
Lecture 18 
Counting
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Poker Hands
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Game of (Straight) Poker

• Each of the players is dealt five cards from a deck of 52 cards


• Players can switch some of their cards against new ones

- We are not going to talk about this here.


• Players bet on their final hands


• Cards are revealed


• Highest hand wins
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Winning Hands
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5 consecutive cards of one color, starting with 10

5 consecutive cards of one color, starting with ≤ 9

Four cards are of one kind

A pair of one kind, three cards of another kind

All cards of one color, but not consecutive

Consecutive cards, not all of the same suit

Three colors of the same kind, the other two different

Two pairs of same kind, but not a four

One pair of the same kind, the other three different

None of the above

Royal flush

Straight flush

Four of a kind

Full house

Flush

Straight

Three of a kind

Two pairs

One pair

No pair

Card pictures are from Wikipedia.



Total number of distinct hands
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C(52,5) = 
52!

5!47!
= 2’598’960



Number of royal flush hands
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1 * 4 = 4 

# ways to pick 
the five cards 
without regard 
for the suit

# ways to 
color the hand

5 consecutive cards of 
one suit, starting with 
10



Number of straight flush but not royal flush hands
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9 * 4 = 36 

The first card 
in the royal 
flush hand can 
be A, 2, 3, 4, 
5, 6, 7, 8, 9, so 
9 possibilities

# ways to 
color the hand

4

 + 36


40

Cumulative 
count

5 consecutive cards of 
one color, starting with 
≤ 9



Number of four of a kind hands
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C(13,1) * C(12,1)*4 

= 624# ways to pick 
one of 13 
kinds

# ways to 
color last card

# ways to pick 
the kind of the 
last card. 
Cannot be 
equal to kind 
of first

=
13!

1!12!
· 12!

1!11!
· 4

4

+ 36


+ 624

664

Cumulative 
count

Four cards are of one 
kind



Number of full house hands
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C(13,1) *C(4,3)* C(12,1)*C(4,2)

= 3’744# ways to pick 
one of 13 
kinds

# ways to pick 
a kind out of 
the remaining 
12 for the last 
two cards

# ways to 
color the last 
two cards

# ways to 
color the three 
cards.

=
13!

1!12!
· 4!

3!1!
· 12!

1!11!
· 4!

2!2!

4

+ 36


+ 624

+ 3’744


4’408

Cumulative 
count

A pair of one kind, three 
cards of another kind



Number of flush but not royal/straight flush hands
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C(13,5) *C(4,1) - C(10,1)*4

= 5’108# ways to pick 
the five kinds 
making up the 
hand

# royal/straight 
flush hands

# ways to 
color the hand

=
13!

5!8!
· 4!

1!3!
� 40

4

+ 36


+ 624

+ 3’744

+ 5’108


9’516

Cumulative 
count

All cards of one color, 
but not consecutive



Number of straight but not flush/royal flush hands
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10 *C(4,1)5 - C(10,1)*4

= 10’200# ways to pick 
the five kinds 
making up the 
hand

# royal/straight 
flush hands

# ways to 
color the hand

= 10 ·
✓

4!

1!3!

◆5

� 40

4

+ 36


+ 624

+ 3’744

+ 5’108


+ 10’200

19’716

Cumulative 
count

Consecutive cards, not 
all of the same suit



Number of hands with three of a kind
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C(13,1) * C(4,3) * C(12,2)*42 =

# ways to pick 
1 of 13 kinds 
to make the 
“three of a 
kind”

# ways to pick 
the other two 
cards. They 
cannot be a 
pair, and have 
to be of a 
different kind.

# ways to 
color the three 
cards.

# ways to 
color the last 2 
cards

= 54’912

4

+ 36


+ 624

+ 3’744

+ 5’108


+ 10’200

+ 54’912 

74’628

Cumulative 
count

Three colors of the 
same kind, the other 
two different

13!

1!12!
· 4!

3!1!
· 12!

2!10!
· 42



Number of hands with two distinct pairs
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C(13,2) * C(4,2)2 * C(11,1)*4 

# ways to pick 
2 of 13 kinds 
to make the 
two pairs

# ways to pick 
a kind out of 
the remaining 
11 kinds for 
the last card

# ways to 
color the two 
pairs. Each 
pair has 
independently 
C(4,2) ways

# ways to 
color the last 
card

= 123’552

4

+ 36


+ 624

+ 3’744

+ 5’108


+ 10’200

+ 54’912 


+ 123’552

198’180

Cumulative 
count

Two pairs of same kind, 
but not a four

=
13!

2!11!
·
✓

4!

2!2!

◆2

· 11!

1!10!
· 4



Number of hands with exactly one pair
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C(13,1) * C(4,2) * C(12,3)*43 =
13!

1!12!
· 4!

2!2!
· 12!

3!9!
· 43

= 1’098’240
# ways to pick 
one of 13 
kinds to make 
a pair

# ways to pick 
two distinct 
colors for the 
two cards in 
the pair

# ways to pick 
3 distinct 
kinds out of 
the remaining 
12 for the 
other three 
cards in the 
hand

# ways to pick 
the colors of 
the remaining 
three cards

4

+ 36


+ 624

+ 3’744

+ 5’108


+ 10’200

+ 54’912 


+ 123’552

+ 1’098’240


1’296’420

Cumulative 
count

One pair of the same 
kind, the other three 
different



None of the above
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C(52,5) - 1’296’420 = 1’302’540

# all hands

# hands 
counted so far

4

+ 36


+ 624

+ 3’744

+ 5’108


+ 10’200

+ 54’912 


+ 123’552

+ 1’098’240


1’296’420

Cumulative 
count

15

None of the above



Results
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Number of hands Probability

Royal flush 4 0.00015%

Straight flush 36 0.00139%

Four of a kind 624 0.02401%

Full house 3744 0.14406%

Flush 5108 0.19654%

Straight 10200 0.39246%

Three of a kind 54912 2.11285%

Two pairs 123552 4.75390%

One pair 1098240 42.25690%

None of the above 1302540 50.11774%



Plot: Number of hands of each category
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The top hands are not visible in this plot



Logarithmic plot: log10(number of hands)
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Another example

How many hands don't contain any pair?
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Another example

How many hands don't contain any pair?
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Method 1



Another example

How many hands don't contain any pair?
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Number of hands

Royal flush 4

Straight flush 36

Four of a kind Contains pair

Full house Contains pair

Flush 5108

Straight 10200

Three of a kind Contains pair

Two pairs Contains pair

One pair Contains pair

None of the above 1302540

TOTAL 1’317’888

Method 1



Another example

How many hands don't contain any pair?
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Number of hands

Royal flush 4

Straight flush 36

Four of a kind Contains pair

Full house Contains pair

Flush 5108

Straight 10200

Three of a kind Contains pair

Two pairs Contains pair

One pair Contains pair

None of the above 1302540

TOTAL 1’317’888

Method 1 Method 2



Another example

How many hands don't contain any pair?
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Number of hands

Royal flush 4

Straight flush 36

Four of a kind Contains pair

Full house Contains pair

Flush 5108

Straight 10200

Three of a kind Contains pair

Two pairs Contains pair

One pair Contains pair

None of the above 1302540

TOTAL 1’317’888

Method 1 Method 2

52*48*44*40*36
5!

# 
po

ss
ib

ilit
ie

s 
1s

t c
ar

d

# 
po

ss
ib

ilit
ie

s 
2n

d 
ca

rd

# 
po

ss
ib

ilit
ie

s 
3r

d 
ca

rd

# 
po

ss
ib

ilit
ie

s 
4t

h 
ca

rd

# 
po

ss
ib

ilit
ie

s 
5t

h 
ca

rd

Permutations don’t matter

= 1’317’888



Combinations with 
Replacement
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Choosing r elements from a set of n-elements
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Without 
replacement

With 
replacement

Permutation P(n,r) nr

Combination C(n,r) ?

Ordering matters

Ordering doesn’t matter



Choosing r elements from a set of n-elements

21Discrete Structures - 2015

Without 
replacement

With 
replacement

Permutation P(n,r) nr

Combination C(n,r) ?

Ordering matters

Ordering doesn’t matter

Let’s call this number A(n,r)



Combination with replacement: example

• We have three ice cream flavors: chocolate, banana, vanilla


• How many different sets of 5-scoops can we make? A(3,5)
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Combination with replacement: example

• We have three ice cream flavors: chocolate, banana, vanilla


• How many different sets of 5-scoops can we make? A(3,5)
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At least one chocolate



Combination with replacement: example

• We have three ice cream flavors: chocolate, banana, vanilla


• How many different sets of 5-scoops can we make? A(3,5)
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chocolate banana vanilla
5 0 0
4 1 0
4 0 1
3 2 0
3 1 1
3 0 2
2 3 0
2 2 1
2 1 2
2 0 3
1 4 0
1 3 1
1 2 2
1 1 3
1 0 4

At least one chocolate



Combination with replacement: example

• We have three ice cream flavors: chocolate, banana, vanilla


• How many different sets of 5-scoops can we make? A(3,5)
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chocolate banana vanilla
5 0 0
4 1 0
4 0 1
3 2 0
3 1 1
3 0 2
2 3 0
2 2 1
2 1 2
2 0 3
1 4 0
1 3 1
1 2 2
1 1 3
1 0 4

At least one chocolate No chocolate



Combination with replacement: example

• We have three ice cream flavors: chocolate, banana, vanilla


• How many different sets of 5-scoops can we make? A(3,5)
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chocolate banana vanilla
5 0 0
4 1 0
4 0 1
3 2 0
3 1 1
3 0 2
2 3 0
2 2 1
2 1 2
2 0 3
1 4 0
1 3 1
1 2 2
1 1 3
1 0 4

At least one chocolate No chocolate



Combination with replacement: example

• We have three ice cream flavors: chocolate, banana, vanilla


• How many different sets of 5-scoops can we make? A(3,5)
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chocolate banana vanilla
5 0 0
4 1 0
4 0 1
3 2 0
3 1 1
3 0 2
2 3 0
2 2 1
2 1 2
2 0 3
1 4 0
1 3 1
1 2 2
1 1 3
1 0 4

chocolate banana vanilla
0 5 0
0 4 1
0 3 2
0 2 3
0 1 4
0 0 5

At least one chocolate No chocolate



Combination with replacement: example

• We have three ice cream flavors: chocolate, banana, vanilla


• How many different sets of 5-scoops can we make? A(3,5)
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chocolate banana vanilla
5 0 0
4 1 0
4 0 1
3 2 0
3 1 1
3 0 2
2 3 0
2 2 1
2 1 2
2 0 3
1 4 0
1 3 1
1 2 2
1 1 3
1 0 4

chocolate banana vanilla
0 5 0
0 4 1
0 3 2
0 2 3
0 1 4
0 0 5

At least one chocolate No chocolate

21 choices total, so A(3,5) = 21

but what is A(n,r) in general?



At least one chocolate
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chocolate banana vanilla
5 0 0
4 1 0
4 0 1
3 2 0
3 1 1
3 0 2
2 3 0
2 2 1
2 1 2
2 0 3
1 4 0
1 3 1
1 2 2
1 1 3
1 0 4

At least one chocolate



At least one chocolate
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chocolate banana vanilla
5 0 0
4 1 0
4 0 1
3 2 0
3 1 1
3 0 2
2 3 0
2 2 1
2 1 2
2 0 3
1 4 0
1 3 1
1 2 2
1 1 3
1 0 4

At least one chocolate Take out that chocolate scoop

Same as number of 4-scoops



At least one chocolate
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chocolate banana vanilla
4 0 0
3 1 0
3 0 1
2 2 0
2 1 1
2 0 2
1 3 0
1 2 1
1 1 2
1 0 3
0 4 0
0 3 1
0 2 2
0 1 3
0 0 4

chocolate banana vanilla
5 0 0
4 1 0
4 0 1
3 2 0
3 1 1
3 0 2
2 3 0
2 2 1
2 1 2
2 0 3
1 4 0
1 3 1
1 2 2
1 1 3
1 0 4

At least one chocolate Take out that chocolate scoop

Same as number of 4-scoops

This is number of 4-scoops

of three flavors, so  A(3,4) 

=



No chocolate
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chocolate banana vanilla
0 5 0
0 4 1
0 3 2
0 2 3
0 1 4
0 0 5

No chocolate



No chocolate
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chocolate banana vanilla
0 5 0
0 4 1
0 3 2
0 2 3
0 1 4
0 0 5

No chocolate 5-scoops from two flavors only



No chocolate
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chocolate banana vanilla
0 5 0
0 4 1
0 3 2
0 2 3
0 1 4
0 0 5

banana vanilla
5 0
4 1
3 2
2 3
1 4
0 5

No chocolate 5-scoops from two flavors only

This is number of 5-scoops

of two flavors, so  A(2,5) 

=



Recursion
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chocolate banana vanilla
5 0 0
4 1 0
4 0 1
3 2 0
3 1 1
3 0 2
2 3 0
2 2 1
2 1 2
2 0 3
1 4 0
1 3 1
1 2 2
1 1 3
1 0 4

chocolate banana vanilla
0 5 0
0 4 1
0 3 2
0 2 3
0 1 4
0 0 5

A(3,4) A(2,5)+A(3,5) = 



Recursion
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A(3,5) = A(3,4) + A(2,5)



Recursion
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A(3,5) = A(3,4) + A(2,5)

and in general

A(n,r) = A(n,r-1) + A(n-1,r)  for r, n ≥ 1



Recursion
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A(3,5) = A(3,4) + A(2,5)

and in general

Combinations containing

at least one copy of the 
first element of original 

set

A(n,r) = A(n,r-1) + A(n-1,r)  for r, n ≥ 1



Recursion
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A(3,5) = A(3,4) + A(2,5)

and in general

Combinations containing

at least one copy of the 
first element of original 

set Combinations containing

no copy of the first 

element of original set

A(n,r) = A(n,r-1) + A(n-1,r)  for r, n ≥ 1



Trivial cases
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A(n,1) = n for n ≥ 1



Trivial cases
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A(n,1) = n for n ≥ 1
If you have n ice cream flavors, but only one scoop, you can only have n 
different ice cream servings.



Trivial cases
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A(n,1) = n for n ≥ 1
If you have n ice cream flavors, but only one scoop, you can only have n 
different ice cream servings.

A(1, r) = 1 for r ≥ 1



Trivial cases
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A(n,1) = n for n ≥ 1
If you have n ice cream flavors, but only one scoop, you can only have n 
different ice cream servings.

A(1, r) = 1 for r ≥ 1
If you have only one ice cream flavor, then no matter how many scoops you 
take, you will end up having only one type of ice cream serving.



A(n,r) = A(n,r-1) + A(n-1,r)
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1 2 3 4 5
1

2

3

4

5



1 2 3 4 5

A(n,r) = A(n,r-1) + A(n-1,r)
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1 2 3 4 5
1

2

3

4

5

A(n,1) = n for n ≥ 1



1 2 3 4 5

A(n,r) = A(n,r-1) + A(n-1,r)
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1 2 3 4 5
1

2

3

4

5

1

1

1

1

A(n,1) = n for n ≥ 1

A(1,r) = 1 for r ≥ 1



1 2 3 4 5

A(n,r) = A(n,r-1) + A(n-1,r)
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1 2 3 4 5
1

2

3

4

5

1

1

1

1

A(n,1) = n for n ≥ 1

A(1,r) = 1 for r ≥ 1



1 2 3 4 5

A(n,r) = A(n,r-1) + A(n-1,r)
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1 2 3 4 5
1

2

3

4

5

1

1

1

1

3

add

A(n,1) = n for n ≥ 1

A(1,r) = 1 for r ≥ 1



1 2 3 4 5

A(n,r) = A(n,r-1) + A(n-1,r)
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1 2 3 4 5
1

2

3

4

5

1

1

1

1

3

add
add

6

A(n,1) = n for n ≥ 1

A(1,r) = 1 for r ≥ 1



1 2 3 4 5

A(n,r) = A(n,r-1) + A(n-1,r)
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1 2 3 4 5
1

2

3

4

5

1

1

1

1

3

add
add

6

A(n,1) = n for n ≥ 1

A(1,r) = 1 for r ≥ 1

add

10



1 2 3 4 5

A(n,r) = A(n,r-1) + A(n-1,r)
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1 2 3 4 5
1

2

3

4

5

1

1

1

1

3

add
add

6

A(n,1) = n for n ≥ 1

A(1,r) = 1 for r ≥ 1

add

10

add

15



1 2 3 4 5

A(n,r) = A(n,r-1) + A(n-1,r)
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1 2 3 4 5
1

2

3

4

5

1

1

1

1

3

add
add

6

A(n,1) = n for n ≥ 1

A(1,r) = 1 for r ≥ 1

add

10

add

15
add

4

add

10 20

add
add

35

What are these numbers?



Intuition on what A(3,5) could be
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Intuition on what A(3,5) could be
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Intuition on what A(3,5) could be
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2 0 3

These numbers are ≥ 0

Their sum is the 

number of scoops = 5



Intuition on what A(3,5) could be
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2 0 3

These numbers are ≥ 0

Their sum is the 

number of scoops = 5



Intuition on what A(3,5) could be
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2 0 3

These numbers are ≥ 0

Their sum is the 

number of scoops = 5



Intuition on what A(3,5) could be
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2 0 3

These numbers are ≥ 0

Their sum is the 

number of scoops = 5



Intuition on what A(3,5) could be
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2 0 3

These numbers are ≥ 0

Their sum is the 

number of scoops = 5



Intuition on what A(3,5) could be
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2 0 3

1 3 1

These numbers are ≥ 0

Their sum is the 

number of scoops = 5



Intuition on what A(3,5) could be
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2 0 3

1 3 1

These numbers are ≥ 0

Their sum is the 

number of scoops = 5



Intuition on what A(3,5) could be
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2 0 3

1 3 1

These numbers are ≥ 0

Their sum is the 

number of scoops = 5



Intuition on what A(3,5) could be
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2 0 3

1 3 1

0 5 0

These numbers are ≥ 0

Their sum is the 

number of scoops = 5



Intuition on what A(3,5) could be

29Discrete Structures - 2015

2 0 3

1 3 1

0 5 0

These numbers are ≥ 0

Their sum is the 

number of scoops = 5



Intuition on what A(3,5) could be
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2 0 3

1 3 1

0 5 0

Possibilities are mapped to sequences of 
7 black and red marbles of which exactly 
5 are red (and exactly 2 are black)

These numbers are ≥ 0

Their sum is the 

number of scoops = 5



Intuition on what A(3,5) could be
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2 0 3

1 3 1

0 5 0

Possibilities are mapped to sequences of 
7 black and red marbles of which exactly 
5 are red (and exactly 2 are black)

C(7,5) = 7!/(2!*5!) = 7*3=21

These numbers are ≥ 0

Their sum is the 

number of scoops = 5



Intuition on what A(n,r) could be
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Item 1 Item 2 Item 3 Item n-1 Item n



Intuition on what A(n,r) could be
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Item 1 Item 2 Item 3 Item n-1 Item n

We first put in n-1 markers



Intuition on what A(n,r) could be
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Item 1 Item 2 Item 3 Item n-1 Item n

n-1 black marbles



Intuition on what A(n,r) could be
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s1,s2,….,sn-1, sn

Item 1 Item 2 Item 3 Item n-1 Item n

s1 red 
marbles

s2 red 
marbles

s3 red 
marbles

sn-1 red 
marbles

sn red 
marbles

n-1 black marbles



Intuition on what A(n,r) could be
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s1,s2,….,sn-1, sn

Item 1 Item 2 Item 3 Item n-1 Item n

s1 red 
marbles

s2 red 
marbles

s3 red 
marbles

sn-1 red 
marbles

sn red 
marbles

n-1 black marbles
These numbers are ≥ 0


Their sum is r



Intuition on what A(n,r) could be
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s1,s2,….,sn-1, sn

Item 1 Item 2 Item 3 Item n-1 Item n

s1 red 
marbles

s2 red 
marbles

s3 red 
marbles

sn-1 red 
marbles

sn red 
marbles

n-1 black marbles
These numbers are ≥ 0


Their sum is r

r red marbles



Intuition on what A(n,r) could be

30Discrete Structures - 2015

s1,s2,….,sn-1, sn

Item 1 Item 2 Item 3 Item n-1 Item n

s1 red 
marbles

s2 red 
marbles

s3 red 
marbles

sn-1 red 
marbles

sn red 
marbles

n-1 black marbles
These numbers are ≥ 0


Their sum is r

Total number of marbles is n - 1 + r

r red marbles



Intuition on what A(n,r) could be
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s1,s2,….,sn-1, sn

Possibilities are mapped to sequences of 
n-1+r black and red marbles of which 
exactly r are red (and exactly n-1 are black)

Item 1 Item 2 Item 3 Item n-1 Item n

s1 red 
marbles

s2 red 
marbles

s3 red 
marbles

sn-1 red 
marbles

sn red 
marbles

n-1 black marbles
These numbers are ≥ 0


Their sum is r

Total number of marbles is n - 1 + r
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P(n) = “for all r ≥ 1 we have A(n,r) = C(n-1+r,r)”. Need to prove P(n) for all n≥1.

n=1; A(1,r) = 1 for r≥1 (if only one object, then only r-
combination is repetition of that object r times).

On the other hand, C(n-1+r, r) = C(r,r) = 1, so correct.

Induction basis: 
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P(n) = “for all r ≥ 1 we have A(n,r) = C(n-1+r,r)”. Need to prove P(n) for all n≥1.

Induction basis: 
Induction step: Assume P(n), prove P(n+1): 


Q(r) = “We have A(n+1,r) = C(n+r,r)”

Prove using induction on r.
Induction basis: 
Induction step: Assume Q(r), prove Q(r+1): Use recursion.


A(n+1,r+1) = A(n+1,r) + A(n,r+1)


                  = C(n+r,r) + C(n+r,r+1)

                  = C(n+r+1, r+1)

                  = C((n+1)-1+(r+1), r+1)

Q(r) P(n)

A(n,r) = A(n,r-1) + A(n-1,r)

C(n,k)+C(n,k-1)=C(n+1,k)
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Choosing r elements from a set of n-elements
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Without 
replacement

With 
replacement

Permutation P(n,r) nr

Combination C(n,r) C(n+r-1,r)

Ordering matters

Ordering doesn’t matter
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Look at an example: What is the coefficient of x3 in (1+x)5?

In how many ways do we get x3 in (1+x)* (1+x)* (1+x)* (1+x)* (1+x)?
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Look at an example: What is the coefficient of x3 in (1+x)5?

In how many ways do we get x3 in (1+x)* (1+x)* (1+x)* (1+x)* (1+x)?

(1 + x) · (1 + x) · (1 + x) · (1 + x) · (1 + x)

(1 + x) · (1 + x) · (1 + x) · (1 + x) · (1 + x)

(1 + x) · (1 + x) · (1 + x) · (1 + x) · (1 + x)

 = Number of ways to pick 3 terms among 5, without replacement, ordering 
irrelevant = C(5,3)

…….

In general: number of ways to pick k terms among n, so = C(n,k) = 
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Use induction on n.

pp. 403-409
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Proof: Plug x=1 into the binomial theorem.

pp. 405-406

Combinatorial proof: Count number of bit-strings of length n as sum of 
number of bit-strings of length n which have exactly k ones, k from 0 to n.
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Combinatorial proof: Subset of size r of {1,2,…,m+n} is obtained from all 
combinations of 

• subsets of size k of {1,2,…,n} and 

• all subsets of size r-k of {n+1,…,m+n}, 

• for k from 0 to r.
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Combinatorial proof: Subset of size r of {1,2,…,m+n} is obtained from all 
combinations of 

• subsets of size k of {1,2,…,n} and 

• all subsets of size r-k of {n+1,…,m+n}, 

• for k from 0 to r.
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Algebraic proof: Look at coefficient of xr in (1+x)n(1+x)m
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Set m=n=r in Vandermonde’s identity
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