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Trees
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Trees

• A tree is a connected graph without cycles (acyclic 
graph)

Tree Not a tree 
(not connected)

Not a tree 
(not acyclic)
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Uniqueness of Paths
• In a tree there is a unique path between any two nodes.


- Existence: path exists since trees are connected by 
definition


- Uniqueness: suppose there are two different paths 
between two distinct nodes u,v:


- Let s:=min{ i | ai ≠ bi}. Note that s > 0. 

- Let r := min { i | i > s and there exists j with ai = bj}. Let m 

be such that ar=bm. Note that r ≤ t+1.

- Then 


➡ as-1—as—…— ar-1—ar=bm—bm-1—…—bs—bs-1=as-1 

- is a cycle, a contradiction.

u=a0—a1—a2—…..—at—at+1=v 
u=b0—b1—b2—…..—bk—bk+1=v

Path 1
Path 2
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Number of Edges

• Let G=(V,E) be a tree. Then |E| = |V|-1.

- Proof 1: Euler’s formula. 


➡ The graph is planar (why?). 

➡ Number of faces is 1.

➡ 1 - |E|+|V| = 2, so |E| = |V|-1.
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Number of Edges
• Let G=(V,E) be a tree. Then |E| = |V|-1.


- Proof 2: Strong induction on |V|. 
➡ Start: |V|=1, then |E|=0 (since self-loops don’t exist).

➡ Step: Let |V|=n+1, n≥1.Since graph is connected, there is at least one 

edge {u,v} in this graph.

➡ Delete that edge.

➡ Gu graph consisting of all vertices reachable from u after deletion of 

edge

➡ Gv graph consisting of all vertices reachable from v after deletion of edge

➡ Gu and Gv have disjoint node sets (since otherwise there are two paths 

from u to v in the original graph).

➡ Gu and Gv are trees (no cycles since original graph does not have cycles, 

and connected by definition).

➡ Let m be number of vertices in Gu, hence n+1-m is number of vertices in 

Gv. 
➡ By induction hypothesis: number of edges in Gu is m-1, and number of 

edges in Gv is (n+1-m)-1=n-m.

➡ Total number of edges in original graph is therefore m-1+n-m+1=n. QED

Edge we deleted
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Minimality

• Let G=(V,E) be a graph with |E| < |V|-1. Then G is 
not connected.

- Suppose that G is connected

- Remove all cycles by removing edges if needed, 

without disconnecting the graph.

- New graph G = (V,E’) is acyclic, and |E’|≤|E|<|V|-1.

- It is also connected, since original graph is 

connected.

- Hence it is a tree. 

- But then |E’|=|V|-1, a contradiction to the result on 

the previous page. 
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Dijkstra’s Algorithm
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Weighted Graphs

• A weighted connected graph (with positive weights) 
is a graph G=(V,E) together with a weight function 
w: E/R>0. 

• Problem: given a node in the graph, find shortest 
paths from that node to all the other nodes. 
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Example 1: Routing Problem

• Nodes given by routers in a network

• An edge between two nodes if there is a direct 

connection 

• Weight: “round-trip-time”

• Shortest path algorithm determines for every router 

the shortest (smallest round-trip time) path to all 
other routers
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Example 2: Navigation System

• Nodes: all possible destinations in a country

• Edge: if there is a road connecting one destination 

to another

• Weight: Distance (can be geographic or temporal)

• A navigation system can find for the current 

location shortest paths to all other locations
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Example 3: Air Travel

• Nodes: cities with an airport

• Edge between two nodes: if there is a direct flight 

from one city to another

• Weight: length of the flight

• The shortest path algorithm determines from a 

given city a sequence of flights to any other city 
with the smallest flight time
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Dijkstra’s Algorithm
• Fix initial node u0. 
• Determines for all nodes v in the graph 


- The quantity L(v)

➡ At the end of the algorithm this will be the length of 

shortest path from u0. 
- A node called from(v) which is the predecessor of v in the 

shortest path from u0 to v.

• Maintains a set S which at each iteration contains the 

nodes for which the shortest path has already been 
determined.


• At the beginning of the algorithm 

- S = 4 

- L(u0) = 0, and L(v) = 3 for all v≠u0


- from(u0) = u0, from(v) = nil for v≠u0
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Dijkstra’s Algorithm

• As long as S≠V  
- Select u;S with L(u) minimal.

- Replace S by SW{u}.

- For all v;S:


➡ Set c(v) := L(u) + w(u,v)

➡ If c(v) < L(v) then replace L(v) by c(v)


๏ and replace from(v) by u.
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Dijkstra’s Algorithm Example pp. 684
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Dijkstra’s Algorithm Example pp. 684
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Dijkstra’s Algorithm Example pp. 684
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Dijkstra’s Algorithm Example pp. 684
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Dijkstra’s Algorithm Example pp. 684
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Dijkstra’s Algorithm Example pp. 684
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Dijkstra’s Algorithm Example pp. 684
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Dijkstra’s Algorithm Example pp. 684
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Dijkstra’s Algorithm Example pp. 684
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Proof of Correctness of Dijkstra’s Algorithm

• We use induction on the |S| to prove the following 
two facts:

(1) For all vdS: L(v) is length of shortest path from u0 

to v.

(2) For all vfS: L(v) is length of shortest path from u0 

to v in which all nodes (except for v) are in S.


•  Note that (1) is enough to show correctness:

- At the end of the algorithm, S=V, and hence the L-

values are the lengths of shortest paths 

pp. 684-686
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Induction Start

• Start: S=4 

- (1) is true, since there are no vertices in S. 

- (2) The only vertex for which L(v) is not infinity is u0 

and for this vertex the L-value is correctly set to 0.

pp. 684-686
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• Let |S|=k. 

• At the (k+1)st iteration, a node a is chosen for 

which L(a) is minimal, and it is added to the set S. 

• The new set is S’ = S union {a}. 

• We need to prove (1) and (2) for S’.

25

Induction Step

S

aS’

pp. 684-686
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• Need to show: for all udS': L(u) is length of 
shortest path from u0 to u.


• If u≠a, then this is true by induction hypothesis

• Suppose that u=a, i.e., we need to show that L(a) is 

length of shortest path from u0 to a.

• If not, then shortest path has some length c < L(a).

• This path will not be entirely in S


- By induction hypothesis, L(a) is length of shortest 
path to a that is entirely in S (Condition (2)).


• Therefore, there is node u on this shortest path that 
is outside of S, and u≠a.

26

Proof of (1) for S’

a

u

pp. 684-686
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Proof of (1) for S’

• Note that L(u) ≥ L(a)

- Because a was chosen to have smallest L-value


• Let u0-u1-…-u-v1-…-vt-a be a shortest path (of total 
length c) from u0 to a.


• By induction hypothesis L(u) is length of shortest 
path to u with vertices in S, hence length of 
shortest path, i.e., c, equals L(u)+w(u,v1)+…
+w(vt,a).


• Because the edge weights are positive, c > L(u).

• By hypothesis, c < L(a), but this is a contradiction 

to L(a)≤L(u).

• So L(a) is length of shortest path

• Proof of (1) for S’ is complete.

a

u

pp. 684-686
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Proof of (2) for S’
• We need to show: For all vfS' L(v) is length of 

shortest path from u0 to v in which all nodes (except 
for v) are in S’.


• We distinguish two cases.

- Case 1: shortest path to v does not pass through a.


➡ In this case the assertion is true by induction hypothesis.

- Case 2: shortest path to v passes through a. 

➡ Value L(v) is defined as min(old L(v), L(a)+w({a,v})). 

➡ This is L(a) + w({a,v}), since path passes through a.

➡ Length of path cannot be smaller than this value, since 

L(a) is length of shortest path to a.

๏ Shorter path would mean that L(a) is not length of 

shortest path.

- This finishes proof of (2) for S’. QED

pp. 684-686
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Running Time

• Dijkstra’s algorithm uses O(|V|2) operations.

- At every iteration of the loop one node is added to 

the set S, so in total |V| iterations.

- At iteration k, the L-value of at most |V|-k other 

nodes is updated.

- Total number of updates is therefore at most 


➡ (|V|-1)+ (|V|-21)+ (|V|-13)+….. +1 = O(|V|2)


