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The Class P

PRIMALITY = {n | n is a prime number}

PRIMALITY is in P ? Yes, but not via the naive algorithm

CLIQUE = {(G,n) | G has a clique of size at least n}

CLIQUE is in P ? Unknown

INDEP-SET = {(G,n) | G has an independent set of size at least n}

INDEP-SET is in P ? Unknown
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NP Completeness

Theory of NP-completeness tries to understand why we have not been able to find 

polynomial time algorithms for some fundamental computational problems.

Its main assertions are of the following type:

If you could solve problem X in polynomial time, then could solve a whole lot of other very 

hard problems in polynomial time as well. 

To some researchers, it means that there are no polynomial time algorithms for such 

problems.
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Polynomial Reduction

We want to capture the following notion:

If we can solve decision problem X, then we can also solve decision problem Y using an 

algorithm for the solution of problem X.

How can we use an algorithm for problem X for inputs for problem Y?

We need to transform an input y for problem Y to a valid input x for problem X

Then we apply the algorithm for X to this new input x

If the output of the algorithm is true, then we want to deduce that y belongs to Y

If the output of the algorithm is false, then we want to deduce that y doesn’t belong to Y

We want all this to be efficient, so the transformation of y to x should be efficiently 

computable.

We want to reduce Y to X
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Polynomial Reduction

decision problems.X ⊆ I, Y ⊆ J

A polynomial reduction from Y to X is a function                   such that

• for all y in J, f(y) is in X iff y is in Y

• There is an algorithm which computes f(y) for any y in Y with a number of steps 

polynomial in |y|.

In this case, we write                   or  

f : J → I

Y ≤P X Y ≤ X
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true false

true false

Y

X

True instances of Y should be 
mapped to true instances of X

False instances of Y should be 
mapped to false instances of XTransformation has to be efficient

Polynomial Reduction
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Example

CLIQUE ≤ INDEP-SET

(G,m) input to CLIQUE

H complement of G: 

• if there is no edge between u,v, add (u,v) to the edges of H

• If there is an edge between (u,v) in G, don’t put that edge in H

f: (G,m) -> (H,m) is the reduction

f can be calculated in time polynomial in n, which is polynomial in |(G,m)| = O(n2+log(m))

f(G,m) in INDEP-SET iff (H,m) in INDEP-SET iff there are m nodes in H no two of which are 
connected, iff there are m nodes in G any two of which are connected, iff (G,m) in CLIQUE 

true only for general graphs.

G

H

Clique

Independent

INDEP-SET ≤ CLIQUE
Same reasoning as above

Testing membership to INDEP-SET is “as difficult” as testing membership to “CLIQUE”
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Example

A node cover in a graph is a set S of vertices such that every edge has at least one endpoint 

in S.

NODE-COVER = {(G,m) | G has a node cover with at most m elements}

G =
(G,3) is not in NODE-COVER

(G,4) is in NODE-COVER

INDEP-SET ≤ NODE-COVER

(G,m) input to INDEP-SET

f: (G,m) -> (G,n-m) is the reduction where n is number of vertices of G

f can be calculated in time polynomial in the input

f(G,m) in NODE-COVER iff (G,n-m) in NODE-COVER iff there are n-m nodes in G such that any 
edge has at least one endpoint in this set iff any two nodes outside this set are not connected 
iff (G,m) is in INDEP-SET

G

Independent

Node cover

NODE-COVER ≤ INDEP-SET similar to the above

21



Transitivity

X ≤ Y and Y ≤ Z =⇒ X ≤ Z

Suppose that f is a reduction from X to Y, so a is in X iff f(a) is in Y

Suppose that g is a reduction from Y to Z, so b is in Y iff g(b) is in Z

Let h(a) = g(f(a)).

a is in x iff f(a) is in Y iff g(f(a)) is in Z.

h can be computed efficiently, since g and f can.

So, h is a polynomial reduction from X to Z.
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The Class NP

Some decision problems, like NODE-COVER and INDEPENDENT-SET have defied 

attempts at finding efficient decision algorithms.

However, these problems have an interesting feature: while it may be difficult to decide for 

every input whether it belongs to these sets, it is rather easy to prove the claim that an input 

belongs to these sets.
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Examples

COMPOSITES = {n | n is not prime}

239180344702445517659253489067517158015016827169517973733973209 is in COMPOSITES!

You don’t need to factor the number to see that I am right: I provide you with a “short” proof:

239180344702445517659253489067517158015016827169517973733973209 = 

 15465456498352886242205023347881 * 15465456498352886242205023347889

You just need to perform the multiplication to get convinced (which is much easier than 
factoring the integer).

G = 

(G,10) is in INDEP-SET

Finding an independent set of size 10 
may be difficult.
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Examples

COMPOSITES = {n | n is not prime}

239180344702445517659253489067517158015016827169517973733973209 is in COMPOSITES!

You don’t need to factor the number to see that I am right: I provide you with a “short” proof:

239180344702445517659253489067517158015016827169517973733973209 = 

 15465456498352886242205023347881 * 15465456498352886242205023347889

You just need to perform the multiplication to get convinced (which is much easier than 
factoring the integer).

G = 

(G,10) is in INDEP-SET

Finding an independent set of size 10 
may be difficult.

But proving that I have one is simple.
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The Class NP
Decision problems in the class NP are problems R for which there is an efficient proof of 

membership to R.

There is a function f : I×{0,1}* "  {true,false} such that 

R = { c | f(c,w)=true for some string w}    

and f(c,w) can be calculated in time polynomial in |c|. f is called a verifier, and w is called a 

witness of membership of c to R.
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Closed under Polynomial Reductions

If X is in NP, and              , then Y is in NP as well.Y ≤ X

Use reduction f from Y to X. 

Take any input a from the set of inputs of Y.

Transform via f -> f(a)

There is witness w and poly-time function g such that g(f(a),w)=1 if f(a) is in X

w is a witness for a, g together with f is a verifier.
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Includes P

P is a subset of NP

Suppose that R is in P, and that f is a poly-time algorithm for R.

Given a, the witness w is empty, and the verifier is f itself: note that f(a)=1 iff a is in R.

NP

P

Are P and NP equal?

Million dollar question.....

World according to some (top) researchers
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Examples

INDEP-SET ∈ NP

G = 

(G,10) is in INDEP-SET

The witness is a set of 10 or more 
vertices.

The verifier checks whether none of 
these vertices are connected.

The verifier can do this in time 
polynomial in the length of the graph.

NODE-COVER ≤ INDEP-SET =⇒ NODE-COVER ∈ NP

CLIQUE ≤ INDEP-SET =⇒ CLIQUE ∈ NP
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COMPOSITES = {n | n is not prime}

239180344702445517659253489067517158015016827169517973733973209 is in COMPOSITES!

The witness consists of two integers larger than 1

 15465456498352886242205023347881 , 15465456498352886242205023347889

The verifier multiplies these numbers and checks whether the result is the original number 

The verifier can perform this task in time polynomial in the number of digits of the original 
number (using the school method)

Examples

COMPOSITES ∈ NP
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PRIMES

Given an integer n, how can I convince you that it is prime?

What is a witness of primality? What is the verifier?

What is NOT a verifier is an algorithm that checks all the potential divisors of n.

This is because this algorithm runs in time proportional to sqrt(n), which is NOT polynomial in 
the input length |n| = O(log(n)).

What can be done?

PRIMES ∈ NP?
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p is prime if and only if there is an integer w such that 

w(p-1)/p1 , w(p-1)/p2  , .......,  w(p-1)/pk is not 1 modulo p, where

p1, p2, ..., pk are all the prime divisors of p-1

“Witness” for the primality of p:

w, and p1,....,pk.

Steps for verifying primality of p:

• Check that p1,....,pk are all prime

• Check that p1,....,pk are all the prime divisors of p-1

• Check that 

Witness is a tree with node labels (called the Pratt tree)

Verifier processes the tree to obtain proof of primality

w(p−1)/p1 , . . . , w(p−1)/pk �≡ 1 mod p

The primality of these has to be proved recursively

Easy to do (division)

Easy to do (binary method of exponentiation)

Not difficult, but without proof.

Elementary Number Theory

Vaughan Pratt, 1944 -
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1223, 5

2, 1 13, 247, 5

2, 1 3, 22, 123, 5

2, 12, 111, 2

2, 1 5, 2

2, 1

Pratt tree proving that 1223 is prime

Example: Pratt Tree

n w

Process the tree 
from bottom to top
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1223, 5

2, 1 13, 247, 5

2, 1 3, 22, 123, 5

2, 12, 111, 2

2, 1 5, 2

2, 1

Pratt tree proving that 1223 is prime

prime

Example: Pratt Tree
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1223, 5

2, 1 13, 247, 5

2, 1 3, 22, 123, 5

2, 12, 111, 2

2, 1 5, 2

2, 1 prime

5-1=22, 22 = 1 mod 5, so 5 primeprime

Example: Pratt Tree

Pratt tree proving that 1223 is prime
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1223, 5

2, 1 13, 247, 5

2, 1 3, 22, 123, 5

2, 12, 111, 2

2, 1 5, 2

2, 1 prime

5-1=22, 22 = 1 mod 5, so 5 primeprime

prime prime
11-1=2 x 5, 
22 = 1 mod 11, 25 = 1 mod 11
So 11 is prime

Example: Pratt Tree

Pratt tree proving that 1223 is prime
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1223, 5

2, 1 13, 247, 5

2, 1 3, 22, 123, 5

2, 12, 111, 2

2, 1 5, 2

2, 1 prime

5-1=22, 22 = 1 mod 5, so 5 primeprime

prime prime
11-1=2 x 5, 
22 = 1 mod 11, 25 = 1 mod 11
So 11 is prime

prime
23-1=2 x 11, 
52 = 1 mod 23, 511 = 1 mod 23
So 23 is prime

3-1=2, 2 = 1 mod 3, 
so 3 prime

Example: Pratt Tree

Pratt tree proving that 1223 is prime
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1223, 5

2, 1 13, 247, 5

2, 1 3, 22, 123, 5

2, 12, 111, 2

2, 1 5, 2

2, 1 prime

5-1=22, 22 = 1 mod 5, so 5 primeprime

prime prime
11-1=2 x 5, 
22 = 1 mod 11, 25 = 1 mod 11
So 11 is prime

prime
23-1=2 x 11, 
52 = 1 mod 23, 511 = 1 mod 23
So 23 is prime

3-1=2, 2 = 1 mod 3, 
so 3 prime

prime

47-1=2 x 23, 
52 = 1 mod 47, 
523 = 1 mod 47
So 47 is prime

13-1=2 x 6, 
22 = 1 mod 13, 
26 = 1 mod 13
So 13 is prime

Example: Pratt Tree

Pratt tree proving that 1223 is prime
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47-1=2 x 23, 
52 = 1 mod 47, 
523 = 1 mod 47
So 47 is prime

1223, 5

2, 1 13, 247, 5

2, 1 3, 22, 123, 5

2, 12, 111, 2

2, 1 5, 2

2, 1 prime

5-1=22, 22 = 1 mod 5, so 5 primeprime

prime prime
11-1=2 x 5, 
22 = 1 mod 11, 25 = 1 mod 11
So 11 is prime

prime
23-1=2 x 11, 
52 = 1 mod 23, 511 = 1 mod 23
So 23 is prime

3-1=2, 2 = 1 mod 3, 
so 3 prime

prime

13-1=2 x 6, 
22 = 1 mod 13, 
26 = 1 mod 13
So 13 is prime

1223-1=2 x 13 x 47, 
5611 = 1 mod 1223, 594 = 1 mod 1223,
526 = 1 mod 1223, so 1223 is prime

Example: Pratt Tree

Pratt tree proving that 1223 is prime
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Careful analysis shows that:

• Pratt tree has size polynomial in |n| = O(log(n))

• Verification can be done in time polynomial in log(n).

PRIMES ∈ NP

PRIMES in NP
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NP-Completeness

A decision problem R is called NP-complete if 

• R is in NP

• For any problem X in NP there is a reduction from X to R:

Such a problem is a hardest problem in NP (if you can solve it efficiently, then you can solve 

any problem in NP efficiently)

Do such problems exist?

X ≤ R

Is this an empty definition?

It is not at all clear that such a problem even exists.
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A Little Logic

A boolean variable x is a variable that can take values in the set {false,true} (or {0,1})

From boolean variables x and y we can obtain new variables via logical operations

x y ¬x x ∨ y x ∧ y

0 0 1 0 0

0 1 1 1 0

1 0 0 1 0

1 1 0 1 1

¬x = not x

x ∨ y = x or y

x ∧ y = x and y
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Literals, Clauses, Formulas

x1, x2, . . . , xnVariable

λ ∈ {x1, . . . , xn,¬x1, . . . ,¬xn}Literal

C = λ1 ∨ λ2 ∨ · · · ∨ λtClause

F = C1 ∧ C2 ∧ · · · ∧ C�Formula (x1 ∨ ¬x3 ∨ ¬x10 ∨ x4) ∧ (x2 ∨ x5 ∨ x9) ∧ (¬x6 ∨ x8)

x1, x3, . . .

x1 ∨ ¬x3 ∨ ¬x10 ∨ x4

¬x5, x10,¬x220, . . .

Examples
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Length of  a Formula

Bit representation of 10 - The first “0.” is to say that the literal is not negated.

Bit representation of 5 - The first “1.” is to say that the literal is negated.

“*” indicates the OR operation

“|” indicates the AND operation

With n variables, length of formula is proportional to log(n) x number of literals 

x10 "  0.1010

¬x5 "  1.101

x1 ∨ ¬x3 ∨ ¬x10 ∨ x4  "  0.1*1.11*1.10101*0.100

(x1∨¬x3∨¬x10∨x4) (x2∨x5∨x9)∧(¬x6∨x8)  "  

0.1*1.11*1.10101*0.100|0.10*0.101*0.1001|1.110*0.100
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Satisfiability Problem

Formula F is called satisfiable if there is a setting of the variables that makes the formula 

evaluate to “true” (or 1). 

Such a setting of the variables is called a satisfying assignment.

Checking whether a formula is satisfiable can be hard: there may be only 1 satisfying assignment (out of 
the 2n possible).

The difference between this and 0 satisfying assignments is “very small”.

(¬x1 ∨ x2) ∧ (¬x2 ∨ x3 ∨ x4) ∧ (¬x3 ∨ x4) ∧ (x4 ∨ x2 ∨ x3)

has satisfying assignment

(x1,x2,x3,x4)=(0,0,0,1)
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Satisfiability Problem

SAT = { F | F satisfiable formula } is called the satisfiability problem

Associated computational problem: given F, check whether it is satisfiable.

SAT is in NP: “witness” for a satisfiable formula is a satisfying assignment.

Formula can be evaluated at the given assignment in time polynomial in 

length of the formula.
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The Cook-Levin Theorem

Stephen Cook, 1939 - 

Leonid Levin, 1948 - 

SAT is NP-complete.

If you can find an polynomial time algorithm for solving SAT, then you can solve other hard problems, like 
for example factoring integers, finding large independent sets, cliques, node covers, etc.
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Are there Other NP-Complete Problems?

Many more than you might think....

k-clause: clause with exactly k literals

k-formula: formula in which every clause is a k-clause

k-SAT = { F | F is a satisfiable k formula }

Theorem: k-SAT is NP-complete for k larger than 2.
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Example: 3-SAT

How do we prove that 3-SAT is NP-complete?

Step 1: Show that 3-SAT is in NP

Step 2: Show that SAT ≤ 3-SAT

3-SAT is in NP: witness is satisfying assignment.

SAT ≤ 3-SAT: Need to find polynomial reduction from SAT to 3-SAT

It better; otherwise it cannot be NP-complete

For X in NP, we have X ≤ SAT ≤ 3-SAT, so X ≤ 3-SAT.
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Reduction of  SAT to 3-SAT

Transform a formula F into a 3-formula G such that F is satisfiable iff G is.

Will do this clause-by-clause. Here an example when clause has ≥ 3 literals.

C = (x1 ∨ x5 ∨ ¬x6 ∨ x7 ∨ x8 ∨ x12)    Original clause

F1 = (x1 ∨ x5 ∨ ¬x6 ∨ x7 ∨ ¬y1) ∧ (y1 ∨ x8 ∨ x12)
Introduce new variable, 
take last two literals, and 
make new formula

F1 is satisfiable iff C is: 
C satisfiable ⇒ set y1=0 is x8 or x12 are 1, else set y1=1 ⇒ F1 satisfiable
F1 satisfiable: if y1=0, then x1 or x12 are 1, else one of the other literals is 1 ⇒ C is satisfiable
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Reduction of  SAT to 3-SAT

Transform a formula F into a 3-formula G such that F is satisfiable iff G is.

Will do this clause-by-clause. Here an example when clause has ≥ 3 literals.

C = (x1 ∨ x5 ∨ ¬x6 ∨ x7 ∨ x8 ∨ x12)    Original clause

F1 = (x1 ∨ x5 ∨ ¬x6 ∨ x7 ∨ ¬y1) ∧ (y1 ∨ x8 ∨ x12)

F2 = (x1 ∨ x5 ∨ ¬x6 ∨ ¬y2) ∧ (y2 ∨ x7 ∨ ¬y1) ∧ (y1 ∨ x8 ∨ x12)

Introduce new variable, 
take last two literals, and 
make new formula

F1 is satisfiable iff C is: 
C satisfiable ⇒ set y1=0 is x8 or x12 are 1, else set y1=1 ⇒ F1 satisfiable
F1 satisfiable: if y1=0, then x1 or x12 are 1, else one of the other literals is 1 ⇒ C is satisfiable

Repeat process
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Reduction of  SAT to 3-SAT

Transform a formula F into a 3-formula G such that F is satisfiable iff G is.

Will do this clause-by-clause. Here an example when clause has ≥ 3 literals.

C = (x1 ∨ x5 ∨ ¬x6 ∨ x7 ∨ x8 ∨ x12)    Original clause

F1 = (x1 ∨ x5 ∨ ¬x6 ∨ x7 ∨ ¬y1) ∧ (y1 ∨ x8 ∨ x12)

F2 = (x1 ∨ x5 ∨ ¬x6 ∨ ¬y2) ∧ (y2 ∨ x7 ∨ ¬y1) ∧ (y1 ∨ x8 ∨ x12)

F3 = (x1 ∨ x5 ∨ ¬y3) ∧ (y3 ¬x6 ∨ ¬y2) ∧ (y2 ∨ x7 ∨ ¬y1) ∧ (y1 ∨ x8 ∨ x12)

Introduce new variable, 
take last two literals, and 
make new formula

F1 is satisfiable iff C is: 
C satisfiable ⇒ set y1=0 is x8 or x12 are 1, else set y1=1 ⇒ F1 satisfiable
F1 satisfiable: if y1=0, then x1 or x12 are 1, else one of the other literals is 1 ⇒ C is satisfiable

Repeat process

F3 is now a 3-formula which is satisfiable iff C is
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Reduction of  SAT to 3-SAT

Transform a formula F into a 3-formula G such that F is satisfiable iff G is.

Will do this clause-by-clause. Here an example when clause has ≥ 3 literals.

C = (x1 ∨ x5 ∨ ¬x6 ∨ x7 ∨ x8 ∨ x12)    Original clause

F1 = (x1 ∨ x5 ∨ ¬x6 ∨ x7 ∨ ¬y1) ∧ (y1 ∨ x8 ∨ x12)

F2 = (x1 ∨ x5 ∨ ¬x6 ∨ ¬y2) ∧ (y2 ∨ x7 ∨ ¬y1) ∧ (y1 ∨ x8 ∨ x12)

F3 = (x1 ∨ x5 ∨ ¬y3) ∧ (y3 ¬x6 ∨ ¬y2) ∧ (y2 ∨ x7 ∨ ¬y1) ∧ (y1 ∨ x8 ∨ x12)

Repeat this process for all the clauses.

Each clause with l ≥ 3 literals  becomes formula with l-2 clauses and l-3 new 

variables.

Size of new formula is polynomial in size of old. Valid polynomial reduction.

Introduce new variable, 
take last two literals, and 
make new formula

F1 is satisfiable iff C is: 
C satisfiable ⇒ set y1=0 is x8 or x12 are 1, else set y1=1 ⇒ F1 satisfiable
F1 satisfiable: if y1=0, then x1 or x12 are 1, else one of the other literals is 1 ⇒ C is satisfiable

Repeat process

F3 is now a 3-formula which is satisfiable iff C is
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Reduction of  SAT to 3-SAT

Clauses with 1 or 2 literals:

C = (x1 ∨ x5) $  (x1 ∨ x5 ∨ ¬y1) ∧ (y1 ∨ x1 ∨ x5)

C = ¬x10  $  (¬x10 ∨ ¬y1) ∧ (y1 ∨ ¬x10) Now reduce to previous case

Method works also for k-SAT, k ≥ 3. 

What about 2-SAT? It turns out that it is in P. Without proof.
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MAX-2-SAT

2-SAT is in P.

But if a 2-formula is not satisfiable, can we efficiently find the maximum number of 

satisfiable clauses in the formula? 

F is a  1-2-formula if all clauses in F have at most 2 literals.

MAX-2-SAT = {(F,m) | F 1-2-formula for which there is an assignment satisfying ≥ m
                                       clauses} 

G = x ∧ y ∧ z ∧ w ∧ (¬x ∨ ¬y) ∧ (¬y ∨ ¬z) ∧ (¬x ∨ ¬z) ∧ (x ∨ ¬w) ∧ (y ∨ ¬w) ∧ (z ∨ ¬w)

(G,7) is in MAX-2-SAT: x= 0, y = 0, z = 1, w = 0 satisfies the 7 clauses 
z,  (¬x ∨ ¬y) ,  (¬y ∨ ¬z) , (¬x ∨ ¬z) , (x ∨ ¬w) , (y ∨ ¬w) , (z ∨ ¬w)

Theorem:
• If (x ∨ y ∨ z) = 1, then there is assignment for w such that 7 clauses of G are satisfied.
• If (x ∨ y ∨ z) = 0, then no matter how w is chosen, at most 6 clauses of G are satisfied.

So, (G,8) is not in MAX-2-SAT.
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MAX-2-SAT

x y z w ¬x ∨ ¬y ¬z ∨ ¬y ¬x ∨ ¬z x ∨ ¬w y ∨ ¬w z ∨ ¬w x∨y∨z

0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 1 1 1 0 0 0 0

0 0 1 0 1 1 1 1 1 1 1

0 0 1 1 1 1 1 0 0 1 1

0 1 0 0 1 1 1 1 1 1 1

0 1 0 1 1 1 1 0 1 0 1

0 1 1 0 1 0 1 1 1 1 1

0 1 1 1 1 0 1 0 1 1 1

1 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 0 0 1

1 0 1 0 1 1 0 1 1 1 1

1 0 1 1 1 1 0 1 0 1 1

1 1 0 0 0 1 1 1 1 1 1

1 1 0 1 0 1 1 1 1 0 1

1 1 1 0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 1 1 1 1

If x∨y∨z = 1, then w can be chosen such that exactly seven of the other clauses are 1.
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MAX-2-SAT

x y z w ¬x ∨ ¬y ¬z ∨ ¬y ¬x ∨ ¬z x ∨ ¬w y ∨ ¬w z ∨ ¬w x∨y∨z

0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 1 1 1 0 0 0 0

0 0 1 0 1 1 1 1 1 1 1

0 0 1 1 1 1 1 0 0 1 1

0 1 0 0 1 1 1 1 1 1 1

0 1 0 1 1 1 1 0 1 0 1

0 1 1 0 1 0 1 1 1 1 1

0 1 1 1 1 0 1 0 1 1 1

1 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 0 0 1

1 0 1 0 1 1 0 1 1 1 1

1 0 1 1 1 1 0 1 0 1 1

1 1 0 0 0 1 1 1 1 1 1

1 1 0 1 0 1 1 1 1 0 1

1 1 1 0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 1 1 1 1

If x∨y∨z = 1, then w can be chosen such that exactly seven of the other clauses are 1.
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MAX-2-SAT

x y z w ¬x ∨ ¬y ¬z ∨ ¬y ¬x ∨ ¬z x ∨ ¬w y ∨ ¬w z ∨ ¬w x∨y∨z

0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 1 1 1 0 0 0 0

0 0 1 0 1 1 1 1 1 1 1

0 0 1 1 1 1 1 0 0 1 1

0 1 0 0 1 1 1 1 1 1 1

0 1 0 1 1 1 1 0 1 0 1

0 1 1 0 1 0 1 1 1 1 1

0 1 1 1 1 0 1 0 1 1 1

1 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 0 0 1

1 0 1 0 1 1 0 1 1 1 1

1 0 1 1 1 1 0 1 0 1 1

1 1 0 0 0 1 1 1 1 1 1

1 1 0 1 0 1 1 1 1 0 1

1 1 1 0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 1 1 1 1

If x∨y∨z = 1, then w can be chosen such that exactly seven of the other clauses are 1.

Choose w = 0
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MAX-2-SAT

x y z w ¬x ∨ ¬y ¬z ∨ ¬y ¬x ∨ ¬z x ∨ ¬w y ∨ ¬w z ∨ ¬w x∨y∨z

0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 1 1 1 0 0 0 0

0 0 1 0 1 1 1 1 1 1 1

0 0 1 1 1 1 1 0 0 1 1

0 1 0 0 1 1 1 1 1 1 1

0 1 0 1 1 1 1 0 1 0 1

0 1 1 0 1 0 1 1 1 1 1

0 1 1 1 1 0 1 0 1 1 1

1 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 0 0 1

1 0 1 0 1 1 0 1 1 1 1

1 0 1 1 1 1 0 1 0 1 1

1 1 0 0 0 1 1 1 1 1 1

1 1 0 1 0 1 1 1 1 0 1

1 1 1 0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 1 1 1 1

If x∨y∨z = 1, then w can be chosen such that exactly seven of the other clauses are 1.
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MAX-2-SAT

x y z w ¬x ∨ ¬y ¬z ∨ ¬y ¬x ∨ ¬z x ∨ ¬w y ∨ ¬w z ∨ ¬w x∨y∨z

0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 1 1 1 0 0 0 0

0 0 1 0 1 1 1 1 1 1 1

0 0 1 1 1 1 1 0 0 1 1

0 1 0 0 1 1 1 1 1 1 1

0 1 0 1 1 1 1 0 1 0 1

0 1 1 0 1 0 1 1 1 1 1

0 1 1 1 1 0 1 0 1 1 1

1 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 0 0 1

1 0 1 0 1 1 0 1 1 1 1

1 0 1 1 1 1 0 1 0 1 1

1 1 0 0 0 1 1 1 1 1 1

1 1 0 1 0 1 1 1 1 0 1

1 1 1 0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 1 1 1 1

If x∨y∨z = 0, then no matter how we choose w, at most six of the clauses are 1.
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MAX-2-SAT is NP-Complete

Will first show that MAX-2-SAT is in NP.
The witness is a satisfying assignment: for every clause, we check whether the clause is satisfied 
and keep track of the number of satisfied clauses. We check whether this number is ≥ m.

61



MAX-2-SAT is NP-Complete

Will first show that MAX-2-SAT is in NP.
The witness is a satisfying assignment: for every clause, we check whether the clause is satisfied 
and keep track of the number of satisfied clauses. We check whether this number is ≥ m.

Next, we show that 3-SAT ≤ MAX-2-SAT. 
F = C1 ∧ C2 ∧ … ∧ Cm 3-formula. Will transform it into (H,7m) where H is a 1-2-formula such that 
F is satisfiable iff (H,7m) is in MAX-2-SAT, i.e., there is assignment satisfying ≥ 7m clauses of H.
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MAX-2-SAT is NP-Complete

Will first show that MAX-2-SAT is in NP.
The witness is a satisfying assignment: for every clause, we check whether the clause is satisfied 
and keep track of the number of satisfied clauses. We check whether this number is ≥ m.

Next, we show that 3-SAT ≤ MAX-2-SAT. 
F = C1 ∧ C2 ∧ … ∧ Cm 3-formula. Will transform it into (H,7m) where H is a 1-2-formula such that 
F is satisfiable iff (H,7m) is in MAX-2-SAT, i.e., there is assignment satisfying ≥ 7m clauses of H.

Introduce new variables w1,..., wm. 
Cj = λ1 ∨ λ2 ∨ λ3 $  
Dj = λ1 ∧ λ2 ∧ λ3 ∧ wj ∧ (¬λ1∨¬λ2) ∧ (¬λ2∨¬λ3) ∧ (¬λ1∨¬λ3) ∧ (λ1∨¬wj) ∧ (λ2∨¬wj) ∧ (λ3∨¬wj)

H = D1 ∧ D2 ∧ … ∧ Dm (10m clauses)
Transformation is poly-time.
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MAX-2-SAT is NP-Complete

Will first show that MAX-2-SAT is in NP.
The witness is a satisfying assignment: for every clause, we check whether the clause is satisfied 
and keep track of the number of satisfied clauses. We check whether this number is ≥ m.

Next, we show that 3-SAT ≤ MAX-2-SAT. 
F = C1 ∧ C2 ∧ … ∧ Cm 3-formula. Will transform it into (H,7m) where H is a 1-2-formula such that 
F is satisfiable iff (H,7m) is in MAX-2-SAT, i.e., there is assignment satisfying ≥ 7m clauses of H.

Introduce new variables w1,..., wm. 
Cj = λ1 ∨ λ2 ∨ λ3 $  
Dj = λ1 ∧ λ2 ∧ λ3 ∧ wj ∧ (¬λ1∨¬λ2) ∧ (¬λ2∨¬λ3) ∧ (¬λ1∨¬λ3) ∧ (λ1∨¬wj) ∧ (λ2∨¬wj) ∧ (λ3∨¬wj)

H = D1 ∧ D2 ∧ … ∧ Dm (10m clauses)
Transformation is poly-time.

• F satisfiable: 
• By theorem, there is setting for the wj such that each Dj has 7 satisfied clauses.
• (H,7m) is in MAX-2-SAT
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MAX-2-SAT is NP-Complete

Will first show that MAX-2-SAT is in NP.
The witness is a satisfying assignment: for every clause, we check whether the clause is satisfied 
and keep track of the number of satisfied clauses. We check whether this number is ≥ m.

Next, we show that 3-SAT ≤ MAX-2-SAT. 
F = C1 ∧ C2 ∧ … ∧ Cm 3-formula. Will transform it into (H,7m) where H is a 1-2-formula such that 
F is satisfiable iff (H,7m) is in MAX-2-SAT, i.e., there is assignment satisfying ≥ 7m clauses of H.

Introduce new variables w1,..., wm. 
Cj = λ1 ∨ λ2 ∨ λ3 $  
Dj = λ1 ∧ λ2 ∧ λ3 ∧ wj ∧ (¬λ1∨¬λ2) ∧ (¬λ2∨¬λ3) ∧ (¬λ1∨¬λ3) ∧ (λ1∨¬wj) ∧ (λ2∨¬wj) ∧ (λ3∨¬wj)

H = D1 ∧ D2 ∧ … ∧ Dm (10m clauses)
Transformation is poly-time.

• F satisfiable: 
• By theorem, there is setting for the wj such that each Dj has 7 satisfied clauses.
• (H,7m) is in MAX-2-SAT

• F not satisfiable: 
• By theorem, no matter how wj is chosen, Dj cannot have more than 6 satisfied clauses.
• Hence H cannot have more than 6m satisfied clauses.
• (H,7m) is not in MAX-2-SAT
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Not-all-equal 3-SAT

An assignment (b1,...,bn) to boolean variables x1,...,xn not-all-equal-satisfies a
clause C = (λ1 ∨ λ2 ∨ … ∨ λk) if there is at least one satisfied and one unsatisfied 
literal under this assignment.

Example: (1,1,1) does NOT NAE-satisfy (x1 ∨ x2 ∨ x3).

NAE-3-SAT = { F | F is a NAE-satisfiable 3-formula }
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NAE-3-SAT is NP-Complete

Will first show that NAE-3-SAT is in NP.
The witness is a satisfying assignment: for every clause, check that the assignment NAE-satisfies 
the clause. Can be done in polynomial time.
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NAE-3-SAT is NP-Complete

Will first show that NAE-3-SAT is in NP.
The witness is a satisfying assignment: for every clause, check that the assignment NAE-satisfies 
the clause. Can be done in polynomial time.

Next, we show that 3-SAT ≤ NAE-3-SAT. 
F = C1 ∧ C2 ∧ … ∧ Ck 3-formula. Will transform it into another 3-formula G such that G is NAE-
satisfiable iff F is satisfiable.
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NAE-3-SAT is NP-Complete

Will first show that NAE-3-SAT is in NP.
The witness is a satisfying assignment: for every clause, check that the assignment NAE-satisfies 
the clause. Can be done in polynomial time.

Next, we show that 3-SAT ≤ NAE-3-SAT. 
F = C1 ∧ C2 ∧ … ∧ Ck 3-formula. Will transform it into another 3-formula G such that G is NAE-
satisfiable iff F is satisfiable.

Introduce new variables z, w1,..., wk. 
Cj = λ1 ∨ λ2 ∨ λ3 $  Dj = (λ1 ∨ λ2 ∨ wj) ∧ (¬wj ∨ λ3 ∨ z)

G = D1 ∧ D2 ∧ … ∧ Dk (2k clauses)
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NAE-3-SAT is NP-Complete

Will first show that NAE-3-SAT is in NP.
The witness is a satisfying assignment: for every clause, check that the assignment NAE-satisfies 
the clause. Can be done in polynomial time.

Next, we show that 3-SAT ≤ NAE-3-SAT. 
F = C1 ∧ C2 ∧ … ∧ Ck 3-formula. Will transform it into another 3-formula G such that G is NAE-
satisfiable iff F is satisfiable.

Introduce new variables z, w1,..., wk. 
Cj = λ1 ∨ λ2 ∨ λ3 $  Dj = (λ1 ∨ λ2 ∨ wj) ∧ (¬wj ∨ λ3 ∨ z)

G = D1 ∧ D2 ∧ … ∧ Dk (2k clauses)
Transformation is poly-time.
• F satisfiable: 

• if λ1 ∨ λ2 = 1, set wj=0, z=0
• if λ1 ∨ λ2 = 0, set wj=1, z=0

⇒ G is NAE-satisfiable.
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NAE-3-SAT is NP-Complete

Will first show that NAE-3-SAT is in NP.
The witness is a satisfying assignment: for every clause, check that the assignment NAE-satisfies 
the clause. Can be done in polynomial time.

Next, we show that 3-SAT ≤ NAE-3-SAT. 
F = C1 ∧ C2 ∧ … ∧ Ck 3-formula. Will transform it into another 3-formula G such that G is NAE-
satisfiable iff F is satisfiable.

Introduce new variables z, w1,..., wk. 
Cj = λ1 ∨ λ2 ∨ λ3 $  Dj = (λ1 ∨ λ2 ∨ wj) ∧ (¬wj ∨ λ3 ∨ z)

G = D1 ∧ D2 ∧ … ∧ Dk (2k clauses)
Transformation is poly-time.
• F satisfiable: 

• if λ1 ∨ λ2 = 1, set wj=0, z=0
• if λ1 ∨ λ2 = 0, set wj=1, z=0

• G NAE-satisfiable:
• (x1,x2,...,xn,w1,...,wk,z=1) NAE-satisfies G iff (¬x1,...,¬xn,¬w1,...,¬wk,z=0) does
• Can assume z = 0
• Then Dj is NAE-satisfiable iff λ1 ∨ λ2 = 1 or λ3 = 1, so iff Cj is satisfiable.

⇒ G is NAE-satisfiable.

⇒ F is satisfiable.
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Lots more NP-Complete Problems

Richard Karp, 1935 - 

In 1972 Richard Karp published a landmark paper entitled

Reducibility among Combinatorial Problems

This paper took the theory of NP-completeness a leap forward by  compiling a list of 21 well-

known computational problems which he  showed to be NP-complete as well.

We will discuss some of these problems in this class.
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INDEP-SET is NP-Complete

Reminder: 

INDEP-SET = { (G,m) | G is a graph with an independent set of size ≥ m}

We prove that INDEP-SET is NP-complete by showing:

• INDEP-SET is in NP  ......................... This one we have already seen

• 3-SAT ≤ INDEP-SET .......................... This one we need to show

To prove 3-SAT ≤ INDEP-SET:

• Take any 3-formula F

• Construct (efficiently) from F a graph G and an integer m such that

F is in 3-SAT %  (G,m) is in INDEP-SET
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INDEP-SET is NP-Complete

F 3-formula with t clauses: F = C1 ∧ C2 ∧ ... ∧ Ct

Construct graph G such that (G,t) is in INDEP-SET iff F is satisfiable.
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INDEP-SET is NP-Complete

F 3-formula with t clauses: F = C1 ∧ C2 ∧ ... ∧ Ct

Construct graph G such that (G,t) is in INDEP-SET iff F is satisfiable.

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3)

x1

x2

x3

¬x1

¬x2 ¬x3

¬x1

x2 x3

For every clause create a triangle with nodes labeled by the literals.

Connect all the nodes of the triangle.

Example:
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INDEP-SET is NP-Complete

F 3-formula with t clauses: F = C1 ∧ C2 ∧ ... ∧ Ct

Construct graph G such that (G,t) is in INDEP-SET iff F is satisfiable.

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3)

x1

x2

x3

¬x1

¬x2 ¬x3

¬x1

x2 x3

For every clause create a triangle with nodes labeled by the literals.

Connect all the nodes of the triangle.

Connect literals by an edge who are negations of one another. 

Example:
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INDEP-SET is NP-Complete

Suppose that F is satisfiable.

In every clause, pick a literal λ that is satisfied. Mark corresponding node in graph G.

The set of marked nodes forms independent set of size t, so (G,t) is in INDEP-SET.

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3)

x2

x3

¬x1

¬x3

¬x1

x2

Pick satisfying assignment (1,0,1): 

Pick literal x1 in the first clause, ¬x2 in the second, and x3 in the third.

Corresponding nodes form an independent set.

Example:

x1

¬x2 x3
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INDEP-SET is NP-Complete

Suppose that I is an independent set of G of size ≥ t.

|I| cannot be larger than t: each triangle can contribute at most one node to I and there are t triangles.

Take assignment that satisfies all literals corresponding to nodes in I (exists, since no “contradictions” allowed)

This is a satisfying assignment for F, since every clause has at least one satisfied literal.

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3)

x1

x3

¬x1

¬x2 x2 x3

Pick independent set given on the right. 

This corresponds to the satisfying assignment: x1=0, x2=1, x3=0

Example:

x2

¬x3

¬x1
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INDEP-SET is NP-Complete

We already showed that:

• CLIQUE ≤ INDEP-SET ≤ CLIQUE

• NODE-COVER ≤ INDEP-SET ≤ NODE-COVER

So, we obtain

CLIQUE and NODE-COVER are NP-complete as well.
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Cuts

G=(V,E) graph, w: E $  N positive integer weights on the edges.

A cut in G is a partition of the nodes into two subsets A and B.

The value of the cut is the sum of the edge values of all edges connecting some 
node in A to some node in B.

Graph G

all edge weights are 1
Cut of value 7
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Min-Cut

MIN-CUT = { (G,w, m) | G graph, w edge weights, G has a cut of size ≤ m}

This problem is in P:

(1) set out = inf

(2) For all ordered pair of distinct nodes (s,t) of G do

(a) Run the Ford-Fulkerson algorithm on (G, s,t, w); obtain value c for the min-cut

(b) If c is smaller than out, then replace out by c

(3) Return out
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Max-Cut

MAX-CUT = { (G,w, m) | G graph, w edge weights, G has a cut of size ≥ m}

This problem cannot be solved the same way (simply multiplying edge weights 
with -1 and reducing to MIN-CUT doesn’t work since to solve MIN-CUT the edge 
values have to be positive).

What can be said about this problem?

MAX-CUT is NP-complete!
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Max-Cut is NP-Complete

We prove that MAX-CUT is NP-complete by showing:

• MAX-CUT is in NP  ........................................ The witness would be a description of the cut, so easy.

• NAE-3-SAT ≤ MAX-CUT .......................... This one we need to show

To prove NAE-3-SAT ≤ MAX-CUT:

• Take any 3-formula F

• Construct (efficiently) from F a graph G, weights w, and an integer m such that

F is NAE-satisfiable ⇔ (G,w) has a cut of size ≥ m

gadget
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F 3-formula with t clauses: F = C1 ∧ C2 ∧ ... ∧ Ct

Construct graph G with weights w such that such that (G,w,5t) is in  MAX-CUT iff F is satisfiable.

The Gadget

84



F 3-formula with t clauses: F = C1 ∧ C2 ∧ ... ∧ Ct

Construct graph G with weights w such that such that (G,w,5t) is in  MAX-CUT iff F is 
satisfiable.

(x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x2 ∨ ¬x3 ∨ x4) ∧

 (x1 ∨ x3 ∨ ¬x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4)

Example:

The Gadget
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F 3-formula with t clauses: F = C1 ∧ C2 ∧ ... ∧ Ct

Construct graph G with weights w such that such that (G,w,5t) is in  MAX-CUT iff F is 
satisfiable.

(x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x2 ∨ ¬x3 ∨ x4) ∧

 (x1 ∨ x3 ∨ ¬x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4)

Example:

x1

x3

¬x1

¬x2

¬x3

x2

x4 ¬x4

• Create one node for every variable and its negation

The Gadget
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(x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x2 ∨ ¬x3 ∨ x4) ∧

 (x1 ∨ x3 ∨ ¬x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4)

Example:

x1

x3

¬x1

¬x2

¬x3

x2

x4 ¬x4

• Create one node for every variable and its negation

• For every clause λ1 ∨ λ2 ∨ λ3 create triangle connecting the 
corresponding nodes (if some edge already exists, augment its 
weight by 1).

The Gadget

F 3-formula with t clauses: F = C1 ∧ C2 ∧ ... ∧ Ct

Construct graph G with weights w such that such that (G,w,5t) is in  MAX-CUT iff F is 
satisfiable.
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(x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x2 ∨ ¬x3 ∨ x4) ∧

 (x1 ∨ x3 ∨ ¬x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4)

Example:

x1

x3

¬x1

¬x2

¬x3

x2

¬x4

• Create one node for every variable and its negation

• For every clause λ1 ∨ λ2 ∨ λ3 create triangle connecting the 
corresponding nodes (if some edge already exists, augment its 
weight by 1).

2
x4

The Gadget

F 3-formula with t clauses: F = C1 ∧ C2 ∧ ... ∧ Ct

Construct graph G with weights w such that such that (G,w,5t) is in  MAX-CUT iff F is 
satisfiable.
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(x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x2 ∨ ¬x3 ∨ x4) ∧

 (x1 ∨ x3 ∨ ¬x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4)

Example:

x1

x3

¬x1

¬x2

¬x3

x2

¬x4

• Create one node for every variable and its negation

• For every clause λ1 ∨ λ2 ∨ λ3 create triangle connecting the 
corresponding nodes (if some edge already exists, augment its 
weight by 1).

2

2

x4

The Gadget

F 3-formula with t clauses: F = C1 ∧ C2 ∧ ... ∧ Ct

Construct graph G with weights w such that such that (G,w,5t) is in  MAX-CUT iff F is 
satisfiable.

89



(x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x2 ∨ ¬x3 ∨ x4) ∧

 (x1 ∨ x3 ∨ ¬x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4)

Example:

x1

x3

¬x1

¬x2

¬x3

x2

¬x4

• Create one node for every variable and its negation

• For every clause λ1 ∨ λ2 ∨ λ3 create triangle connecting the 
corresponding nodes (if some edge already exists, augment its 
weight by 1).

2

2

2

x4

The Gadget

F 3-formula with t clauses: F = C1 ∧ C2 ∧ ... ∧ Ct

Construct graph G with weights w such that such that (G,w,5t) is in  MAX-CUT iff F is 
satisfiable.
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(x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x2 ∨ ¬x3 ∨ x4) ∧

 (x1 ∨ x3 ∨ ¬x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4)

Example:

x1

x3

¬x1

¬x2

¬x3

x2

¬x4

• Create one node for every variable and its negation

• For every clause λ1 ∨ λ2 ∨ λ3 create triangle connecting the 
corresponding nodes (if some edge already exists, augment its 
weight by 1).

x4
2

2

2

The Gadget

F 3-formula with t clauses: F = C1 ∧ C2 ∧ ... ∧ Ct

Construct graph G with weights w such that such that (G,w,5t) is in  MAX-CUT iff F is 
satisfiable.
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(x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x2 ∨ ¬x3 ∨ x4) ∧

 (x1 ∨ x3 ∨ ¬x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4)

Example:

x1

x3

¬x1

¬x2

¬x3

x2

x4 ¬x4

• Create one node for every variable and its negation

• For every clause λ1 ∨ λ2 ∨ λ3 create triangle connecting the 
corresponding nodes (if some edge already exists, augment its 
weight by 1).

• Connect the nodes xi and ¬xi by an edge of weight ni, where ni is 
the number of times xi or its negation appears in the formula. 
(NOTE: the sum of all the ni is the total number of literals in the 
formula, so 3t)

2

2

2

2

3

5

5

n1=2, n2=3, n3=n4=5

The Gadget

F 3-formula with t clauses: F = C1 ∧ C2 ∧ ... ∧ Ct

Construct graph G with weights w such that such that (G,w,5t) is in  MAX-CUT iff F is 
satisfiable.
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(x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x2 ∨ ¬x3 ∨ x4) ∧

 (x1 ∨ x3 ∨ ¬x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4)

Example:

x1

x3

¬x1

¬x2

¬x3

x2

x4 ¬x4

• Create one node for every variable and its negation

• For every clause λ1 ∨ λ2 ∨ λ3 create triangle connecting the 
corresponding nodes (if some edge already exists, augment its 
weight by 1).

• Connect the nodes xi and ¬xi by an edge of weight ni, where ni is 
the number of times xi or its negation appears in the formula. 
(NOTE: the sum of all the ni is the total number of literals in the 
formula, i.e., 3t)

• Transformation is polynomial time.
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2

3

5

5

The Gadget

F 3-formula with t clauses: F = C1 ∧ C2 ∧ ... ∧ Ct

Construct graph G with weights w such that such that (G,w,5t) is in  MAX-CUT iff F is 
satisfiable.
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x1

x3

¬x1

¬x2x2

¬x4
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5
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The Gadget

Suppose that G has a cut (A,B) of size ≥ 5t:

Cut of value 25 = 5t

x4

¬x3
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¬x1

¬x2x2
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5

The Gadget

Suppose that G has a cut (A,B) of size ≥ 5t:

(1) We can assume that the variables and their negations belong 
to different sides

(a) If literals xi and ¬xi belong to the same side of the cut, 
they contribute together at most ni to the cut (each 
appearance of one of these literals contributes at most 1 to 
the cut).

(b) Hence, putting them at different sides at most increases 
the value of the cut.

(c) So, if a cut of value ≥ 5t exists, then there is a cut of 
value ≥ 5t in which all variables and their negations belong 
to different sides of the cut.

Cut of value 25 = 5t

x4

¬x3
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x1

x3

¬x1

¬x2x2

¬x4
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2

2
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5

5

The Gadget

Suppose that G has a cut (A,B) of size ≥ 5t:

(1) We can assume that the variables and their negations belong 
to different sides

(2) The variables and their negations contribute ∑i ni = 3t to the 
cut. Remaining ≥ 2t has to come from the triangles.

(a) A triangle contributes either 0 or 2 to the cut: 0 if all 
nodes are on the same side of the cut, 2 else.

(b) There are t triangles, so each has to contribute exactly 2 
to the cut: in each triangle one of the nodes is on one 
side, the other two on the other side of the cut.

Cut of value 25 = 5t

x4

¬x3
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¬x2x2

¬x4
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The Gadget

Suppose that G has a cut (A,B) of size ≥ 5t:

(1) We can assume that the variables and their negations belong 
to different sides

(2) The variables and their negations contribute ∑i ni = 3t to the 
cut. Remaining ≥ 2t has to come from the triangles.

(3) Select the assignment which satisfies all the literals in A.
(a) There is no contradiction (literals and their negations are 

on different sides)
(b) Each clause has at least one and at most 2 satisfied 

literals (because each triangle contributes exactly 2 to the 
cut).

Assignment: x1=1, x2=x3=0, x4=1

x4

¬x3
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The Gadget

Suppose that G has a cut (A,B) of size ≥ 5t:

(1) We can assume that the variables and their negations belong 
to different sides

(2) The variables and their negations contribute ∑i ni = 3t to the 
cut. Remaining ≥ 2t has to come from the triangles.

(3) Select the assignment which satisfies all the literals in A.
(4) F is NAE-satisfiable.

x4

¬x3

Assignment: x1=1, x2=x3=0, x4=1

98



x1

x3

¬x1
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The Gadget

Suppose that F is NAE-satisfiable. Choose an NAE-satisfying assignment.

(1) Choose as A the set of nodes corresponding to satisfied 
literals.

(a) Literals xi and ¬xi belong to different sides of the cut, so 
they contribute in total ∑i ni=3t to the cut.

(b) Each triangle contributes 2 to the cut, so in total all 
triangles contribute 2t to the cut.

(2) The value of the corresponding cut is 5t, so (G,w,5t) is in 
MAX-CUT.

x4

¬x3(x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4) ∧ (x2 ∨ ¬x3 ∨ x4) ∧ (x1 ∨ x3 ∨ ¬x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4)

has NAE-satisfying assignment x1=x2=1, x3=x4=0.

This gives cut of value 25 = 5t. ¬x4
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