Lecture 18
Counting
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Poker Hands
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Game of (Straight) Poker

e Each of the players is dealt five cards from a deck of 52 cards

® Players can switch some of their cards against new ones
- We are not going to talk about this here.

® Players bet on their final hands

e Cards are revealed

® Highest hand wins
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Card pictures are from Wikipedia.

Winning Hands

3 — A
() . . :
Royal flush | & r: '3 5 consecutive cards of one color, starting with 10
ol 8 3| @iz S HIR J ng
v livwliv vyl ve . . :
Straight flush vY(vYYyY vy v 5 consecutive cards of one color, starting with < 9
ANl A A A aa A a
: t 2 ) v ¢
Fourofakind | | ¢ ||| & Four cards are of one kind
0 ¢ 3 Y e e
rw A R _ _ _
Full house | B H s> o ¢ v v Apair of one kind, three cards of another kind
v % K 2 K2 NN W Y

e N R
Flush 3*3 aa All cards of one color, but not consecutive
" 2 0 ’ ’I

¥, v v:
iy i v’ O A v IQ‘Q

Straight |8 |3 ‘: $*s | v,y |#7s| Consecutive cards, not all of the same suit
v ¥

-

Three of a kind € | Three colors of the same kind, the other two different

<.

vy aa e v
Twopairs (v v | & s o v | @ | Two pairs of same kind, but not a four
AMPe e A :
wwlooia |fral
One pair | ¥ s € | One pair of the same kind, the other three different
ANV ¥ :
i e
No pair None of the above
*:
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Total number of distinct hands
I

52!

C(52,5) = —— = 2'598'960
5147

algolme et svuctures- 2015




Number of royal flush hands

A

AN
) 0 e e eV

5 consecutive cards of
one suit, starting with
10

# ways to
color the hand

|

} | 4 = é
# ways to pick
the five cards

without regard
for the suit
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Number of straight flush but not royal flush hands

wviivwlive ive vy
v ive ve v
AN A Al e ala aa a
5 consecutive cards of
one color, starting with
<9
# ways to
color the hand
*
9*4 =36
A —
The first card
in the royal Cumulative
flush hand can count
be A, 2, 3, 4, A
5, 61 7’ 81 97 SO + 36
9 possibilities 20
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Number of four of a kind hands

Ve ale

Four cards are of one

el
L

# ways to pick kind
the kind of the
last card.
Cannot be
equal to kind
of first
l 13! 12!
C(13,1) * C(12,1)*4 — .7 Y
13176020 11120 111!
T T Cumulative
count
# ways to pick # ways to = 624
one of 13 color last card - 4
kinds + 36
+ 624
664
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Number of full house hands
I

A pair of one kind, three
cards of another kind

# ways to # ways to
color the three color the last
cards. two cards
l l 13! 4] 12! 4!

C(13.1) "C(4.3) C12.1)°C4.2) = {797 377 11 212

I Cumulative
y count
# Wayfs1t§) pick # ways to pick = 3 744 4
Epedo a kind out of + 36
nas the remaining + 624
12 for the last + 3'744
two cards 4’408
algelme
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Number of flush but not royal/straight flush hands

2ok 14 & s 148z &
v 3 as

v

Y v e ¥ g e e v

All cards of one color,
but not consecutive

# ways to
color the hand
C(13,5) "C(4,1) - C(10,1)°4 = o7 - 173

|

# ways to pick
the five kinds
making up the
hand

algelme
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|

# royal/straight
flush hands

= 5’108

Cumulative
count

4

+ 36

+ 624
+ 3’744
+ 5’108

9’516




Number of straight but not flush/royal flush hands

Ve sliv v [iae
,0,vv a*a
o 8% v ¥

a‘A.,
Consecutive cards, not
all of the same suit

# ways to
color the hand

| ;

5)
10 *C(4,1)5 - C(10,1)*4 = 10 (1'3'> — 40

| |

_ y
# ways tq pick # royal/straight - 1 O 200 Cumulative
the five kinds flush hands count
making up the
hand 4
+ 36
+ 624
+ 3’744
+ 5’108
+ 10’200
19°716
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Number of hands with three of a kind
I

ORI e
PN ‘
3 ®0 | e 92 v
# ways to # ways to Three colors of the
same kind, the other
color the three color the last 2 two different
cards. cards
l l 13! 4] 12!
* * * A2 _ I P
GO cf’” C4.9) " G ZTZ) 4 112! 3! 2110! 4
. y
# ways to pick # ways to pick | 24912
1 of 13 kinds the other two Cumulative
to make the cards. They count
“three of a cannot be a
king” pair, and have 4
to be of a + 36
different kind. + 624
+ 3’744
+ 5’108
+ 10’200
+ 54’912
74’628
algelme
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Number of hands with two distinct pairs
I

vwaalie [[w |
# ways to veiaas o v | &
color the two o A® ¥ ¢ A v
pairs. Each Two pairs of same kind,
pair has # ways to but not a four
independently color the last
C4,2) ways card
l l 13! 41\ 11!
C(13,2)*C(4,22*C(11,1)*4 = — . [ — ) - — -4
T I 2111! 212! 110!
= 123’552
# ways tc_) pick Cumulative
2 of 13 kinds # ways to pick count
to make the a kind out of
two pairs the remaining 4
11 kinds for + 36
the last card + 624
+ 3744
+ 5’108
+ 10’200
+ 54’912
+ 123’552
198’180
algelme
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Number of hands with exactly one pair
I

wwleolia [fral
v | o ¢
ANve v ® s
# ways to pick # ways to pick One pair of the same
two distinct the colors of kind, the other three
colors for the the remaining different
two cards in three cards
the pair
l l 13! 4! 12!
* * *A3 — : T y8
C“f’” C4.2) C(‘If’s) 4 11121 2121 319! 4
, = 1’098’240
# ways to pick # ways to pick Cumulative
one of 13 3 distinct count
kinds to make kinds out of
a pair the remaining 4
12 for the + 36
other three + 624
cards in the + 3’744
hand + 5’108
+ 10’200
+ 54’912
+ 123’552
+ 1°098°240
°|g®nm@ 1’296°420
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None of the above
I

$ . o 6o o] 0
o ' oo o

v (e e e e e

None of the above

# hands
counted so far

|

C(52,5) - 1’296°420 = 1’302’540

T Cumulative
# all hands count

4

+ 36

+ 624

+ 3’744

+ 5’108

+ 10’200

+ 54’912

+ 123’552
+ 1°098°240

a|g_2.‘u&[f£§g | ................................................................................................................... 17296420




Results
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Number of hands Probability

: TN NN Re,e

Royal flush LY ; ‘ , hzg 4 0.00015%
W'V 5'.' wVYivey vy

Straight flush vy vvive v 36  0.00139%
A A A MMM AMAMS
[¢ t 3 0 * e

Four of a kind V ¢ &is 624 0.02401%
o i A e iy

Full house ;H J ;:;H ;1;” vy 3744 0.14406%
gk (2 & 0w la s A

Flush X 2P N 5108  0.19654%
e ".':': : : v 10‘4

Straight AR ADOSAIB 10200  0.39246%
LI VIR IR AN HIE K
¢ iy i e o

Three of a kind 8 6 R 4 54912  2.11285%
WY ie v |t

Two pairs Tolssl s 2, 123552 4.75390%
VY e aian i g

One pair Jallobel ol W2 € 1098240 42.25690%
3 . LS T S E

None of the above | % @ sol ol 1302540 50.11774%




Plot: Number of hands of each category
I

1400000
1050000
700000

350000

Flush
Straight

=
©
Q
©
c
O

Royal flush
Straight flush

Four of a kind

Full house

Three of a kind
Two pairs

None of the above

The top hands are not visible in this plot
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Logarithmic plot: logio(number of hands)

< < g} ) < = g} %) = )
7 [} ] %) S c = © >
S S i~ S S Re) 2 I3 Q o
= = o i © oy Q G
—_ — © < = © o [
© <z “— —_ wn — c o)
> ) S = 5] = O 2
=) ‘T I o = =
i @ o =z
(TR c o

= c

(o]

=z
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Another example
I

How many hands don't contain any pair?
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Another example
I

How many hands don't contain any pair?

Method 1
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Another example
I

How many hands don't contain any pair?

Method 1

e e e [,
Royal flush L 3ot 4
o 5| 8 3l 8 HIK A4 2
:"v zv'v Y vy vy
Straight flush Yal Yy 36
ATA A A A A A A A A
$ g 4 i LI
Four of a kind ', \4 "', , .0
& F I R
» * v
&b ¢ 0 |VY
Full house ; ﬂ; e 000 ata:
!z‘z % » 910‘0 ia
L
Flush Y vw T vw v: >108
:': z: : :v'v 10’0
- * Y &H
Straight SRR AP 10200
@ iy R e 8|
Three of a kind H ., ¢
s * SR 4 Y
weylaallie [t v °.
o Y (aa| ¢ v
Two pairs aaslvw o: a: s
v wieaslia i@%
= v L]
One pair aalv e v 1 ’
4 H 06 6 6
None of the above | & I se) o 1302540
v AKX IR XTI
’ ’
TOTAL 1 317 888

algaing
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Another example
I

How many hands don't contain any pair?

Method 1 Method 2

e e e [,
Royal flush L 3ot 4
o 5| 8 3l 8 HIK A4 2
:"v zv'v Y vy vy
Straight flush Yal Yy 36
ATA A A A A A A A A
$ g 4 i LI
Four of a kind ', \4 "', , .0
& F I R
» * v
&b ¢ 0 |VY
Full house ; ﬂ; e 000 ata:
!z‘z % » 910‘0 ia
L
Flush Y vw T vw v: >108
:': z: : :v'v 10’0
- * Y &H
Straight SRR AP 10200
@ iy R e 8|
Three of a kind H ., ¢
s * SR 4 Y
weylaallie [t v °.
o Y (aa| ¢ v
Two pairs aaslvw o: a: s
v wieaslia i@%
= v L]
One pair aalv e v 1 ’
4 H 06 6 6
None of the above | & I se) o 1302540
v AKX IR XTI
’ ’
TOTAL 1 317 888
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Another example
I

How many hands don't contain any pair?

Method 1 Method 2

Number of hands ©
T % B v 3
: 7 ® S ®© ®© ®©
‘“ o ‘ ’ ‘ "8e8 4 3) - O 8] $)
Royal flush I XS = O ° < <
v livvlivelvelve ‘;) C;l) 2 T,l; Lg
H YV vy vy v
Straight flush a%aiia afla a4 ala 36 D 2 2 2 o
0 g It 2 o0 = = = = =
Four of a kind 'l ¢ “'J o 0 0o o) 0 0
e —— ? 7 ? ? ?
T B |22 'vee [vve o, e o 8 3
Full house o |, B oo o%e: | ata: o o o o Q
— ' : : H+ H+ H+ £23 H+
Bhad 1a & 9 e
T “"‘
Flush 25 A . - . 5108 l l l l l
e ey [ o iv viiaa * * * *
- I 52*48*44
Straight @: AR ADCOA bt 10200 ; ;
=== = =1’317’888
Three of a kind H n LR 4
o ® s KXY 8 5'
vwlaalie i w ’é’ M
H VY | &a ¢ v
Two pairs aalew o: o s
v Yiie sia x :’
- ' . "
iz [eE0 Aaive vy w Permutations don’t matter
2 H Y M X N 3
None of the above | o ! oo o 1302540
3 AR 2R I B 2

oTaL 1’317°888

algelme
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Combinations with
Replacement
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Choosing r elements from a set of n-elements
I

Ordering matters

Ordering doesn’t matter

algo/
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Choosing r elements from a set of n-elements
I

Ordering matters

Ordering doesn’t matter

Let’s call this number A(n,r)

algolnc
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Combination with replacement: example
I

e \WWe have three ice cream flavors: chocolate, banana, vanilla

® How many different sets of 5-scoops can we make? A(3,5)
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Combination with replacement: example

e \WWe have three ice cream flavors: chocolate, banana, vanilla

® How many different sets of 5-scoops can we make? A(3,5)

At least one chocolate

algelme |
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Combination with replacement: example

® \WWe have three ice cream flavors: chocolate, banana, vanilla

® How many different sets of 5-scoops can we make? A(3,5)

algelme

perareire de me mm

At least one chocolate

chocolate | banana vanilla
5 0 0
4 1 0
4 0 1
3 2 0
3 1 1
3 0 2
2 3 0
2 2 1
2 1 2
2 0 3
1 4 0
1 3 1
1 2 2
1 1 3
1 0 4




Combination with replacement: example

® \WWe have three ice cream flavors: chocolate, banana, vanilla

® How many different sets of 5-scoops can we make? A(3,5)

algelme

perareire de me mm

At least one chocolate No chocolate
chocolate | banana vanilla
5 0 0
4 1 0
4 0 1
3 2 0
3 1 1
3 0 2
2 3 0
2 2 1
2 1 2
2 0 3
1 4 0
1 3 1
1 2 2
1 1 3
1 0 4




Combination with repl
B

acement: example

We have three ice cream flavors: chocolate, banana, vanilla

How many different sets of 5-scoops can we make? A(3,9)

algelme

WiDeraraire de Mmm mm

At least one chocolate No chocolate
chocolate | banana vanilla
5 0 0
4 1 0
4 0 1
3 2 0
3 1 1
3 0 2
2 3 0
2 2 1
2 1 2
2 0 3
1 4 0
1 3 1
1 2 2
1 1 3
1 0 4




Combination with replacement: example

We have three ice cream flavors: chocolate, banana, vanilla

How many different sets of 5-scoops can we make? A(3,9)

At least one chocolate No chocolate
chocolate | banana vanilla chocolate | banana vanilla
5 0 0 0 ) 0
4 1 0 0 4 1
4 0 1 0 3 2
3 2 0 0 2 3
3 1 1 0 1 4
3 0 2 0 0 5
2 3 0
2 2 1
2 1 2
2 0 3
1 4 0
1 3 1
1 2 2
1 1 3
1 0 4

algelme
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Combination with replacement: example

We have three ice cream flavors: chocolate, banana, vanilla

How many different sets of 5-scoops can we make? A(3,9)

At least one chocolate No chocolate

chocolate | banana vanilla chocolate | banana vanilla

5 0 0 0 5 0

4 1 0 0 4 1

4 0 1 0 3 2

3 2 0 0 2 3

3 1 1 0 1 4

3 0 2 0 0 5

2 3 0

2 2 1

2 1 2

2 0 3 21 choices total, so A(3,5) = 21

1 4 0 but what is A(n,r) in general?

1 3 1

1 2 2

1 1 3

1 0 4

algelme
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At least one chocolate
.

algelme

perareire de me mm

At least one chocolate

chocolate | banana vanilla
5 0 0
4 1 0
4 0 1
3 2 0
3 1 1
3 0 2
2 3 0
2 2 1
2 1 2
2 0 3
1 4 0
1 3 1
1 2 2
1 1 3
1 0 4




At least one chocolate
.

algelme

perareire de me mm

At least one chocolate

Take out that chocolate scoop
Same as number of 4-scoops

chocolate | banana vanilla
5 0 0
4 1 0
4 0 1
3 2 0
3 1 1
3 0 2
2 3 0
2 2 1
2 1 2
2 0 3
1 4 0
1 3 1
1 2 2
1 1 3
1 0 4




At least one chocolate
B

Take out that chocolate scoop

At least one chocolate
Same as number of 4-scoops

chocolate | banana vanilla chocolate | banana vanilla

&)
o
o
AN
o
o

OO IO (=== =N [WIW
— DWW O WOI=INIO|—=
WDWIN =2 OCWIN=OIN|=|OC|=|O

— (=[N ININDINWWW|~ |

O=MNNWPrO=INDNWOI=INdDO|—
O =2 OLNE=RIOMN|I= OO

0 0 4
This is number of 4-scoops

of three flavors, so A(3,4)
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No chocolate
I

No chocolate

chocolate | banana vanilla
0 5 0
0 4 1
0 3 2
0 2 3
0 1 4
0 0 5

algelme |
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No chocolate
I

No chocolate 5-scoops from two flavors only
chocolate | banana vanilla
0 5 0
0 4 1
0 3 2
0 2 3
0 1 4
0 0 S

algelme |
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No chocolate
I

No chocolate 5-scoops from two flavors only
chocolate | banana vanilla banana vanilla
0 5 0 5 0
0 4 1 4 1
0 3 2 = 3 2
0 2 3 2 3
0 1 4 1 4
0 0 5 0 5

This is number of 5-scoops
of two flavors, so A(2,5)

algelme



Recursion
[

A(3,5) = A(3,4) + A(2,5)
chocolate | banana vanilla chocolate | banana vanilla
5 0 0] 0 ) 0
4 1 0 0 4 1
4 0 1 0 3 2
3 2 0 0 2 3
3 1 1 0 1 4
3 0 2 0 0 5
2 3 0
2 2 1
2 1 2
2 0 3
1 4 0
1 3 1
1 2 2
1 1 3
1 0 4
algelme



Recursion
S

A(3,5) = A(3,4) + A(2,5)
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Recursion
B

A(3,5) = A(3,4) + A(2,5)

and in general

A(n,r) = An,r-1) + A(n-1,n) forrn,n=1

algelme
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Recursion

A(3,5) = A(3,4) + A(2,5)

and in general

A(n,r) = An,r-1) + A(n-1,r) forr,n=>1

/

Combinations containing
at least one copy of the
first element of original

set

algelme
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Recursion
e

A(3,5) = A(3,4) + A(2,5)

and in general

A(n,r) = An,r-1) + A(n-1,r) forr,n=>1

/

Combinations containing
at least one copy of the
first element of original

Combinations containing
set

no copy of the first
element of original set

algelme
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Trivial cases
[ SSSSSS———

A(n,1)=nforn=1
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Trivial cases
B

A(n,1)=nforn=1

If you have n ice cream flavors, but only one scoop, you can only have n
different ice cream servings.

alge .
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Trivial cases
B

A(n,1)=nforn=1

If you have n ice cream flavors, but only one scoop, you can only have n
different ice cream servings.

A(l,n=1forr=1

algolme _—
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Trivial cases
B

A(n,1)=nforn=1

If you have n ice cream flavors, but only one scoop, you can only have n
different ice cream servings.

A(l,n=1forr=1

If you have only one ice cream flavor, then no matter how many scoops you
take, you will end up having only one type of ice cream serving.

algelme :
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A(n,r) = A(n,r-1) + A(n-1,r)
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A(n,r) = A(n,r-1) + A(n-1,r)

1 1 2 3 4 5 An,1)=nforn=1

algo —————




A(n,r) = A(n,r-1) + A(n-1,r)

1 2 3 4 5
1 1 2 3 4 5 An,1)=nforn=1

4 1

5 1

A(l,n=1forr=1

alge —————————




A(n,r) = A(n,r-1) + A(n-1,r)

1 2 3 4 5
L @ 3 4 5 Amn1)=nforn=1

2 (D
3 1

4 1

5 1

A1, =1forr=1

algo B




A(n,r) = A(n,r-1) + A(n-1,r)

1 2 3 4 5
3 4 5 Amt)=nfornz=1

5 1

A(l,n=1forr=1
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A(n,r) = A(n,r-1) + A(n-1,r)

4 5
1 4 5 Amnl)=nfornz1
2
3 1
4 1
5 1

A(l,n=1forr=1

algelme |
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A(n,r) = A(n,r-1) + A(n-1,r)

:
2

3 1
4 1
5 1

A(l,n=1forr=1
algelme
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A(n,r) = A(n,r-1) + A(n-1,r)

1 2 3 4 5

An,1)=nforn=1
o b

2 10" 15
3 1
4 1
5 1

A(l,n=1forr=1

algelme
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A(n,r) = A(n,r-1) + A(n-1,r)

An,1)=nforn=1

What are these numbers?

A(l,n=1forr=1

algeing S —



Intuition on what A(3,5) could be
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Intuition on what A(3,5) could be
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Intuition on what A(3,5) could be

These numbers are = 0
Their sum is the
number of scoops =5

203
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Intuition on what A(3,5) could be

These numbers are = 0
Their sum is the
number of scoops =5

203

\
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Intuition on what A(3,5) could be

These numbers are = 0
Their sum is the
number of scoops =5

203

N
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Intuition on what A(3,5) could be

These numbers are = 0
Their sum is the
number of scoops =5

203

algelme |
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Intuition on what A(3,5) could be

These numbers are = 0
Their sum is the
number of scoops =5

203 *
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Intuition on what A(3,5) could be

These numbers are = 0
Their sum is the
number of scoops =5

203 *
=

131
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Intuition on what A(3,5) could be

These numbers are = 0
Their sum is the
number of scoops =5

203 *
=

131

algelme —
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Intuition on what A(3,5) could be

These numbers are = 0
Their sum is the
number of scoops =5

203 *
=

131

algelme —
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Intuition on what A(3,5) could be

These numbers are = 0
Their sum is the
number of scoops =5

203

=
131 * o © o000 o o
=

050

algelme
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Intuition on what A(3,5) could be

These numbers are = 0
Their sum is the
number of scoops =5

203

=
131 * o © o000 o o
=

050 O 060060060060 o

algelme |
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Intuition on what A(3,5) could be

These numbers are = 0
Their sum is the
number of scoops =5

203

=
131 * o © o000 o o
=

050 O 060060060060 o

Possibilities are mapped to sequences of
/ black and red marbles of which exactly
5 are red (and exactly 2 are black)

algeing S ————



Intuition on what A(3,5) could be

These numbers are = 0
Their sum is the
number of scoops =5

203

=
131 * o © o000 o o
=

050 O 060060060060 o

Possibilities are mapped to sequences of
7/ black and red marbles of which exactly C(7,5) = 71/(2!*5!) = 7*3=21
5 are red (and exactly 2 are black)

algeing Discrete Strcures-2015.



Intuition on what A(n,r) could be
I

ltem 1 | |ltem 2 | |ltem 3 ltem n-1 || ltem n
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Intuition on what A(n,r) could be
e

ltem 1 | |ltem 2 | |ltem 3 ltem n-1 || ltem n
@ @ @ o @

We first put in n-1 markers

algelme |
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Intuition on what A(n,r) could be

ltem 1 | |ltem 2 | |ltem 3 ltem n-1 || ltem n
@ @ @ o @

n-1 black marbles

algelme —
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Intuition on what A(n,r) could be

ltem 1 | |ltem 2 ||Iltem 3 ltem n-1 || ltem n

$1,52,....5+1,S = 00O © @ ° ®@ 0000O0O0
S1 red S2 red S3 red Sn-1 red Snred

marbles marbles marbles marbles marbles

n-1 black marbles
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Intuition on what A(n,r) could be

ltem 1 | |ltem 2 ||Iltem 3 ltem n-1 || ltem n

$1,52,....50-1,S» "> 00O O © ® ®@ 000000
These numbers are > 0 S1 red S> red S3 red Sn-1 red Snred

B marbles marbles marbles marbles marbles

Their sumisr n-1 black marbles
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Intuition on what A(n,r) could be

ltem 1 | |ltem 2 ||Iltem 3 ltem n-1 || ltem n

$1,52,....50-1,S» "> 00O O © ® ®@ 000000
These numbers are > 0 S1 red S> red S3 red Sn-1 red Snred

B marbles marbles marbles marbles marbles

Their sumisr n-1 black marbles

r red marbles

algelme :
o A Discrete Structures-2015




Intuition on what A(n,r) could be

ltem 1 | |ltem 2 ||Iltem 3 ltem n-1 || ltem n

$1,52,....50-1,S» "> 00O O © ® ®@ 000000
These numbers are > 0 S1 red S> red S3 red Sn-1 red Snred

B marbles marbles marbles marbles marbles

Their sumisr n-1 black marbles

r red marbles

Total number of marblesisn-1+r
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Intuition on what A(n,r) could be

ltem 1 | |ltem 2 ||Iltem 3 ltem n-1 || ltem n

$1,52,...,501,S, " 00O O © ® ®@ 0000 0O
These numbers are > 0 S1 red S> red S3 red Sn-1 red Snred

B marbles marbles marbles marbles marbles

Their sumisr n-1 black marbles

r red marbles

Total number of marblesisn-1+r

Possibilities are mapped to sequences of
n-1+r black and red marbles of which
exactly r are red (and exactly n-1 are black)
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Intuition on what A(n,r) could be

ltem 1 | |ltem 2 ||Iltem 3 ltem n-1 || ltem n

$1,52,...,501,S, " 00O O © ® ®@ 0000 0O
These numbers are > 0 S1 red S> red S3 red Sn-1 red Snred

B marbles marbles marbles marbles marbles

Their sumisr n-1 black marbles

r red marbles

Total number of marblesisn-1+r

Possibilities are mapped to sequences of
n-1+r black and red marbles of which C(n-1+r, r)
exactly r are red (and exactly n-1 are black)

atoste
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Intuition on what A(n,r) could be

ltem 1 | |ltem 2 ||Iltem 3 ltem n-1 || ltem n
$1,52,....50-1,S» > 00O © © ® ® 0000 OGO
These numbers are > 0 S1 red S> red sz red Sn-1 red Snred

B marbles marbles marbles marbles marbles

Their sumisr n-1 black marbles

r red marbles

Total number of marblesisn-1+r

Possibilities are mapped to sequences of
n-1+r black and red marbles of which C(n-1+r, r)
exactly r are red (and exactly n-1 are black)

A(n,rn) = C(n-1+nr) ?
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Proof by double induction
I

P(n) = “for all r = 1 we have A(n,r) = C(n-1+r,r)”. Need to prove P(n) for all n>1.

Induction basis: n=1; A(1,r) = 1 for r=1 (if only one object, then only r-
combination is repetition of that object r times).
On the other hand, C(n-1+r, r) = C(r,r) = 1, so correct.
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Proof by double induction

P(n) = “for all r = 1 we have A(n,r) = C(n-1+r,r)”. Need to prove P(n) for all n>1.

Induction basis: /
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Proof by double induction

P(n) = “for all r = 1 we have A(n,r) = C(n-1+r,r)”. Need to prove P(n) for all n>1.

Induction basis: /

Induction step: Assume P(n), prove P(n+1):
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Proof by double induction

P(n) = “for all r = 1 we have A(n,r) = C(n-1+r,r)”. Need to prove P(n) for all n>1.

Induction basis: /

Induction step: Assume P(n), prove P(n+1):
Q(r) = “We have A(n+1,r) = C(n+rr)”
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Proof by double induction

P(n) = “for all r = 1 we have A(n,r) = C(n-1+r,r)”. Need to prove P(n) for all n>1.

Induction basis: /

Induction step: Assume P(n), prove P(n+1):
Q(n) = “We have A(n+1,r) = C(n+r,n)”
Prove using induction on r.
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Proof by double induction

P(n) = “for all r = 1 we have A(n,r) = C(n-1+r,r)”. Need to prove P(n) for all n>1.

Induction basis: /

Induction step: Assume P(n), prove P(n+1):
Q) = “We have A(n+1,r) = C(n+rr)”
Prove using induction onr.
Induction basis: r=1; A(n+1,1) = n+1 (trivial case);
On the other hand, C(n+1-1+1,1) = n+1.
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Proof by double induction

P(n) = “for all r = 1 we have A(n,r) = C(n-1+r,r)”. Need to prove P(n) for all n>1.

Induction basis: /

Induction step: Assume P(n), prove P(n+1):
Q) = “We have A(n+1,r) = C(n+rr)”
Prove using induction onr.
Induction basis: r=1; A(n+1,1) = n+1 (trivial case);
On the other hand, C(n+1-1+1,1) = n+1.
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Proof by double induction

P(n) = “for all r = 1 we have A(n,r) = C(n-1+r,r)”. Need to prove P(n) for all n>1.

Induction basis: /

Induction step: Assume P(n), prove P(n+1):
Q(r) = “We have A(n+1,r) = C(n+rr)”

Prove using inductigh on r.
Induction basis:
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Proof by double induction

P(n) = “for all r = 1 we have A(n,r) = C(n-1+r,r)”. Need to prove P(n) for all n>1.

Induction basis: /

Induction step: Assume P(n), prove P(n+1):
Q(r) = “We have A(n+1,r) = C(n+rr)”

Prove using inductigh on r.
Induction basis:

Induction step: Assume Q(r), prove Q(r+1)
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Proof by double induction

P(n) = “for all r = 1 we have A(n,r) = C(n-1+r,r)”. Need to prove P(n) for all n>1.

Induction basis: /

Induction step: Assume P(n), prove P(n+1):
Q(r) = “We have A(n+1,r) = C(n+rr)”

Prove using inductigh on r.
Induction basis:

Induction step: Assume Q(r), prove Q(r+1): Use recursion.

algelme



Proof by double induction

P(n) = “for all r = 1 we have A(n,r) = C(n-1+r,r)”. Need to prove P(n) for all n=>1.

Induction basis: /

Induction step: Assume P(n), prove P(n+1):
Q) = “We have A(n+1,r) = C(n+nr)”

Prove using inducym onr.
nduction basis: An.n) = An,r-1) + Ain-1.0

nduction step: Assume Q(r), prove Q(r+1): Use recursion.
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Proof by double induction

P(n) = “for all r = 1 we have A(n,r) = C(n-1+r,r)”. Need to prove P(n) for all n=>1.

Induction basis: /

Induction step: Assume P(n), prove P(n+1):
Q) = “We have A(n+1,r) = C(n+nr)”

Prove using inducym onr.
nduction basis: An.n) = An,r-1) + Ain-1.0

nduction step: Assume Q(r), prove Q(r+1): Use recursion.
An+1,r+1) = A(n+1,r) + A(n,r+1)
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Proof by double induction

P(n) = “for all r = 1 we have A(n,r) = C(n-1+r,r)”. Need to prove P(n) for all n=>1.

Induction basis: /

Induction step: Assume P(n), prove P(n+1):
Q) = “We have A(n+1,r) = C(n+nr)”

Prove using inducym onr.
nduction basis: An.n) = An,r-1) + Ain-1.0

nduction step: Assume Q(r), prove Q(r+1): Use recursion.
A(n+1,r+1) = A(n+1,r) + A(n,r+1)
Q(% iP
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Proof by double induction

P(n) = “for all r = 1 we have A(n,r) = C(n-1+r,r)”. Need to prove P(n) for all n=>1.

Induction basis: /

Induction step: Assume P(n), prove P(n+1):
Q) = “We have A(n+1,r) = C(n+nr)”

Prove using inducym onr.
nduction basis: An.n) = An,r-1) + Ain-1.0

nduction step: Assume Q(r), prove Q(r+1): Use recursion.
An+1,r+1) = A(n+1 N+ An,r+1)

*P

= C(n+rr + C(n+nr+1)
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A little theorem (Pascal’s Identity)

Vn,k e N: C(n,k)+ C(n,k—1)=C(n+1,k)

C(n,k)+C(nk—1) = (Z>+<kﬁ1>
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A little theorem (Pascal’s Identity)

Vn,k e N: C(n,k)+ C(n,k—1)=C(n+1,k)

C(n,k)+C(nk—1) = (Z>+<ki1)

n! n!
= .

Kln—k)!  (k—Dl(n—-k+1)!
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A little theorem (Pascal’s Identity)

Vn,k e N: C(n,k)+ C(n,k—1)=C(n+1,k)

(o) ()

C(n,k)+C(n,k—1)
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A little theorem (Pascal’s Identity)

Vn,k e N: C(n,k)+ C(n,k—1)=C(n+1,k)

(o) ()

n! n!

- T Dn—k+ 1)

C(n,k)+C(n,k—1)

kKl(n —k)!

n! 1 1
- Mﬁ&ﬂ@—kﬂ(%ln—k+1>
n! n+1
(k—1D!n—k!kn—-—k+1)
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A little theorem (Pascal’s Identity)

Vn,k e N: C(n,k)+ C(n,k—1)=C(n+1,k)

(o) ()

n! n!

- T Dln—k+ 1)

C(n,k)+C(n,k—1)

kKl(n —k)!

- (k—l)?(!n—k)! (% | n—11~c—|—1>

B n! n+1
- (k=D!n—Kk(n—k+1)
B (n+1)!

kl(n —k+1)!
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A little theorem (Pascal’s Identity)

Vn,k e N: C(n,k)+ C(n,k—1)=C(n+1,k)

(o) ()

n! n!

- T Dln—k+ 1)

C(n,k)+C(n,k—1)

kKl(n —k)!

- (k—l)?(!n—k)! (% | n—11~c—|—1>

n! n+1
T h=DIn—k)k(n—k+1)
B (n+1)!
kl(n —k+1)!
= C(n+1,k)
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Proof by double induction

P(n) = “for all r = 1 we have A(n,r) = C(n-1+r,r)”. Need to prove P(n) for all n=>1.

Induction basis: /

Induction step: Assume P(n), prove P(n+1):
Q) = “We have A(n+1,r) = C(n+nr)”

Prove using inducym onr.
nduction basis: An.n) = An,r-1) + Ain-1.0

nduction step: Assume Q(r), prove Q(r+1): Use recursion.
An+1,r+1) = A(n+1 N+ An,r+1)

*P

= C(n+rr) + C(n+r,r+1)

algelmne
b, Do




Proof by double induction

P(n) = “for all r = 1 we have A(n,r) = C(n-1+r,r)”. Need to prove P(n) for all n=>1.

Induction basis: /

Induction step: Assume P(n), prove P(n+1):
Q) = “We have A(n+1,r) = C(n+nr)”

Prove using inducym onr.
nduction basis: An.n) = An,r-1) + Ain-1.0

nduction step: Assume Q(r), prove Q(r+1) Use recursion.
An+1,r+1) = (n+1 r + A( n£+1
P
( ) + C(n+r,r+1)
C(n +r+1, r+1)

C(n,k)+C(n,k-1)=C(n+1,k)

OlQ@U[ﬁTﬂ@




Proof by double induction

P(n) = “for all r = 1 we have A(n,r) = C(n-1+r,r)”. Need to prove P(n) for all n=>1.

Induction basis: /

Induction step: Assume P(n), prove P(n+1):
Q) = “We have A(n+1,r) = C(n+nr)”

Prove using inducym onr.
nduction basis: An.n) = An,r-1) + Ain-1.0

nduction step: Assume Q(r), prove Q(r+1) Use recursion.
An+1,r+1) = (n+1 N+ An,r+1)

*P

( ) + C(n+hr+1)

C(n
C(n +r+1 , r+1)
C((n+1)- 1+(r+1), r+1)

C(n,k)+C(n,k-1)=C(n+1,k)

OlQ@U[ﬁTﬂ@
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Choosing r elements from a set of n-elements
I

Ordering matters

Ordering doesn’t matter C(n+r-1,r)
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More
Binomials
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Binomial Theorem & combinatorial proof
I

Vi > 1: (14 z)" :i (Z)x’f
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Binomial Theorem & combinatorial proof
I

Vn>1:(142)" = Z (Z)xk
k=0

Look at an example: What is the coefficient of x3 in (1+x)°?
In how many ways do we get x3in (1+x)* (1+x)* (14+x)* (1+x)* (1+x)?
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Binomial Theorem & combinatorial proof
I

Vn>1:(142)" = Z (Z)xk
k=0

Look at an example: What is the coefficient of x3 in (1+x)°?
In how many ways do we get x3in (1+x)* (1+x)* (14+x)* (1+x)* (1+x)?

(I4+z)- 1+z)-1+z)-(1+2x) - (1+2x)
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Binomial Theorem & combinatorial proof
I

Vn>1:(142)" = Z (Z)xk
k=0

Look at an example: What is the coefficient of x3 in (1+x)°?
In how many ways do we get x3in (1+x)* (1+x)* (14+x)* (1+x)* (1+x)?

14 - (14 - (1@ - @t =)D 2
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Binomial Theorem & combinatorial proof
I

Vn>1: (1+x)" = Z (Z)il?k
k=0

Look at an example: What is the coefficient of x3 in (1+x)°?
In how many ways do we get x3in (1+x)* (1+x)* (14+x)* (1+x)* (1+x)?

14 - (14 - (1@ - @t =)D 2

1+z)- (14+2)-1+2z)- 1+2) (1+2z)
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Binomial Theorem & combinatorial proof
I

Vn>1: (1+x)" = Z (Z)il?k
k=0

Look at an example: What is the coefficient of x3 in (1+x)°?
In how many ways do we get x3in (1+x)* (1+x)* (14+x)* (1+x)* (1+x)?

(142) - (1 H2) - (1 Hz) (Dt 2) - (D 2)
(1+=) (1 Hz) (D+2) - (1 Hz) - (D+ )
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Binomial Theorem & combinatorial proof
B

Vn>1: (1+x)" = Z (Z)il?k
k=0

Look at an example: What is the coefficient of x3 in (1+x)°?
In how many ways do we get x3in (1+x)* (1+x)* (14+x)* (1+x)* (1+x)?

(14D - (14D - (14D @+ 2) D 2
(14D (14@)- D+ 2)- (140 D+ 2
)

1+z) - (1+z)- (14+2)-1+2) -1+
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Binomial Theorem & combinatorial proof
B

Vn>1:(142)" = Z (Z)il?k
k=0

Look at an example: What is the coefficient of x3 in (1+x)°?
In how many ways do we get x3in (1+x)* (1+x)* (14+x)* (1+x)* (1+x)?

(1H2) - (1 H2) - (1 H2) - (D+ 2) (D 2)
(1+=) (1 Hz) (D+2) - (1 Hz) - (D+ )
(1@(1@@x)@m)(1+@
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Binomial Theorem & combinatorial proof
B

Vn>1:(142)" = Z (Z)xk
k=0

Look at an example: What is the coefficient of x3 in (1+x)°?
In how many ways do we get x3in (1+x)* (1+x)* (1+x)* (1+x)* (1+x)?

(1H2) - (1 H2) - (1 H2) - (D+ 2) (D 2)
(1+=) (1 Hz) (D+2) - (1 Hz) - (D+ )
(1@(1@@x)@m)(1+@

= Number of ways to pick 3 terms among 5, without replacement, ordering
irrelevant = C(5,3)
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Binomial Theorem & combinatorial proof
B

Vn>1:(142)" = Z (Z)xk
k=0

Look at an example: What is the coefficient of x3 in (1+x)°?
In how many ways do we get x3in (1+x)* (1+x)* (1+x)* (1+x)* (1+x)?

(142) - (1 H2) - (1 Hz) (Dt 2) - (D 2)
(1+=) (1 Hz) (D+2) - (1 Hz) - (D+ )
(1+@(1+@@kx)@+az)(1+@

= Number of ways to pick 3 terms among 5, without replacement, ordering
irrelevant = C(5,3)

In general: number of ways to pick k terms among n, so = C(n,k) = (Z)
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Binomial Theorem & algebraic proof
I

pp. 403-409 n "
Vn>1:(142)" = Z (k>:z;'k

k=0
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Binomial Theorem & algebraic proof
I

pp. 403-409 n "
Vn>1:(142)" = Z (k>:z;'k

k=0
Use induction on n.
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More theorems
.
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More theorems

n>1: )" = ~(n P
2" = zn: (Z) pp. 405-406 e ;;)<’“>

k=0
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More theorems

n>1: )" = ~(n P
2" = zn: (Z) pp. 405-406 e ;;)<’“>

k=0
Proof: Plug x=1 into the binomial theorem.
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More theorems

n>1: x)" = —~ (n 2
2" = zn: (Z) pp. 405-406 e ;;)("7>

k=0
Proof: Plug x=1 into the binomial theorem.

Combinatorial proof: Count number of bit-strings of length n as sum of
number of bit-strings of length n which have exactly k ones, k from 0 to n.
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Vandermonde identity
I
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Vandermonde identity

m—+n : ,
< . >:Z<Z>(er>’ if r<m,n  pp. 408-409

k=0
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Vandermonde identity

+ - .
(mr n) — Z <Z> (er>’ if r<m,n  pp. 408-409

k=0

Combinatorial proof: Subset of size r of {1,2,...,m+n} is obtained from all
combinations of

* subsets of size k of {1,2,...,n} and

* all subsets of size r-k of {n+1,...,m+n},

* for k from O tor.
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Vandermonde identity

+ - .
(mr n) — Z <Z> (er>’ if r<m,n  pp. 408-409

k=0

Combinatorial proof: Subset of size r of {1,2,...,m+n} is obtained from all
combinations of

* subsets of size k of {1,2,...,n} and

* all subsets of size r-k of {n+1,...,m+n},

* for k from O tor.

Algebraic proof: Look at coefficient of X" in (1+x)"(1+x)™
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Consequence
I
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Consequence
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Consequence

C=26)

Set m=n=r in Vandermonde’s identity
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