Lecture 23 Graphs

Discrete Structures - 2015

What do These Examples Have in Common?

Connections on Facebook

Lausanne transportation map

Database of movies

Neurons in the brain

Evolution

Countries on a map

What do These Examples Have in Common?

People at a dinner party

Connections on Facebook

Lausanne transportation map

Database of movies

Epidemic outbreak

Neurons in the brain

Evolution

Professors and students

Countries on a map

Common Point

- We have "items"
- And we have a "relationship" between pairs of items
- Sometimes the relationship is "symmetric"
 - Means that if item1 is in relationship with item2, then item2 is also in relationship with item1
- Sometimes the relationship is "not symmetric"

Dinner Party

<u>Items</u>: People at a party

<u>Relationship</u>: If one knows the other

Dinner Party

<u>Items</u>: People at a party

<u>Relationship</u>: If one knows the other

Not necessarily symmetric

<u>Items</u>: People at a party

<u>Relationship</u>: If one knows the other

<u>Items</u>: People at a party

<u>Relationship</u>: If one knows the other

Not necessarily symmetric

Facebook

<u>Items</u>: Facebook users

<u>Relationship</u>: If one is "friends" with the other

Facebook

<u>Items</u>: Facebook users

Relationship: If one is "friends" with the other

Symmetric

<u>Items</u>: Neurons

Relationship: If there is a synaptic connection between them

<u>Items</u>: Neurons

<u>Relationship</u>: *Symmetric* If there is a synaptic connection between them

<u>Items</u>: Movies

Relationship:

If they belong to the same genre If they have the same director If they have an actor in common

.

<u>Items</u>: Movies

Relationship:SymmetricIf they belong to the same genreIf they have the same directorIf they have an actor in common

.

<u>Items</u>: Movies

Relationship:

If they belong to the same genre If they have the same director If they have an actor in common

.

<u>Items</u>: Movies

Relationship:SymmetricIf they belong to the same genreIf they have the same directorIf they have an actor in common

.

<u>Items</u>: Metro or bus stations

Relationship:

If there is a metro or a bus line connecting them

<u>Items</u>: Metro or bus stations

<u>Relationship</u>: If there is a metro or a bus line connecting them *Symmetric*

<u>Items</u>: Professor/students

Relationship:

If student and professor have been in the same classroom during the semester

<u>Items</u>: Professor/students

<u>Relationship</u>: If student and professor have been in the same classroom during the semester

<u>Items</u>: Professor/students

Relationship:

If student and professor have been in the same classroom during the semester

<u>Items</u>: Professor/students

Relationship:

Symmetric

If student and professor have been in the same classroom during the semester

<u>Items</u>: Infected humans

<u>Relationship</u>: If a person has been infected by another

Items: Infected humans

<u>Relationship</u>: *Not symmetric* If a person has been infected by another

Ebola outbreak 2013

<u>Items</u>: Infected humans

<u>Relationship</u>: If a person has been infected by another

Ebola outbreak 2013

Items: Infected humans

<u>Relationship</u>: *Not symmetric* If a person has been infected by another

All species that have ever walked the earth

Relationship: If one species has evolved into another

All species that have ever walked the earth

<u>Relationship</u>: If one species has evolved into another

Not symmetric

All species that have ever walked the earth

<u>Relationship</u>: If one species has evolved into another

All species that have ever walked the earth

Relationship: If one species has evolved into another

Not symmetric

<u>Relationship</u>: If they have a common border

<u>Relationship</u>: *Symmetric* If they have a common border

<u>Relationship</u>: If they have a common border

<u>Relationship</u>: *Symmetric* If they have a common border

Common Generalization: Graphs

- Need to be able to analyze examples like the above both from a theoretical and a computational point of view
- Abstract out the main concept
- This leads us to graph theory

Undirected Graphs

- An *undirected graph* is a set V of *vertices* and a set E of *edges*, $E \subset P(V)$.
- Each element in *E* has either one or two elements
 - $\{u,v\} \in E$ connects vertices $u, v \in V$.
 - *u,v* are called *endpoints* of the edge, and called *adjacent* or *neighbors*
 - {u}∈E is a loop. Graph
 with no loops is called
 simple.

Examples of Undirected Graphs

- $V = \{0, 1, 2, 3, 4\}$
- $E = \{\{0,1\},\{2\},\{1,3\},\{3,4\},\{2,3\},\{4\}\}$

- $V = \{0, 1, 2, 3, 4\}$
- $E = \{\{0,1\},\{0,2\},\{0,3\},\{0,4\},\{1,2\},\{1,3\},$ $\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$

- $V = \{0, 1, 2\} \cup \{3, 4\}$
- $E = \{\{0,3\},\{0,4\},\{1,3\},\{2,4\},\{2,3\}\}$

Complete Graphs

- Every pair of nodes is connected.
- Complete graph on *n* nodes is denoted by K_n .
- Formally: $K_n = (V, E)$, where
 - |*V*|=*n* and
 - $E = \{S | S \subseteq V \text{ and } |S| = 2\}.$

pp. 630

Bipartite Graphs

- Two different classes of nodes
- Edges only between nodes in different classes
- Formally: $B = (V_1 \cup V_2, E), E \subseteq V_1 \cup V_2, E \subset V_1$ and $E \subset V_2$, for all $e \in E$: |e| = 2

pp. 633-635

Bipartite Graphs

- Two different classes of nodes
- Edges only between nodes in different classes
- Formally: $B = (V_1 \cup V_2, E), E \subseteq V_1 \cup V_2, E \subset V_1$ and $E \subset V_2$, for all $e \in E$: |e| = 2

Professors and students

pp. 633-635

Bipartite Graphs

- Two different classes of nodes
- Edges only between nodes in different classes
- Formally: $B = (V_1 \cup V_2, E), E \subseteq V_1 \cup V_2, E \subset V_1$ and $E \subset V_2$, for all $e \in E$: |e| = 2

Keywords and files

pp. 633-635

Subgraphs

- A subgraph of a graph (V,E) is a graph (V',E') where
 - V' is a subset of V
 - E' is a subset of E

pp. 639

Subgraphs

- A subgraph of a graph (V,E) is a graph (V',E') where
 - V' is a subset of V
 - E' is a subset of E

pp. 639

- Two graphs are isomorphic if one can be transformed into another through renaming of nodes
- Formally:
 - (V,E) is isomorphic to (V',E') if there is a bijection f: V↔V'
 such that {u,v} ∈ E iff {f(u),f(v)}
 ∈E

- Two graphs are isomorphic if one can be transformed into another through renaming of nodes
- Formally:
 - (V,E) is isomorphic to (V',E') if there is a bijection f: V↔V'
 such that {u,v} ∈ E iff {f(u),f(v)}
 ∈E

- Two graphs are isomorphic if one can be transformed into another through renaming of nodes
- Formally:
 - (V,E) is isomorphic to (V',E') if there is a bijection f: V ↔ V'
 such that {u,v} ∈ E iff {f(u),f(v)}
 ∈ E

Isomorphic?

- Two graphs are isomorphic if one can be transformed into another through renaming of nodes
- Formally:
 - (V,E) is isomorphic to (V',E') if there is a bijection f: V ↔ V'
 such that {u,v} ∈ E iff {f(u), f(v)}
 ∈ E'

- Two graphs are isomorphic if one can be transformed into another through renaming of nodes
- Formally:
 - (V,E) is isomorphic to (V',E') if there is a bijection $f: V \leftrightarrow V'$ such that $\{u,v\} \in E$ iff $\{f(u), f(v)\}$ $\in E'$
- In general it is difficult to decide isomorphism computationally
 - Though there has been a very recent breakthrough by L.
 Babai

Isomorphic? Yes

Degree

- The degree of a node is the number of non-loop edges incident to the node + 2*number of incident loops
- Formally: deg(u) = $|\{\{u,v\} \in E\}| + 2|\{\{u\} \in E\}|$

pp. 627

Simple Degree Formulas

- G = (V, E) graph. Sum of degrees = 2|E|.
 - Summing degrees counts each edge twice (even the loops).
- *G* = (*V*,*E*) graph. Number of vertices of odd degree is even.
 - 2|E| = sum of degrees of even-degree vertices +sum of degrees of odd-degree vertices.
 - First sum is even (sum of even numbers), and final result is even (2|*E*|), so sum of degrees of odddegree vertices is even.
 - If there were an odd number of odd-degree vertices, then the sum of their degrees would be odd.

pp. 629

Adjacency Matrix

- G = (V,E) graph, $V = \{v_1, ..., v_n\}$. An adjacency matrix for G is an n x n-matrix A=(a_{ij}) such that
 - For $i \neq j a_{ij} = 1$ if $\{v_i, v_j\} \in E$, and $a_{ij} = 0$ otherwise.
 - For $i=j a_{ii} = 2$ if $\{v_i\} \in E$.
- Note that the adjacency matrix depends on the ordering of the elements of *V* (hence is not unique).

pp. 644-646

Directed Graphs

- A directed graph is a set V of vertices and a set E of edges, $E \subset V \times V$.
 - $(u,v) \in E$ connects vertices $u, v \in V$.
 - *u* is the starting point and *v* the *endpoint* of the edge
- A directed graph on a set V is also called a relation on V.

<u>Vertices</u>: Websites

Relationship: Directed edge between website A and website B if there is a link from website A to website B

Degrees (again)

- The *in-degree* deg⁻(v) of a node v is the number of edges ending in the node; the *out-degree* deg⁺(v) is the number of edges starting at the node.
- Formally:
 - deg⁺(u) = $|\{(u,v) \in E\}|$
 - deg⁻(u) = $|\{(v,u) \in E\}|$

pp. 629

Simple Degree Formulas

pp. 629-630

- G = (V, E) directed graph. Then
 - Sum of in-degrees = sum of out-degrees = |E|.
 - Counting in-degrees counts every edge exactly once (every edge has exactly one destination).
 - Same for out-degrees.

Adjacency Matrix

• G = (V,E) directed graph, $V = \{v_1, ..., v_n\}$. An *adjacency matrix* for *G* is an *n* x *n*-matrix $A = (a_{ij})$ such that

-
$$a_{ij} = 1$$
 if $(v_i, v_j) \in E$, and $a_{ij} = 0$ otherwise.

• Note that the adjacency matrix depends on the ordering of the elements of *V* (hence is not unique).

Sum of entries in column *i* is the in-degree of node *v*_{*i*}

pp. 644-646