Trees

g laboratoire d'algorithmique
laboratoire de mathematiques algorithmique

Trees

A tree is a connected graph without cycles (acyclic
graph)

SORRE

ree (not connected) (not acyclic)

uuuuuuuu ire d'algorithrnique H
aboratoire de ma tilques ulgorzthmggue D l S

Uniqgueness of Paths

I
In a tree there is a unique path between any two nodes.
- EXistence: path exists since trees are connected by
definition
- Uniqueness: suppose there are two different paths
between two distinct nodes u,V:

Uu=aop—ai—az—..... ar—ars1=v Path 1
u=bo—b1—b2—..... —bk—bk+1=v Path 2
- Let s:=min{i | a; # bi}. Note that s > 0.
- Letr:=min {i|/> s and there existsj with a; = b}. Let m
be such that a.=bm. Note that r < t+1.
- Then
= 3s-1—as—...— ar1—ar=bm—bm-1—...—bs—bs-1=as-1
- IS a cycle, a contradiction.

laborataire d'algorithrni q i
yo L Disorete Structures-2015

Number of Edges

Let G=(V,E) be a tree. Then |E| = |V]-1.
- Proof 1: Euler’s formula.

= The graph is planar (why?).

= Number of faces is 1.

= 1 - |E|+|V] =2, so |E| = |V]-1.

laboratoire d'algorithmique
iques algorithmique

Number of Edges

Let G=(V,E) be a tree. Then |E| = |\/| 1.
- Proof 2: Strong induction on |V/|.
= Start: |V|=1, then |E|=0 (since self-loops don’t exist).
= Step: Let |V|=n+1, n=1.Since graph is connected, there is at least one
edge {u,Vv} in this graph.
= Delete that edge.
= G, graph consisting of all vertices reachable from u after deletion of
edge
= (3, graph consisting of all vertices reachable from v after deletion of edge

= G, and G, have disjoint node sets (since otherwise there are two paths
from u to v in the original graph).

= G, and G, are trees (no cycles since original graph does not have cycles,
and connected by definition).

= | et m be number of vertices in G,, hence n+1-m is number of vertices in

G..
= By induction hypothesis: number of edges in G, is m-1, and number of
edges in G, is (n+1-m)-1=n-m. v/\ Edge we deleted

= Total number of edges in original graph is therefore m-1+n-m+1=n. QED

olge[] |

Minimality

- Let G=(V,E) be a graph with |E| < |V|-1. Then G is
not connected.
- Suppose that G is connected

- Remove all cycles by removing edges if needed,
without disconnecting the graph.

- New graph G = (V,E’) is acyclic, and |E’|<|E]<|V]-1.
- |t is also connected, since original graph is
connected.

- Hence it is a tree.

- But then |E’|=|V|-1, a contradiction to the result on
the previous page.

laborataire d'algorithrni q i
yo L Disorete Structures-2015

laboratoire d'algorithmique
laboratoire de mathematiques algorithmique

Weighted Graphs

- A weighted connected graph (with positive weights)
is a graph G=(V,E) together with a weight function
w: E— R-o.

- Problem: given a node in the graph, find shortest
paths from that node to all the other nodes.

laboratoire d'algorithmi H nto S
yo L Discrete Structures-2015

Example 1: Routing Problem

- Nodes given by routers in a network

- An edge between two nodes if there is a direct
connection

- Weight: “round-trip-time”

- Shortest path algorithm determines for every router

the shortest (smallest round-trip time) path to all
other routers

laboratoire d'algorithmi H
yo L Discrete Structures-2015

Example 2: Navigation System

+ Nodes: all possible destinations in a country

- Edge: if there is a road connecting one destination
to another

-+ Weight: Distance (can be geographic or temporal)

- A navigation system can find for the current
location shortest paths to all other locations

laborataire d'algorithrni q i
yo L Discrete Structures-2015

Example 3: Air Travel

- Nodes: cities with an airport

-+ Edge between two nodes: if there is a direct flight
from one city to another

- Weight: length of the flight

- The shortest path algorithm determines from a
given city a sequence of flights to any other city
with the smallest flight time

laboratoire d'algorithmi H
yo L Discrete Structures-2015

Dijkstra’s Algorithm

Fix initial node uo.
Determines for all nodes v in the graph
- The quantity L(v)
= At the end of the algorithm this will be the length of
shortest path from wo.

- A node called from(v) which is the predecessor of v in the

shortest path from ug to v.
Maintains a set S which at each iteration contains the

nodes for which the shortest path has already been

determined.
- At the beginning of the algorithm

- S=10
- L(uo) = 0, and L(v) = co for all v£uo
- from(ug) = uo, from(v) = nil for v£ug

laboratoire d'algorithmi H
yo L Discrete Structures-2015

Dijkstra’s Algorithm

- As long as Sz#V
- Select u& S with L(u) minimal.
- Replace S by SU{u}.
- Forall v&S:
= Set c(v) .= L(u) + w(u,v)
= If c(v) < L(v) then replace L(v) by c(v)
@ and replace from(v) by u.

laboratoire d'algorithmi : -
O Discrete Structures-2015

Dijkstra’s Algorithm Example pp. 684

S=0 B3] ni
L(ug) =0 <— minimum
L(A) = o
L(B) =
L(C) =
L(D) = o
L(E) = o0
L(F) = o
L(G) =

B3] i

‘ Vertex that has not been visited yet

Enil

. final distance L

. Current distance

‘ Vertex that we know how to reach best
‘ Vertex that has already been visited

2LV Discrete Strcures 2015
ire de mathamatiauzs aldorhmide 1S

Dijkstra’s Algorithm Example pp. 684

S = {uo} n Uo

L(A) =1 < minimum
L(B) =

L(C) =

L(D) =

L(E) = o©

L(F) =

L(G) = o=

E nil

‘ Vertex that has not been visited yet

. final distance L

. Current distance

‘ Vertex that we know how to reach best
‘ Vertex that has already been visited

2LV Discrete Strcures-2015
ire de mathamatiauzs aldorhmide 1S

Dijkstra’s Algorithm Example pp. 684

S = {uo, A}

L(B) =2 «— minimum
L(C) =

L(D) =

L(E) =4

L(F)=4

L(G) =

B ni

‘ Vertex that has not been visited yet

. final distance L

. Current distance

‘ Vertex that we know how to reach best
‘ Vertex that has already been visited

olgeum‘mc@]

dl ithriqu
dmhmq ghrn::|:I

Dijkstra’s Algorithm Example pp. 684

S = {uo, A, B}

L(C) =

L(D) =

L(E) = 3 <— minimum
L(F)=4

L(G) =

B ni

‘ Vertex that has not been visited yet

. final distance L

. Current distance

‘ Vertex that we know how to reach best
‘ Vertex that has already been visited

olgeum‘mc@]

dl ithriqu
dmhmq ghrn::|:I

Dijkstra’s Algorithm Example pp. 684

S = {uo, A, B, E}

L(C) =
L(D) =

L(F) =4 <— minimum
L(G)=9

B c

‘ Vertex that has not been visited yet

. final distance L

. Current distance

‘ Vertex that we know how to reach best
‘ Vertex that has already been visited

olgeum‘mc@]

2 dalgorih
redemai S oo

pp. 684

Dijkstra’s Algorithm Example

S ={uo, A, B, E, F}

L(C) =
L(D) = 6 < minimum

L(G)=9 F B

o |4

. final distance L ‘ Vertex that has not been visited yet

. Current distance

‘ Vertex that we know how to reach best
‘ Vertex that has already been visited

olgeum‘mc@]

2 dalgorih
redemai S oo

Dijkstra’s Algorithm Example pp. 684

S ={uo, A, B, E, F, D}

L(C) = 6 < minimum

L(G) =

. final distance L

‘ Vertex that has not been visited yet
. Current distance

‘ Vertex that we know how to reach best
‘ Vertex that has already been visited

olgeum‘mc@]

2 dalgorih
redemai S oo

Dijkstra’s Algorithm Example pp. 684

S ={uo, A, B, E, F, D, C}

L(G)=9 — minimum F .

. final distance L

‘ Vertex that has not been visited yet
. Current distance

‘ Vertex that we know how to reach best
‘ Vertex that has already been visited

olgeum‘mc@]

2 dalgorih
redemai S oo

Dijkstra’s Algorithm Example pp. 684

S = {UO, A! B, E! F’ D! C! G}

. final distance L

‘ Vertex that has not been visited yet
. Current distance

‘ Vertex that we know how to reach best
‘ Vertex that has already been visited

olgeum‘mc@]

2 dalgorih
redemai S oo

Proof of Correctness of Dijkstra’s Algorithm rp-684-68

- We use induction on the |S| to prove the following
two facts:

(1) For all v € S: L(v) is length of shortest path from uo
tov.

(2) For all v&S: L(v) is length of shortest path from uo
to v in which all nodes (except for v) are in S.

Note that (1) is enough to show correctness:

- At the end of the algorithm, S=V, and hence the L-
values are the lengths of shortest paths

laboratoire d'algorithmi H
yo L Discrete Structures-2015

Induction Start pp. 684-686

- Start: S=0

- (1) is true, since there are no vertices in S.

- (2) The only vertex for which L(v) is not infinity is uo
and for this vertex the L-value is correctly set to O.

uuuuuuuu ire d'algorithrnique H -

Induction Step pp. 684-686

- Let |S|=k.
- At the (k+1)st iteration, a node a is chosen for
which L(a) is minimal, and it is added to the set S.

- The new set is S’ = S union {a}.
- We need to prove (1) and (2) for S’.

laboratoire d'algorithmique
lakoratoire de mathematiques algorithmique

Proof of (1) for S’ pp. 684-686

- Need to show: for all u € S": L(u) is length of

shortest path from uo to u.
- If uza, then this is true by induction hypothesis
+ Suppose that u=a, i.e., we need to show that L(a) is
length of shortest path from uo to a.
- If not, then shortest path has some length ¢ < L(a).
+ This path will not be entirely in S

- By induction hypothesis, L(a) is length of shortest
path to a that is entirely in S (Condition (2)).

- Therefore, there is node u on this shortest path that
is outside of S, and u=+a. a

u

algelma

Proof of (1) for S’ pp. 684-686

- Note that L(u) = L(a)

- Because a was chosen to have smallest L-value

- Let uo-u1-...-u-v1-...-v+-a be a shortest path (of total
length ¢) from uo to a.

* By induction hypothesis L(u) is length of shortest
path to u with vertices in S, hence length of
shortest path, i.e., ¢, equals L(u)+w(u,v1)+...
+w(va).

 Because the edge weights are positive, ¢ > L(u).

* By hypothesis, ¢ < L(a), but this is a contradiction
to L(a)<L(u). a

 So L(a) is length of shortest path

* Proof of (1) for S’ is complete.

u

algelma

Proof of (2) for S’ pp. 684-686

- We need to show: For all v&S' L(v) is length of
shortest path from uo to v in which all nodes (except
forv)are in S’.

- We distinguish two cases.

- (Case 1: shortest path to v does not pass through a.

= |n this case the assertion is true by induction hypothesis.
- Case 2: shortest path to v passes through a.

= Value L(v) is defined as min(old L(v), L(a)+w({a,Vv})).

= This is L(a) + w({a,v}), since path passes through a.

= Length of path cannot be smaller than this value, since
L(a) is length of shortest path to a.

@ Shorter path would mean that L(a) is not length of
shortest path.

- This finishes proof of (2) for S”. QED

laboratoire d'algorithmi H]
yo L Discrete Structures-2015

Running Time

Dijkstra’s algorithm uses O(|V|?) operations.

- At every iteration of the loop one node is added to
the set S, so in total |V| iterations.

- At iteration k, the L-value of at most |V|-k other
nodes is updated.

- Total number of updates is therefore at most

= (VI-)+ (VI-=21)+ (V[-13)+..... +1 = O(V?)

laboratoire d'algorithmi H
yo L Discrete Structures-2015

