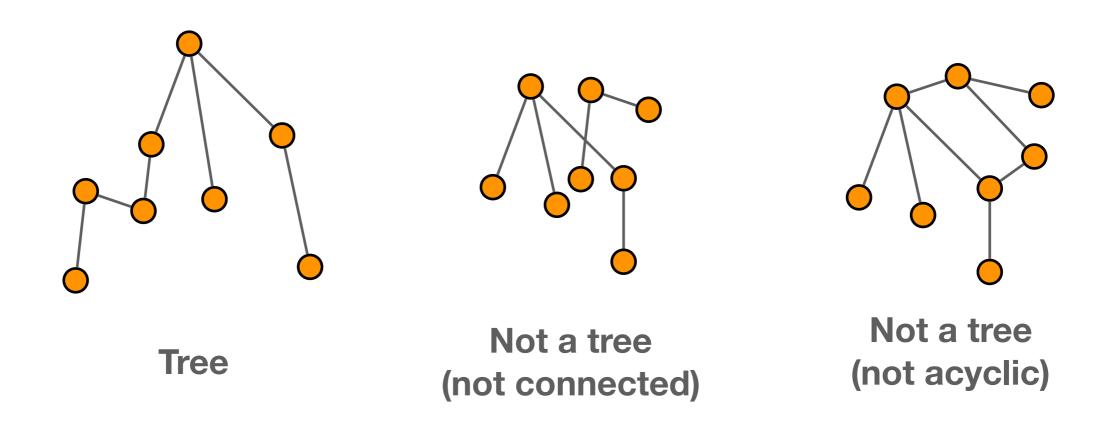


Discrete Structures - 2015

1

Trees

A tree is a connected graph without cycles (acyclic graph)



Uniqueness of Paths

- In a tree there is a unique path between any two nodes.
 - Existence: path exists since trees are connected by definition
 - Uniqueness: suppose there are two different paths between two distinct nodes *u*,*v*:

 $u=a_0-a_1-a_2-...-a_t-a_{t+1}=v$ Path 1

 $u=b_0-b_1-b_2-...-b_k-b_{k+1}=v$ Path 2

- Let s:=min{ $i \mid a_i \neq b_i$ }. Note that s > 0.
- Let $r := \min \{ i \mid i > s \text{ and there exists } j \text{ with } a_i = b_j \}$. Let m be such that $a_r = b_m$. Note that $r \le t+1$.
- Then

$$a_{s-1}-a_s-...-a_{r-1}-a_r=b_m-b_{m-1}-...-b_s-b_{s-1}=a_{s-1}$$

- is a cycle, a contradiction.

Number of Edges

- Let G = (V, E) be a tree. Then |E| = |V|-1.
 - Proof 1: Euler's formula.
 - ➡ The graph is planar (why?).
 - ➡ Number of faces is 1.

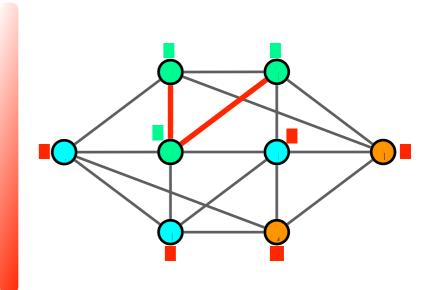
→ 1 -
$$|E|+|V| = 2$$
, so $|E| = |V|-1$.

Number of Edges

- Let G = (V, E) be a tree. Then |E| = |V|-1.
 - Proof 2: Strong induction on |V|.
 - → <u>Start:</u> |V|=1, then |E|=0 (since self-loops don't exist).
 - Step: Let |V|=n+1, n≥1.Since graph is connected, there is at least one edge {u,v} in this graph.
 - Delete that edge.
 - G_u graph consisting of all vertices reachable from u after deletion of edge
 - G_v graph consisting of all vertices reachable from v after deletion of edge
 - G_u and G_v have disjoint node sets (since otherwise there are two paths from *u* to *v* in the original graph).
 - → G_u and G_v are trees (no cycles since original graph does not have cycles, and connected by definition).
 - ➡ Let *m* be number of vertices in G_u, hence n+1-m is number of vertices in G_v.
 - By induction hypothesis: number of edges in G_u is m-1, and number of edges in G_v is (n+1-m)-1=n-m.
 Edge we deleted
 - Total number of edges in original graph is therefore m-1+n-m+1=n. QED

Minimality

- Let G=(V,E) be a graph with |E| < |V|-1. Then G is not connected.
 - Suppose that *G* is connected
 - Remove all cycles by removing edges if needed, without disconnecting the graph.
 - New graph G = (V, E') is acyclic, and $|E'| \le |E| < |V| 1$.
 - It is also connected, since original graph is connected.
 - Hence it is a tree.
 - But then |E'|=|V|-1, a contradiction to the result on the previous page.



Dijkstra's Algorithm

Discrete Structures - 2015

.

Weighted Graphs

- A weighted connected graph (with positive weights) is a graph G=(V,E) together with a weight function $w: E \rightarrow \mathbf{R}_{>0}$.
- Problem: given a node in the graph, find shortest paths from that node to all the other nodes.

Example 1: Routing Problem

- Nodes given by routers in a network
- An edge between two nodes if there is a direct connection
- Weight: "round-trip-time"
- Shortest path algorithm determines for every router the shortest (smallest round-trip time) path to all other routers

Example 2: Navigation System

- Nodes: all possible destinations in a country
- Edge: if there is a road connecting one destination to another
- Weight: Distance (can be geographic or temporal)
- A navigation system can find for the current location shortest paths to all other locations

Example 3: Air Travel

- Nodes: cities with an airport
- Edge between two nodes: if there is a direct flight from one city to another
- Weight: length of the flight
- The shortest path algorithm determines from a given city a sequence of flights to any other city with the smallest flight time

Dijkstra's Algorithm

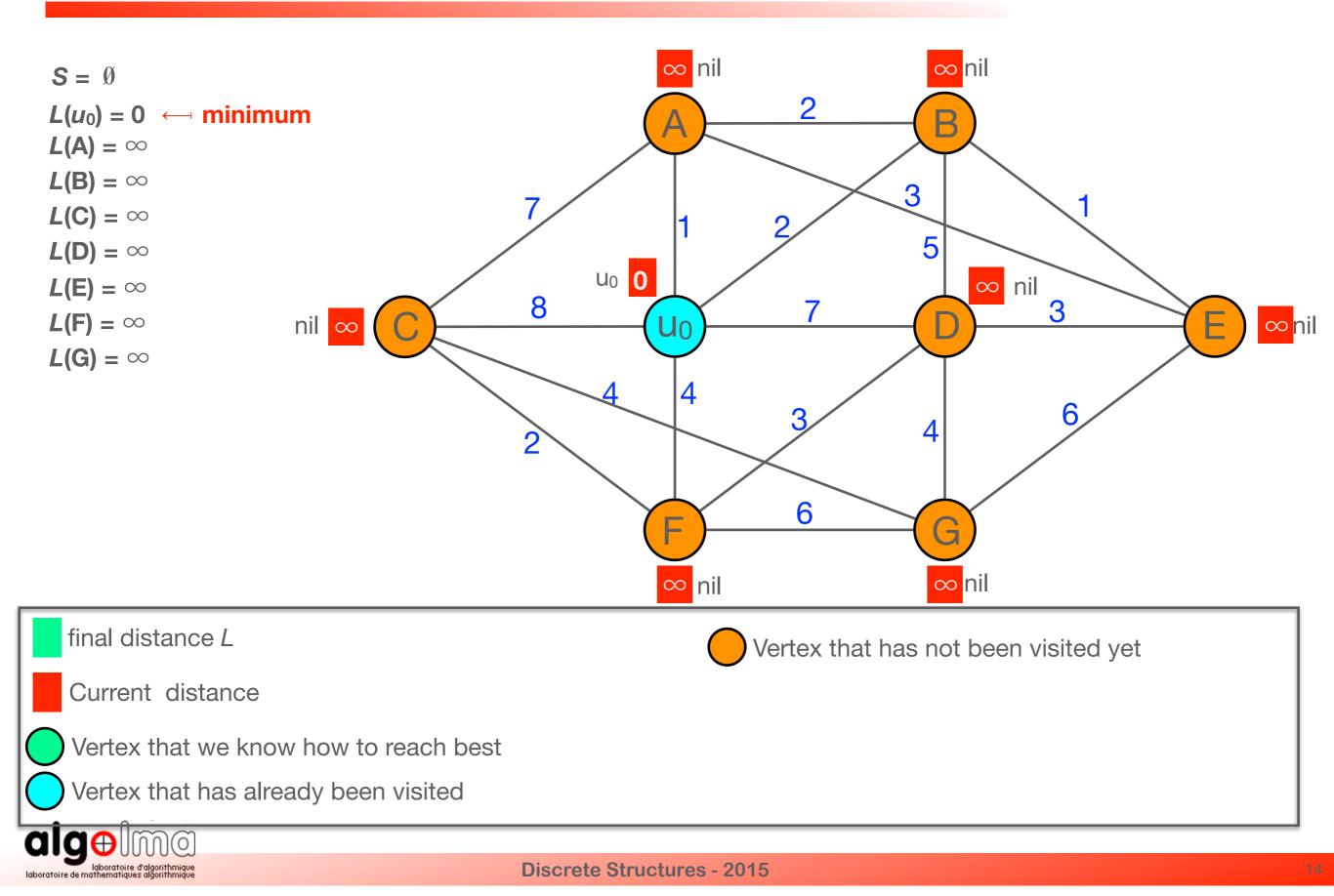
- Fix initial node u_0 .
- Determines for all nodes v in the graph
 - The quantity L(v)
 - At the end of the algorithm this will be the length of shortest path from u₀.
 - A node called from(v) which is the predecessor of v in the shortest path from u_0 to v.
- Maintains a set S which at each iteration contains the nodes for which the shortest path has already been determined.
- At the beginning of the algorithm

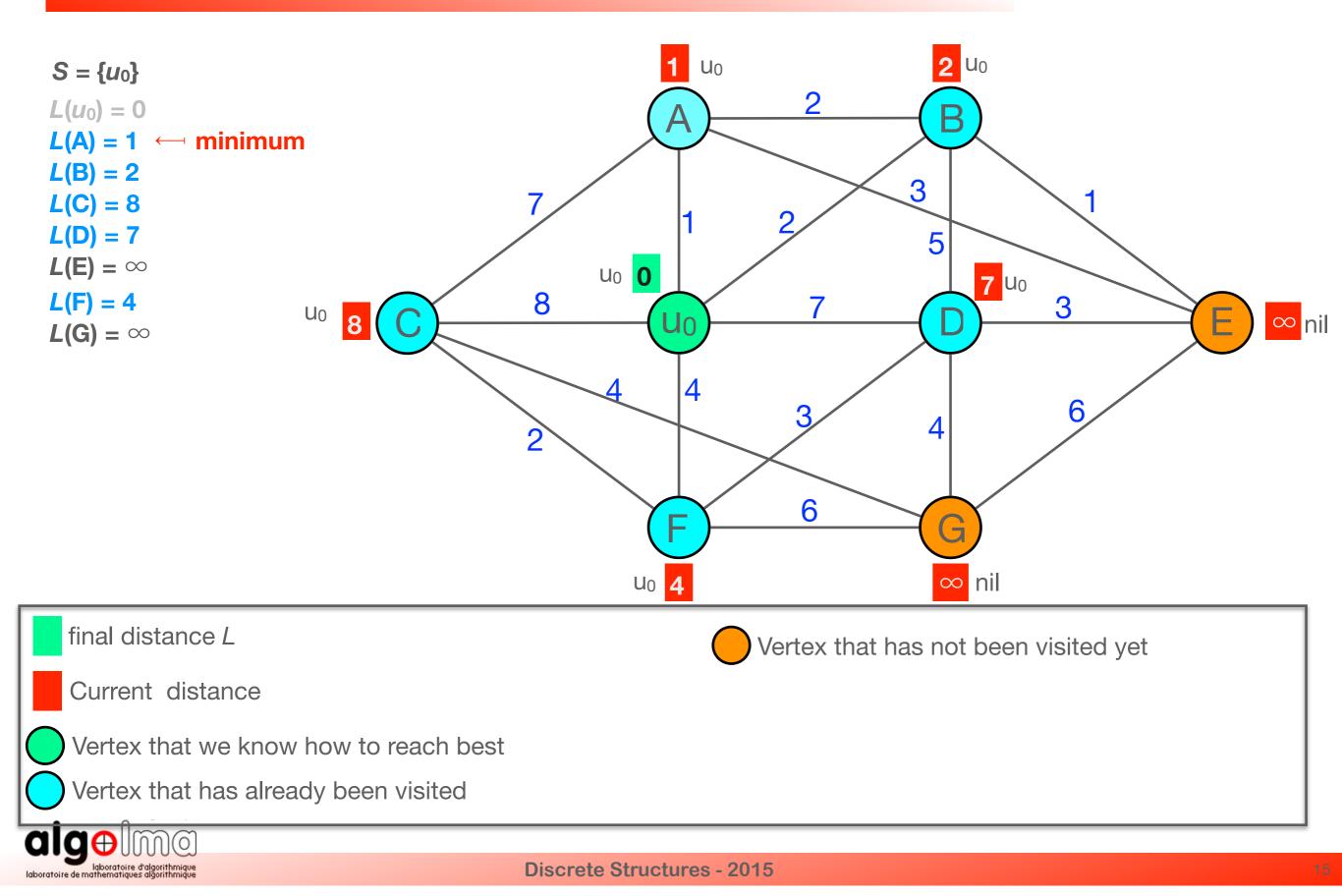
$$-S = \emptyset$$

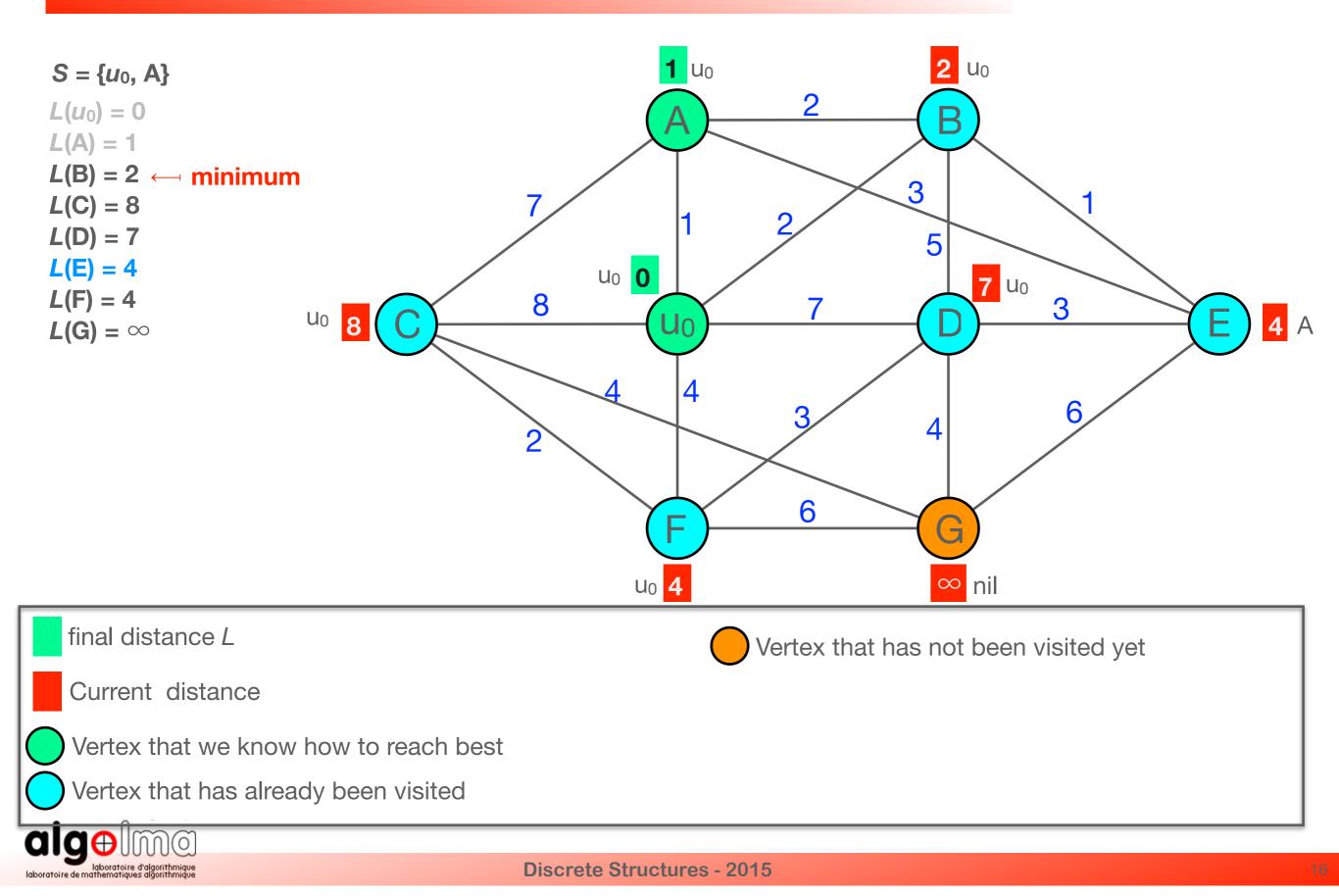
- $L(u_0) = 0$, and $L(v) = \infty$ for all $v \neq u_0$
- from(u₀) = u₀, from(v) = nil for $v \neq u_0$

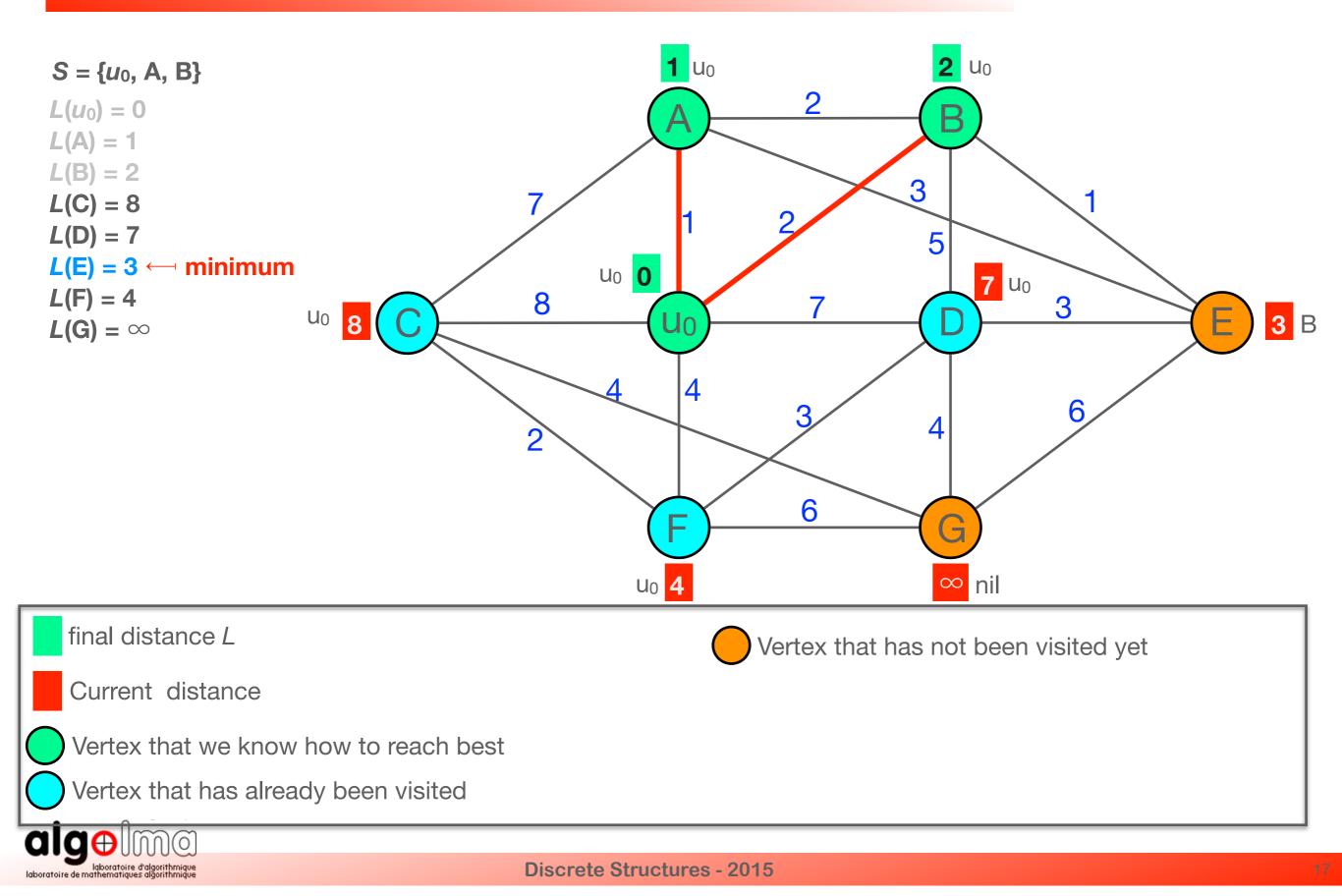
Dijkstra's Algorithm

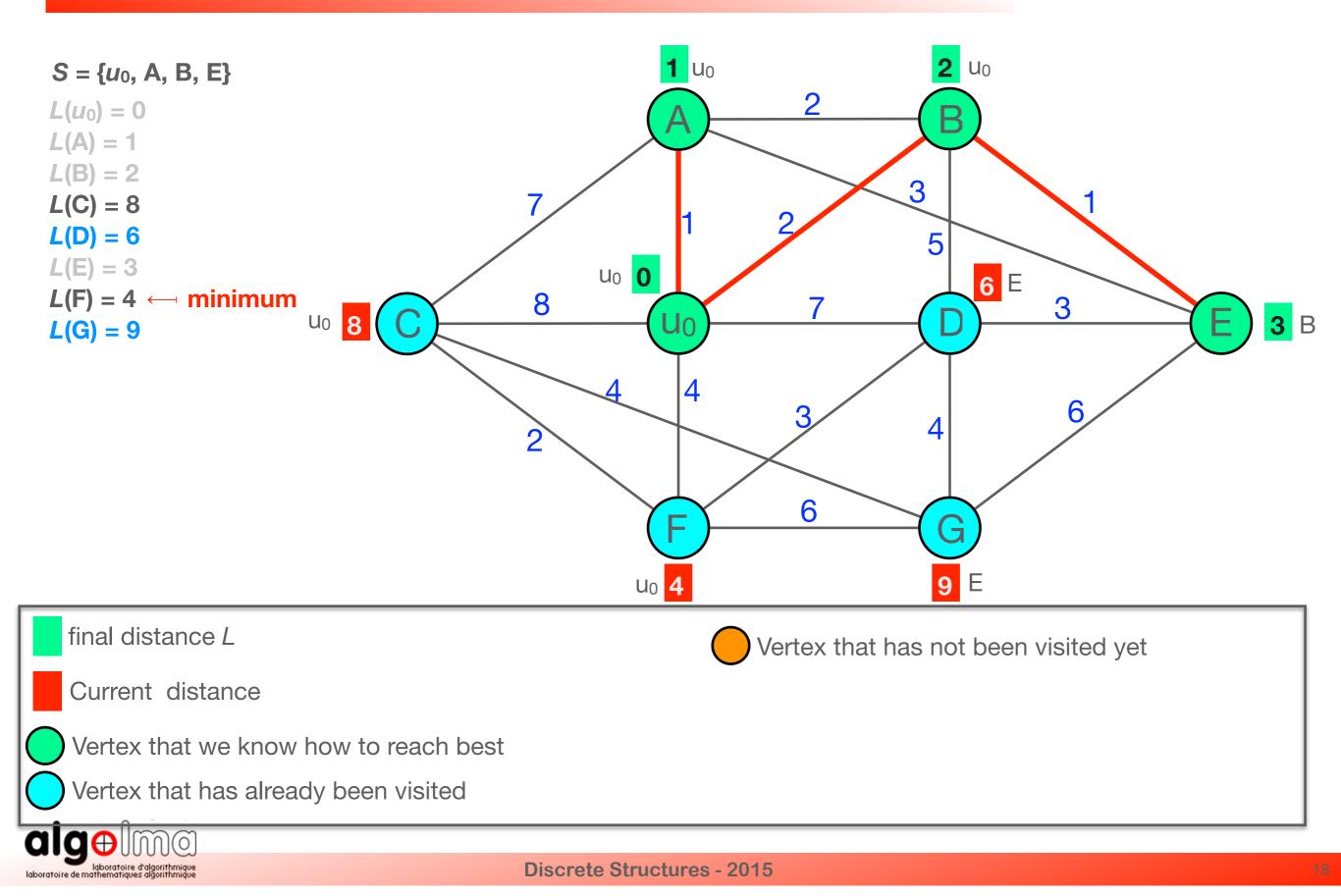
- As long as $S \neq V$
 - Select $u \notin S$ with L(u) minimal.
 - Replace S by $S \cup \{ \boldsymbol{u} \}$.
 - For all $v \notin S$:
 - → Set $c(v) := L(\boldsymbol{u}) + w(\boldsymbol{u}, v)$
 - → If c(v) < L(v) then replace L(v) by c(v)
 - and replace from(*v*) by *u*.

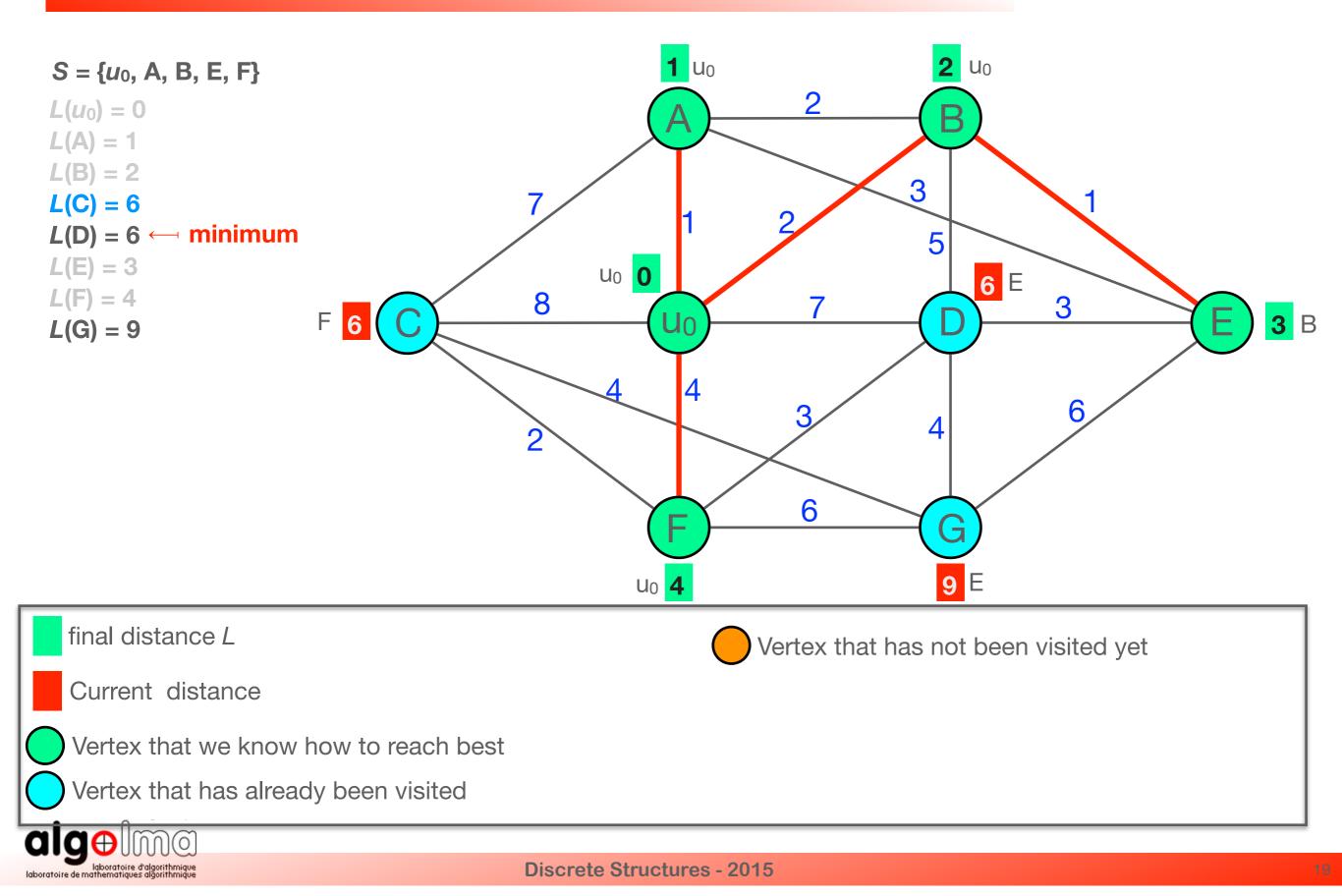


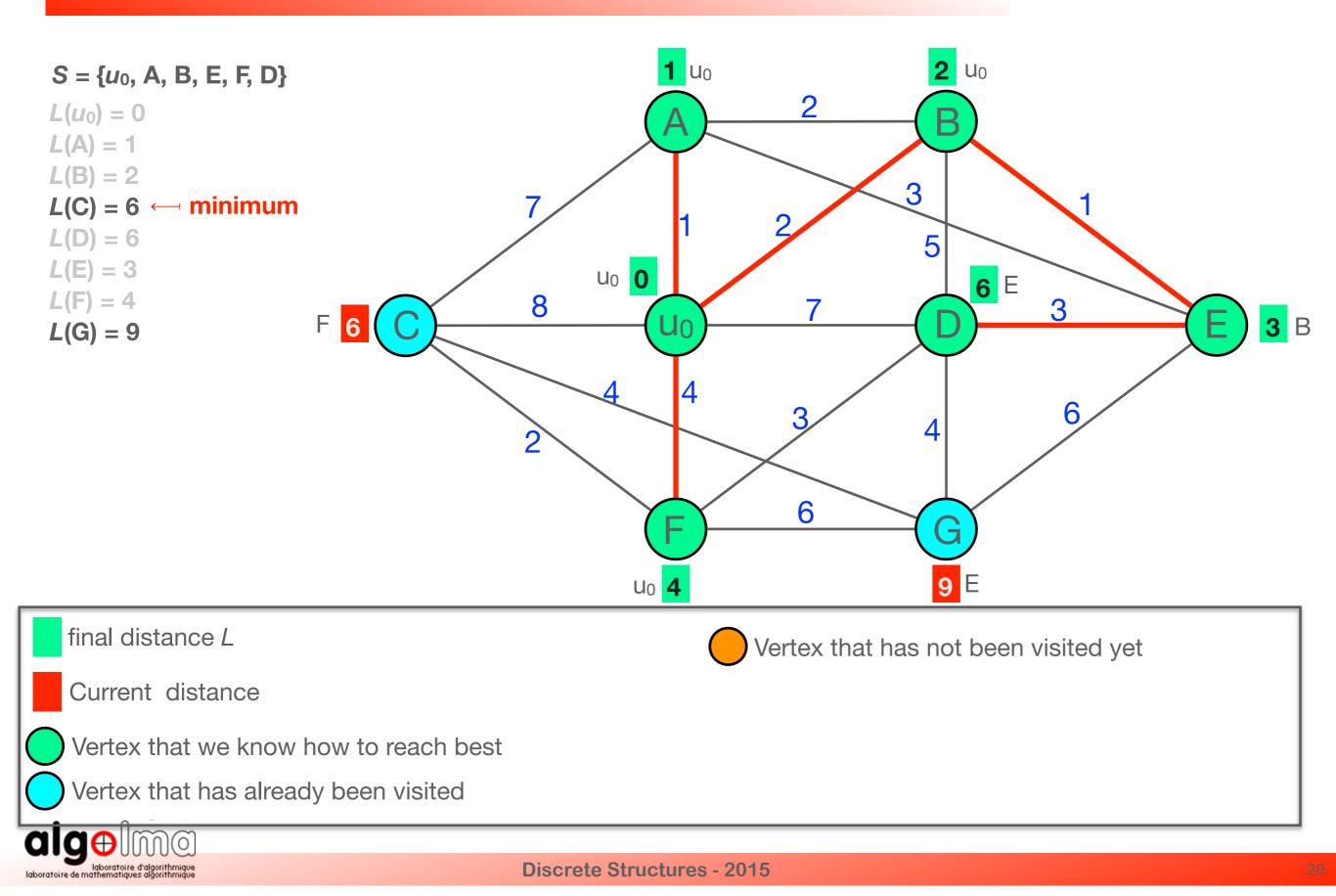


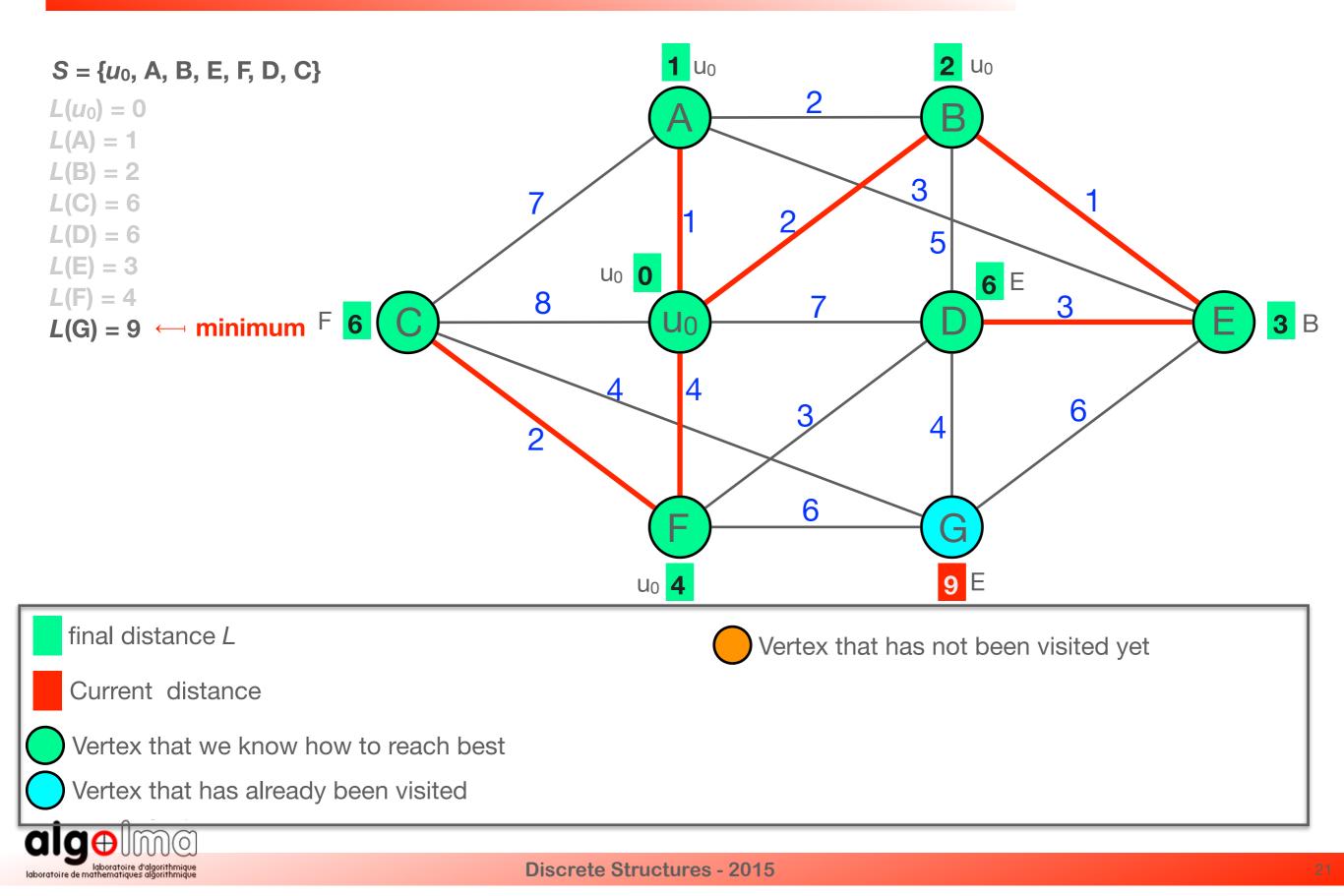


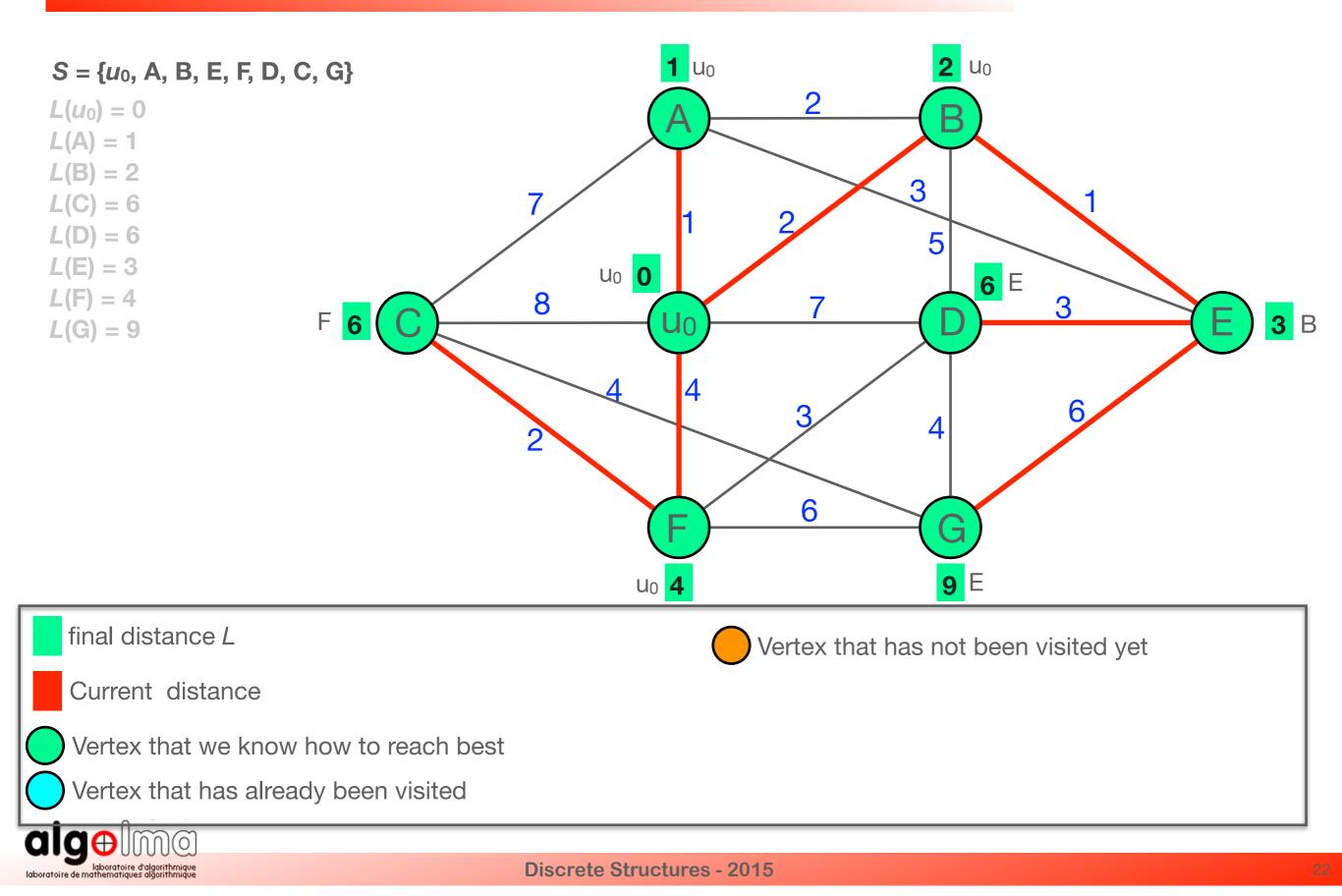












Proof of Correctness of Dijkstra's Algorithm

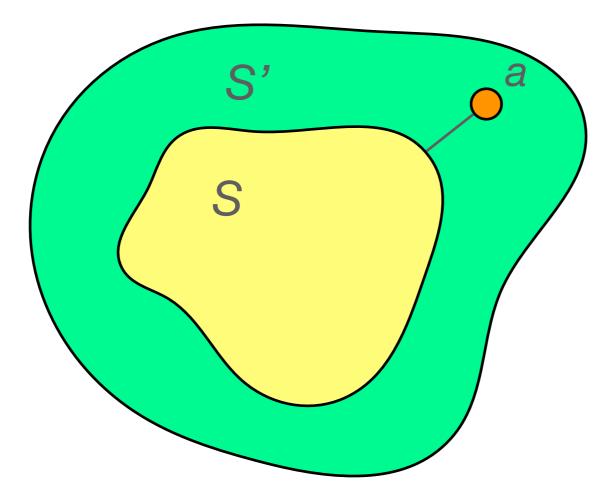
- We use induction on the |S| to prove the following two facts:
 - (1) For all $v \in S$: L(v) is length of shortest path from u_0 to v.
 - (2) For all $v \in S$: L(v) is length of shortest path from u_0 to v in which all nodes (except for v) are in S.
- Note that (1) is enough to show correctness:
 - At the end of the algorithm, S=V, and hence the *L*-values are the lengths of shortest paths

Induction Start

- Start: $S = \emptyset$
 - (1) is true, since there are no vertices in S.
 - (2) The only vertex for which L(v) is not infinity is u_0 and for this vertex the *L*-value is correctly set to 0.

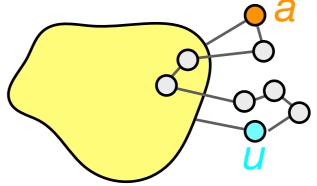
Induction Step

- Let |S|=k.
- At the (*k*+1)st iteration, a node *a* is chosen for which *L*(*a*) is minimal, and it is added to the set *S*.
- The new set is S' = S union $\{a\}$.
- We need to prove (1) and (2) for S'.



Proof of (1) for S'

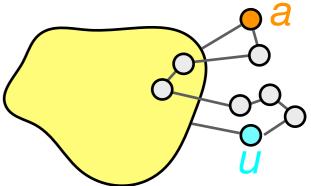
- Need to show: for all $u \in S'$: L(u) is length of shortest path from u_0 to u.
- If $u \neq a$, then this is true by induction hypothesis
- Suppose that u=a, i.e., we need to show that L(a) is length of shortest path from u_0 to a.
- If not, then shortest path has some length c < L(a).
- This path will not be entirely in S
 - By induction hypothesis, *L*(*a*) is length of shortest path to *a* that is entirely in *S* (Condition (2)).
- Therefore, there is node u on this shortest path that is outside of S, and $u \neq a$.



pp. 684-686

Proof of (1) for S'

- Note that $L(u) \ge L(a)$
 - Because a was chosen to have smallest L-value
- Let $u_0-u_1-\ldots-u-v_1-\ldots-v_t-a$ be a shortest path (of total length c) from u_0 to a.
- By induction hypothesis L(u) is length of shortest path to u with vertices in S, hence length of shortest path, i.e., c, equals L(u)+w(u,v1)+...+w(vt,a).
- Because the edge weights are positive, c > L(u).
- By hypothesis, c < L(a), but this is a contradiction to L(a)≤L(u).
- So *L*(*a*) is length of shortest path
- Proof of (1) for S' is complete.



Proof of (2) for S'

- We need to show: For all $v \oplus S' L(v)$ is length of shortest path from u_0 to v in which all nodes (except for v) are in S'.
- We distinguish two cases.
 - Case 1: shortest path to v does not pass through a.
 - In this case the assertion is true by induction hypothesis.
 - Case 2: shortest path to v passes through a.
 - → Value L(v) is defined as min(old L(v), $L(a)+w(\{a,v\})$).
 - This is $L(a) + w(\{a,v\})$, since path passes through a.
 - Length of path cannot be smaller than this value, since L(a) is length of shortest path to a.
 - Shorter path would mean that *L*(*a*) is not length of shortest path.
 - This finishes proof of (2) for S'. QED

Running Time

- Dijkstra's algorithm uses $O(|V|^2)$ operations.
 - At every iteration of the loop one node is added to the set S, so in total |V| iterations.
 - At iteration *k*, the *L*-value of at most |*V*|-*k* other nodes is updated.
 - Total number of updates is therefore at most

→ $(|V|-1)+(|V|-21)+(|V|-13)+....+1 = O(|V|^2)$

