Lecture 23
Graphs
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What do These Examples Have in Common?
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What do These Examples Have in Common?
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Common Point

- We have “items”

- And we have a “relationship” between pairs of
items

- Sometimes the relationship is “symmetric”

- Means that if item1 is in relationship with item2,
then item2 is also in relationship with item-

- Sometimes the relationship is “not symmetric”
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Dinner Party
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Dinner Party

N |tems:
Py People at a party

Relationship:

Not necessarily symmetric



Dinner Party

ltems:
People at a party

Relationship:
If one knows the other
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Dinner Party

ltems:
People at a party

Relationship:
If one knows the other

Not necessarily symmetric
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Facebook

ltems:
Facebook users

Relationship:
If one Is “friends” with
the other

facebook
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Facebook

ltems:
Facebook users

Relationship:
If one Is “friends” with
the other

Symmetric

facebook
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Brain
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Neurons

Relationship:

If there is a synaptic
connection between
them
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Neurons

Relationship:  symmetric

If there is a synaptic
connection between
them



Database of Movies
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sladiato

4 ltems:
Movies

B | Relationship:

@ If they belong to the same genre
= | If they have the same director

If they have an actor in common
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Database of Movies
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..... Movies
Relationship: Symmetric

If they belong to the same genre
If they have the same director
If they have an actor in common
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Database of Movies

ltems:

Movies

Relationship:
If they belong to the same genre
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Database of Movies

ltems:

Movies

Relationship: Symmetric
If they belong to the same genre
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By
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.= Items:
Metro or bus stations
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Relationship:
If there is a metro or a bus line
connecting them
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ltems:
Metro or bus stations

Relationship:
If there Is a metro or a bus line

N =7 | connecting them
L= = i = Symmetric
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Professors and Students

ltems:
Professor/students

Relationship:

been In the same classroom
during the semester
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Professors and Students

ltems:
Professor/students
Relationship: Symmetric

been In the same classroom
during the semester
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Professors and Students
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Professors and Students
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Epidemic Outbreak

ltems:
Infected humans

Relationship:
If a person has been
infected by another
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Epidemic Outbreak

ltems:
Infected humans

Relationship: Not symmetric
If a person has been
infected by another
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Epidemic Outbreak

PATIENT ZERO S D
———— DIED DEC. 6, 2013 I 'te ms.

HIS SISTER InfeCted humans

FAMILY FRIEND
HIS MOTHER IN SIERRA LEONE

The World Health Organization traced the
outbreak back to a single child in Guinea
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SOURCE: World Health Organization

Ebola outbreak 2013
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Epidemic Outbreak

PATIENT ZERO S D
DIED DEC. 6, 2013 I 'te ms.

HIS SISTER InfeCted humans

FAMILY FRIEND
HIS MOTHER IN SIERRA LEONE

The World Health Organization traced the
outbreak back to a single child in Guinea

HOSPITAL CHAIN 7 | , T Re I at i O N S h i D " Not symmetric
W = If a person has been

AvDwIE  eR EPHEw infected by another

SOURCE: World Health Organization

Ebola outbreak 2013
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Evolution

ltems:
All species that have ever walked the

.
- f earth
e

Relationship:

If one species has evolved into
another
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Evolution

ltems:
All species that have ever walked the

.
- f earth
e

Relationship:

If one species has evolved into
another

Not symmetric
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Evolution

Phylogenetic trees
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All species that have ever walked the
earth

Relationship:
If one species has evolved into
another




Evolution

Phylogenetic trees
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ltems:
All species that have ever walked the
earth

Relationship:
If one species has evolved into
another

Not symmetric




d

ltems:
Countries

Relationship:
If they have a common border
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d

ltems:
Countries

Relationship:  Symmetric
If they have a common border

algolme
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Map

ltems:
Countries

Relationship:
If they have a common border
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Map

ltems:
Countries

Relationship:  Symmetric
If they have a common border
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Common Generalization: Graphs

- Need to be able to analyze examples like the above
both from a theoretical and a computational point

of view
- Abstract out the main concept

- This leads us to graph theory
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pp. 617-618

Undirected Graphs

I
* An undirected graph is a set
V of vertices and a set E of
edges, E CP(V).

- Each element in E has either
one or two elements

- {u,v} €E connects vertices
u, vev.
. {u,v}
= u,v are called endpoints ‘ '

of the edge, and called
adjacent or neighbors

- {u}€E is aloop. Graph {u}
with no loops is called Q
simple.
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Examples of Undirected Graphs

- V={0,1,2,3,4}
* £=10,1}12}11,3113,4}12,3}141}

{2}

 V={0,1,2,3,4}

* E=1{{0,1},10,2},{0,3},{0,4},{1,2},{1,3},
11,4},{2,3},12,4},{3,4}}

* V=10,1,2} US4
° E=10,3},10,4},11,3},{2,4},12,3}}
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Complete Graphs pp. 630

+ Every pair of nodes is connected.
- Complete graph on n nodes is denoted by K.
- Formally: K, = (VE), where

- |V]=n and
- E={S|S&Vand|S| = 2}.
O
O
O
K1 Ko K3 K4
alge e

ire d'algorithi H ~tn Q
Discrete Structures-2015




Bipartite Graphs pp. 633-635

- Two different classes of nhodes

-+ Edges only between nodes in different classes

- Formally: B = (ViUVs, E), E SV1 UV, Ed V7 and
Ex Vo, forallecE: |e| =2
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Bipartite Graphs pp. 633-635

Two different classes of nhodes

Edges only between nodes in different classes

Formally: B = (ViuUVy, E), E S ViUV, Ed V7 and
Ex Vo, forallecE: |e| =2
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pp. 633-635

Bipartite Graphs

- Two different classes of nodes
Edges only between nodes in different classes

Formally: B = (ViuUVy, E), E S ViUV, Ed V7 and
Ex Vo, forallecE: |e| =2
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Subgraphs Pp- 639

- A subgraph of a graph (V,E) is a graph (V’,E’) where
- V’Is a subset of V
- E’Is a subset of E




Subgraphs Pp. 639

- A subgraph of a graph (V,E) is a graph (V’,E’) where
- V’Is a subset of V
- E’Is a subset of E
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Isomorphism pp. 647-650

+ Two graphs are isomorphic if
one can be transformed into

another through renaming of
nodes

+ Formally:
- (VE) is isomorphic to (V’,E’) if Isomorphic?
there is a bijection f: V<>V’
such that {u,v} < E iff {f(u),f(v)}
cE

g laborat
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Isomorphism pp. 647-650

+ Two graphs are isomorphic if

5 incident

one can be transformed into edges Al nodes

another through renaming of incident

nodes o
+ Formally:

- (VE) is isomorphic to (V’,E’) if Not isomorphic

there is a bijection . V<> V/
such that {u,v} < E iff {f(u),f(v)}
cE
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Isomorphism pp. 647-650

+ Two graphs are isomorphic if

. 5 incident all nodes
one can be transformed into edges Have 3
another through renaming of incident
nodes o
Formally:

- (VE) is isomorphic to (V’,E’) if Not isomorphic

there is a bijection . V<> V/
such that {u,v} < E iff {f(u),f(v)}
cE

Isomorphic?
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Isomorphism pp. 647-650

- Two graphs are isomorphic if

. 5 incident all nodes
one can be transformed into edges Have 3
another through renaming of incident
nodes o
Formally:

- (VE) is isomorphic to (V’,E’) if Not isomorphic

there is a bijection f: V<>V’
such that {u,v} € E iff {f(u),f(v)}
cE’

lsomorphic?
Yes
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Isomorphism pp. 647-650

- Two graphs are isomorphic if

. 5 incident all nodes
one can be transformed into edges

have 3

another through renaming of inc;:dent

nodes ee9es
- Formally:

) (V,E) Is isomorphic to (V’:E’) if Not isomorphic

there is a bijection f: V<>V’
such that {u,v} € E iff {f(u),f(v)}
cE’

- In general it is difficult to decide

somorphism computationally

- Though there has been a very

recent breakthrough by L.

- | hic?
Babai Som\?erg ©
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Degree pp. 627

- The degree of a node is the number of non-loop
edges incident to the node + 2*number of incident
loops

+ Formally: deg(u) = [{{u,v}<E}| + 2[{{u} <E}]

deg=5

(\J
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Simple Degree Formulas pp. 629

G = (VE) graph. Sum of degrees = 2|E].
- Summing degrees counts each edge twice (even
the loops).
G = (VE) graph. Number of vertices of odd degree
IS even.

- 2|E| = sum of degrees of even-degree vertices +
sum of degrees of odd-degree vertices.

- First sum is even (sum of even numbers), and final
result is even (2|E|), so sum of degrees of odd-
degree vertices Is even.

- If there were an odd number of odd-degree vertices,
then the sum of their degrees would be odd.
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Adjacency Matrix pp. 644-646

G = (VE) graph, V={v1,...,va}. An adjacency matrix
for G is an n x n-matrix A=(aj) such that

- Forizjaj=1if {v,vi} €E, and a; = 0 otherwise.

- Fori=jai=2if {vi}€E.

Note that the adjacency matrix depends on the
ordering of the elements of V (hence is not unigque).

O 1 0 0 0 Sum of entries in row i
is the degree of node v

10 0 1 O
0O 2 1 0

1 0 |1
o 0 1 2 Matrix is always symmetric

o | O O
—h
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Directed Graphs pp. 619

-+ A directed graph is a set
V of vertices and a set E
of edges, E CV x V.

- (u,v)€E connects
vertices u, veV.

- U Is the starting point
and v the endpoint of

the edge
- A directed graph on a W)
set V' Is also called a Q
relation on V.
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Example of a Directed Graph

Vertices:
Websites

Relationship:

Directed edge between
website A and website B
If there is a link from
website A to website B
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Degrees (again) Ppp. 629

- The in-degree deg(v) of a node v is the number of
edges ending in the node; the out-degree deg*(v) is
the number of edges starting at the node.

+ Formally:

- deg*(u) = [{(u,v)€E}
- deg(u) = [{(v,u)<E}

deg* =2

deg*=0
deg =3
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Simple Degree Formulas pp. 629-630

=

G = (VE) directed graph. Then
- Sum of in-degrees = sum of out-degrees = |E|.
- Counting in-degrees counts every edge exactly
once (every edge has exactly one destination).
- Same for out-degrees.
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Adjacency Matrix pp. 644-646

G = (VE) directed graph, V={v1,...,vn}. An adjacency
matrix for G is an n x n-matrix A=(aj) such that

- aj=11if (v,v) €E, and aj = 0 otherwise.

Note that the adjacency matrix depends on the
ordering of the elements of V (hence is not unigque).

’ 0o 1.0 0 0 Sum of entries in row |
is the out-degree of

@(o o o 1 0 node v;

@/o o 1 1 0

‘ LU e Matrix is not symmetric in

@ o 0o o 1 1] [general

Sum of entries in column j is the
in-degree of node v;
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