Lecture 18 Counting

Discrete Structures - 2015

Poker Hands

Discrete Structures - 2015

Game of (Straight) Poker

- Each of the players is dealt five cards from a deck of 52 cards
- Players can switch some of their cards against new ones
 - We are not going to talk about this here.
- Players bet on their final hands
- Cards are revealed
- Highest hand wins

Winning Hands

alg⊕lma

laboratoire de mathematiques algorithmique

Royal flush		5 consecutive cards of one color, starting with 10
Straight flush		5 consecutive cards of one color, starting with \leq 9
Four of a kind	°♥, °♦, °♣, °♠, °♦, *••	Four cards are of one kind
Full house		A pair of one kind, three cards of another kind
Flush		All cards of one color, but not consecutive
Straight		Consecutive cards, not all of the same suit
Three of a kind		Three colors of the same kind, the other two different
Two pairs		Two pairs of same kind, but not a four
One pair		One pair of the same kind, the other three different
No pair		None of the above

Total number of distinct hands

$$C(52,5) = \frac{52!}{5!47!} = \frac{2'598'960}{5!47!}$$

5

Number of royal flush hands

5 consecutive cards of one suit, starting with 10

Number of straight flush but not royal flush hands

9

Number of full house hands

A pair of one kind, three cards of another kind

Number of flush but not royal/straight flush hands

All cards of one color,

4

+3'744

+ 5'108

9'516

Number of straight but not flush/royal flush hands

Consecutive cards, not all of the same suit

+ 624 + 3'744 + 5'108 + 10'200

19'716

Number of hands with three of a kind

74'628

Number of hands with two distinct pairs

Number of hands with exactly one pair

Discrete Structures - 2015

None of the above

Results

	Number of hands	Probability
Royal flush	4	0.00015%
Straight flush	36	0.00139%
Four of a kind	624	0.02401%
Full house	3744	0.14406%
Flush	5108	0.19654%
Straight	10200	0.39246%
Three of a kind	54912	2.11285%
Two pairs	123552	4.75390%
One pair	1098240	42.25690%
None of the above	1302540	50.11774%

Plot: Number of hands of each category

Logarithmic plot: log₁₀(number of hands)

How many hands don't contain any pair?

How many hands don't contain any pair?

Another example

How many hands don't contain any pair?

	Number of hands
Royal flush	4
Straight flush	36
Four of a kind	Contains pair
Full house	Contains pair
Flush	5108
Straight	10200
Three of a kind	Contains pair
Two pairs	Contains pair
One pair	Contains pair
None of the above	1302540
TOTAL	1'317'888

Another example

How many hands don't contain any pair?

Method 1

		Number of hands
Royal flush		4
Straight flush		36
Four of a kind	♥ , ♦ , ♦ , ♦ , •	Contains pair
Full house		Contains pair
Flush		5108
Straight		10200
Three of a kind		Contains pair
Two pairs		Contains pair
One pair		Contains pair
None of the above		1302540
TOTAL		1'317'888

Another example

How many hands don't contain any pair?

Number of hands **Royal flush** 4 Straight flush 36 Four of a kind Contains pair Contains pair Full house Flush 5108 Straight 10200 Contains pair Three of a kind Two pairs Contains pair Contains pair One pair None of the above ÷ 1302540 . . ۲ 1'317'888 TOTAL

Method 1

Combinations with Replacement

Choosing *r* elements from a set of *n*-elements

		Without replacement	With replacement
Ordering matters	Permutation	P(n,r)	n ^r
Ordering doesn't matter	Combination	C(n,r)	?

Choosing *r* elements from a set of *n*-elements

- We have three ice cream flavors: chocolate, banana, vanilla
- How many different sets of 5-scoops can we make? A(3,5)

- We have three ice cream flavors: chocolate, banana, vanilla
- How many different sets of 5-scoops can we make? A(3,5)

- We have three ice cream flavors: chocolate, banana, vanilla
- How many different sets of 5-scoops can we make? A(3,5)

chocolate	banana	vanilla
5	0	0
4	1	0
4	0	1
3	2	0
3	1	1
3	0	2
2	3	0
2	2	1
2	1	2
2	0	3
1	4	0
1	3	1
1	2	2
1	1	3
1	0	4

- We have three ice cream flavors: chocolate, banana, vanilla
- How many different sets of 5-scoops can we make? A(3,5)

No chocolate

chocolate banana vanilla

- We have three ice cream flavors: chocolate, banana, vanilla
- How many different sets of 5-scoops can we make? A(3,5)

chocolate	banana	vanilla
5	0	0
4	1	0
4	0	1
3	2	0
3	1	1
3	0	2
2	3	0
2	2	1
2	1	2
2	0	3
1	4	0
1	3	1
1	2	2
1	1	3
1	0	4

At least one chocolate

No chocolate

- We have three ice cream flavors: chocolate, banana, vanilla
- How many different sets of 5-scoops can we make? A(3,5)

At least one chocolate

chocolate	banana	vanilla
5	0	0
4	1	0
4	0	1
3	2	0
3	1	1
3	0	2
2	3	0
2	2	1
2	1	2
2	0	3
1	4	0
1	3	1
1	2	2
1	1	3
1	0	4

No chocolate

chocolate	banana	vanilla
0	5	0
0	4	1
0	3	2
0	2	3
0	1	4
0	0	5

- We have three ice cream flavors: chocolate, banana, vanilla
- How many different sets of 5-scoops can we make? A(3,5)

chocolate	banana	vanilla
5	0	0
4	1	0
4	0	1
3	2	0
3	1	1
3	0	2
2	3	0
2	2	1
2	1	2
2	0	3
1	4	0
1	3	1
1	2	2
1	1	3
1	0	4

At least one chocolate

No chocolate

chocolate	banana	vanilla
0	5	0
0	4	1
0	3	2
0	2	3
0	1	4
0	0	5

21 choices total, so A(3,5) = 21but what is A(n,r) in general?

chocolate	banana	vanilla
5	0	0
4	1	0
4	0	1
3	2	0
3	1	1
3	0	2
2	3	0
2	2	1
2	1	2
2	0	3
1	4	0
1	3	1
1	2	2
1	1	3
1	0	4

At least one chocolate

chocolate	banana	vanilla
5	0	0
4	1	0
4	0	1
3	2	0
3	1	1
3	0	2
2	3	0
2	2	1
2	1	2
2	0	3
1	4	0
1	3	1
1	2	2
1	1	3
1	0	4

Take out that chocolate scoop Same as number of 4-scoops

At least one chocolate

chocolate	banana	vanilla
5	0	0
4	1	0
4	0	1
3	2	0
3	1	1
3	0	2
2	3	0
2	2	1
2	1	2
2	0	3
1	4	0
1	3	1
1	2	2
1	1	3
1	0	4

Take out that chocolate scoop Same as number of 4-scoops

chocolate	banana	vanilla
4	0	0
3	1	0
3	0	1
2	2	0
2	1	1
2	0	2
1	3	0
1	2	1
1	1	2
1	0	3
0	4	0
0	3	1
0	2	2
0	1	3
0	0	4

This is number of 4-scoops of three flavors, so A(3,4)

=
No chocolate

chocolate	banana	vanilla
0	5	0
0	4	1
0	3	2
0	2	3
0	1	4
0	0	5

No chocolate

chocolate	banana	vanilla
0	5	0
0	4	1
0	3	2
0	2	3
0	1	4
0	0	5

5-scoops from two flavors only

No chocolate

chocolate	banana	vanilla
0	5	0
0	4	1
0	3	2
0	2	3
0	1	4
0	0	5

5-scoops from two flavors only

banana	vanilla
5	0
4	1
3	2
2	3
1	4
0	5

This is number of 5-scoops of two flavors, so A(2,5)

=

A(3,5) =

A(3,4)

chocolate	banana	vanilla
5	0	0
4	1	0
4	0	1
3	2	0
3	1	1
3	0	2
2	3	0
2	2	1
2	1	2
2	0	3
1	4	0
1	3	1
1	2	2
1	1	3
1	0	4

A(2,5)

chocolate	banana	vanilla
0	5	0
0	4	1
0	3	2
0	2	3
0	1	4
0	0	5

A(3,5) = A(3,4) + A(2,5)

Discrete Structures - 2015

$$A(3,5) = A(3,4) + A(2,5)$$

and in general

$$A(n,r) = A(n,r-1) + A(n-1,r)$$
 for $r, n \ge 1$

Discrete Structures - 2015

$$A(3,5) = A(3,4) + A(2,5)$$

and in general

$$A(n,r) = A(n,r-1) + A(n-1,r) \text{ for } r, n \ge 1$$

Combinations containing
at least one copy of the
first element of original
set

Discrete Structures - 2015

$$A(3,5) = A(3,4) + A(2,5)$$

and in general

$$A(n,r) = A(n,r-1) + A(n-1,r) \text{ for } r, n \ge 1$$

Combinations containing
at least one copy of the
first element of original
set
Combinations containing
no copy of the first
element of original set

$$A(n,1) = n$$
 for $n \ge 1$

$$A(n,1) = n$$
 for $n \ge 1$

If you have *n* ice cream flavors, but only one scoop, you can only have *n* different ice cream servings.

$$A(n,1) = n$$
 for $n \ge 1$

If you have *n* ice cream flavors, but only one scoop, you can only have *n* different ice cream servings.

$$A(1, r) = 1$$
 for $r \ge 1$

A(n,1) = n for $n \ge 1$

If you have *n* ice cream flavors, but only one scoop, you can only have *n* different ice cream servings.

$$A(1, r) = 1 \text{ for } r \ge 1$$

If you have only one ice cream flavor, then no matter how many scoops you take, you will end up having only one type of ice cream serving.

A(n,r) = A(n,r-1) + A(n-1,r)

A(n,r) = A(n,r-1) + A(n-1,r)

A(1,r) = 1 for $r \ge 1$

A(n,r) = A(n,r-1) + A(n-1,r)

A(n,r) = A(n,r-1) + A(n-1,r)

A(n,r) = A(n,r-1) + A(n-1,r)

A(n,r) = A(n,r-1) + A(n-1,r)

What are these numbers?

$$A(1,r) = 1 \text{ for } r \ge 1$$

These numbers are ≥ 0 Their sum is the number of scoops = 5

These numbers are ≥ 0 Their sum is the number of scoops = 5

These numbers are ≥ 0 Their sum is the number of scoops = 5 2 0 3

Possibilities are mapped to sequences of 7 black and red marbles of which exactly 5 are red (and exactly 2 are black)

Possibilities are mapped to sequences of 7 black and red marbles of which exactly 5 are red (and exactly 2 are black)

C(7,5) = 7!/(2!*5!) = 7*3=21

We first put in *n*-1 markers

n-1 black marbles

Possibilities are mapped to sequences of *n*-1+*r* black and red marbles of which exactly *r* are red (and exactly *n*-1 are black)

C(*n*-1+*r*, *r*)

Possibilities are mapped to sequences of *n*-1+*r* black and red marbles of which exactly *r* are red (and exactly *n*-1 are black)

C(n-1+r, r)

$$A(n,r) = C(n-1+r,r) ?$$

P(n) = "for all $r \ge 1$ we have A(n,r) = C(n-1+r,r)". Need to prove P(n) for all $n \ge 1$.

Induction basis: n=1; A(1,r) = 1 for $r \ge 1$ (if only one object, then only *r*-combination is repetition of that object *r* times). On the other hand, C(n-1+r, r) = C(r,r) = 1, so correct.

Proof by double induction

P(n) = "for all $r \ge 1$ we have A(n,r) = C(n-1+r,r)". Need to prove P(n) for all $n \ge 1$.

$$C(n,k) + C(n,k-1) = \binom{n}{k} + \binom{n}{k-1}$$

$$C(n,k) + C(n,k-1) = \binom{n}{k} + \binom{n}{k-1} \\ = \frac{n!}{k!(n-k)!} + \frac{n!}{(k-1)!(n-k+1)!}$$

$$C(n,k) + C(n,k-1) = \binom{n}{k} + \binom{n}{k-1}$$

= $\frac{n!}{k!(n-k)!} + \frac{n!}{(k-1)!(n-k+1)!}$
= $\frac{n!}{(k-1)!(n-k)!} \left(\frac{1}{k} + \frac{1}{n-k+1}\right)$

$$C(n,k) + C(n,k-1) = \binom{n}{k} + \binom{n}{k-1}$$

= $\frac{n!}{k!(n-k)!} + \frac{n!}{(k-1)!(n-k+1)!}$
= $\frac{n!}{(k-1)!(n-k)!} \left(\frac{1}{k} + \frac{1}{n-k+1}\right)$
= $\frac{n!}{(k-1)!(n-k)!} \frac{n+1}{k(n-k+1)}$

$$C(n,k) + C(n,k-1) = \binom{n}{k} + \binom{n}{k-1}$$

= $\frac{n!}{k!(n-k)!} + \frac{n!}{(k-1)!(n-k+1)!}$
= $\frac{n!}{(k-1)!(n-k)!} \left(\frac{1}{k} + \frac{1}{n-k+1}\right)$
= $\frac{n!}{(k-1)!(n-k)!} \frac{n+1}{k(n-k+1)!}$
= $\frac{(n+1)!}{k!(n-k+1)!}$

$$C(n,k) + C(n,k-1) = \binom{n}{k} + \binom{n}{k-1}$$

= $\frac{n!}{k!(n-k)!} + \frac{n!}{(k-1)!(n-k+1)!}$
= $\frac{n!}{(k-1)!(n-k)!} \left(\frac{1}{k} + \frac{1}{n-k+1}\right)$
= $\frac{n!}{(k-1)!(n-k)!} \frac{n+1}{k(n-k+1)!}$
= $\frac{(n+1)!}{k!(n-k+1)!}$
= $C(n+1,k)$

Choosing *r* elements from a set of *n*-elements

		Without replacement	With replacement
Ordering matters	Permutation	P(n,r)	n ^r
Ordering doesn't matter	Combination	C(n,r)	C(n+r-1,r)

More Binomials

Binomial Theorem & combinatorial proof

$$\forall n \ge 1 \colon (1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

Binomial Theorem & combinatorial proof

$$\forall n \ge 1 \colon (1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

Look at an example: What is the coefficient of x^3 in $(1+x)^5$? In how many ways do we get x^3 in $(1+x)^* (1+x)^* (1+x)^* (1+x)^* (1+x)^*$

$$\forall n \ge 1 \colon (1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

$$(1+x) \cdot (1+x) \cdot (1+x) \cdot (1+x) \cdot (1+x)$$

$$\forall n \ge 1 \colon (1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

$$(1 + x) \cdot (1 + x) \cdot (1 + x) \cdot (1 + x) \cdot (1 + x)$$

$$\forall n \ge 1 \colon (1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

$$(1+x) \cdot (1+x) \cdot (1+x) \cdot (1+x) \cdot (1+x)$$
$$(1+x) \cdot (1+x) \cdot (1+x) \cdot (1+x)$$

$$\forall n \ge 1 \colon (1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

$$(1 + x) \cdot (1 + x) \cdot (1 + x) \cdot (1 + x) \cdot (1 + x)$$
$$(1 + x) \cdot (1 + x) \cdot (1 + x) \cdot (1 + x) \cdot (1 + x)$$

$$\forall n \ge 1 \colon (1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

$$(1+x) \cdot (1+x) \cdot (1+x) \cdot (1+x) \cdot (1+x)$$
$$(1+x) \cdot (1+x) \cdot (1+x) \cdot (1+x) \cdot (1+x)$$
$$(1+x) \cdot (1+x) \cdot (1+x) \cdot (1+x)$$

$$\forall n \ge 1 \colon (1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

$$(1 + x) \cdot (1 + x) \cdot (1 + x) \cdot (1 + x) \cdot (1 + x)$$
$$(1 + x) \cdot (1 + x) \cdot (1 + x) \cdot (1 + x) \cdot (1 + x)$$
$$(1 + x) \cdot (1 + x) \cdot (1 + x) \cdot (1 + x)$$

$$\forall n \ge 1 \colon (1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

Look at an example: What is the coefficient of x^3 in $(1+x)^5$? In how many ways do we get x^3 in $(1+x)^* (1+x)^* (1+x)^* (1+x)^* (1+x)^*$

$$(1 + x) \cdot (1 + x) \cdot (1 + x) \cdot (1 + x) \cdot (1 + x)$$
$$(1 + x) \cdot (1 + x) \cdot (1 + x) \cdot (1 + x) \cdot (1 + x)$$
$$(1 + x) \cdot (1 + x) \cdot (1 + x) \cdot (1 + x)$$

= Number of ways to pick 3 terms among 5, without replacement, ordering irrelevant = C(5,3)

$$\forall n \ge 1 \colon (1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

Look at an example: What is the coefficient of x^3 in $(1+x)^5$? In how many ways do we get x^3 in $(1+x)^* (1+x)^* (1+x)^* (1+x)^* (1+x)^*$

$$(1+x) \cdot (1+x) \cdot (1+x) \cdot (1+x) \cdot (1+x)$$
$$(1+x) \cdot (1+x) \cdot (1+x) \cdot (1+x) \cdot (1+x)$$
$$(1+x) \cdot (1+x) \cdot (1+x) \cdot (1+x)$$

= Number of ways to pick 3 terms among 5, without replacement, ordering irrelevant = C(5,3)

In general: number of ways to pick *k* terms among *n*, so = $C(n,k) = \binom{n}{k}$

Binomial Theorem & algebraic proof

pp. 403-409

$$\forall n \ge 1 \colon (1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

Binomial Theorem & algebraic proof

рр. 403-409 $\forall n \ge 1 \colon (1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$

Use induction on *n*.

$$\forall n \ge 1 \colon (1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

$$2^n = \sum_{k=0}^n \binom{n}{k}$$
 pp. 405-406

$$\forall n \ge 1 \colon (1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

$$2^n = \sum_{k=0}^n \binom{n}{k}$$
 pp. 405-406

<u>Proof</u>: Plug x=1 into the binomial theorem.

$$\forall n \ge 1 \colon (1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

$$2^n = \sum_{k=0}^n \binom{n}{k}$$
 pp. 405-406

$$\forall n \ge 1 \colon (1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

<u>Proof</u>: Plug x=1 into the binomial theorem.

<u>Combinatorial proof</u>: Count number of bit-strings of length *n* as sum of number of bit-strings of length *n* which have exactly *k* ones, *k* from 0 to *n*.

Vandermonde identity

Vandermonde identity

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{n}{k} \binom{m}{r-k}, \quad \text{if } r < m, n \quad \text{pp. 408-409}$$

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{n}{k} \binom{m}{r-k}, \quad \text{if } r < m, n \quad \text{pp. 408-409}$$

<u>Combinatorial proof</u>: Subset of size *r* of $\{1, 2, ..., m+n\}$ is obtained from all combinations of

- subsets of size *k* of {1,2,...,*n*} and
- all subsets of size *r*-*k* of {*n*+1,...,*m*+*n*},
- for *k* from 0 to *r*.

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{n}{k} \binom{m}{r-k}, \quad \text{if } r < m, n \quad \text{pp. 408-409}$$

<u>Combinatorial proof</u>: Subset of size *r* of $\{1, 2, ..., m+n\}$ is obtained from all combinations of

- subsets of size *k* of {1,2,...,*n*} and
- all subsets of size *r*-*k* of {*n*+1,...,*m*+*n*},
- for *k* from 0 to *r*.

<u>Algebraic proof</u>: Look at coefficient of x^r in $(1+x)^n(1+x)^m$

Consequence

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{n}{k} \binom{m}{r-k}, \quad \text{if } r < m, r$$

Consequence

 $\binom{m+n}{r} = \sum_{k=0}^{r} \binom{n}{k} \binom{m}{r-k}, \quad \text{if } r < m, n$

43

 $\binom{m+n}{r} = \sum_{k=0}^{r} \binom{n}{k} \binom{m}{r-k}, \quad \text{if } r < m, n$

Set *m*=*n*=*r* in Vandermonde's identity

