
Discrete Structures - 2015 1

Trees

Discrete Structures - 2015 2

Trees

• A tree is a connected graph without cycles (acyclic
graph)

Tree Not a tree
(not connected)

Not a tree
(not acyclic)

Discrete Structures - 2015 3

Uniqueness of Paths
• In a tree there is a unique path between any two nodes.

- Existence: path exists since trees are connected by
definition

- Uniqueness: suppose there are two different paths
between two distinct nodes u,v:

- Let s:=min{ i | ai ≠ bi}. Note that s > 0.

- Let r := min { i | i > s and there exists j with ai = bj}. Let m

be such that ar=bm. Note that r ≤ t+1.

- Then

➡ as-1—as—…— ar-1—ar=bm—bm-1—…—bs—bs-1=as-1

- is a cycle, a contradiction.

u=a0—a1—a2—…..—at—at+1=v
u=b0—b1—b2—…..—bk—bk+1=v

Path 1
Path 2

Discrete Structures - 2015 4

Number of Edges

• Let G=(V,E) be a tree. Then |E| = |V|-1.

- Proof 1: Euler’s formula.

➡ The graph is planar (why?).

➡ Number of faces is 1.

➡ 1 - |E|+|V| = 2, so |E| = |V|-1.

Discrete Structures - 2015 5

Number of Edges
• Let G=(V,E) be a tree. Then |E| = |V|-1.

- Proof 2: Strong induction on |V|.
➡ Start: |V|=1, then |E|=0 (since self-loops don’t exist).

➡ Step: Let |V|=n+1, n≥1.Since graph is connected, there is at least one

edge {u,v} in this graph.

➡ Delete that edge.

➡ Gu graph consisting of all vertices reachable from u after deletion of

edge

➡ Gv graph consisting of all vertices reachable from v after deletion of edge

➡ Gu and Gv have disjoint node sets (since otherwise there are two paths

from u to v in the original graph).

➡ Gu and Gv are trees (no cycles since original graph does not have cycles,

and connected by definition).

➡ Let m be number of vertices in Gu, hence n+1-m is number of vertices in

Gv.
➡ By induction hypothesis: number of edges in Gu is m-1, and number of

edges in Gv is (n+1-m)-1=n-m.

➡ Total number of edges in original graph is therefore m-1+n-m+1=n. QED

Edge we deleted

Discrete Structures - 2015 6

Minimality

• Let G=(V,E) be a graph with |E| < |V|-1. Then G is
not connected.

- Suppose that G is connected

- Remove all cycles by removing edges if needed,

without disconnecting the graph.

- New graph G = (V,E’) is acyclic, and |E’|≤|E|<|V|-1.

- It is also connected, since original graph is

connected.

- Hence it is a tree.

- But then |E’|=|V|-1, a contradiction to the result on

the previous page.

Discrete Structures - 2015 7

Dijkstra’s Algorithm
C

A B

D E

GF

u

21

378

4 3

0
7
8

42

2
31 2 5 1

3
64

6

7
34

u u

uu

u

B
u

Discrete Structures - 2015 8

Weighted Graphs

• A weighted connected graph (with positive weights)
is a graph G=(V,E) together with a weight function
w: E/R>0.

• Problem: given a node in the graph, find shortest
paths from that node to all the other nodes.

Discrete Structures - 2015 9

Example 1: Routing Problem

• Nodes given by routers in a network

• An edge between two nodes if there is a direct

connection

• Weight: “round-trip-time”

• Shortest path algorithm determines for every router

the shortest (smallest round-trip time) path to all
other routers

Discrete Structures - 2015 10

Example 2: Navigation System

• Nodes: all possible destinations in a country

• Edge: if there is a road connecting one destination

to another

• Weight: Distance (can be geographic or temporal)

• A navigation system can find for the current

location shortest paths to all other locations

Discrete Structures - 2015 11

Example 3: Air Travel

• Nodes: cities with an airport

• Edge between two nodes: if there is a direct flight

from one city to another

• Weight: length of the flight

• The shortest path algorithm determines from a

given city a sequence of flights to any other city
with the smallest flight time

Discrete Structures - 2015 12

Dijkstra’s Algorithm
• Fix initial node u0.
• Determines for all nodes v in the graph

- The quantity L(v)

➡ At the end of the algorithm this will be the length of

shortest path from u0.
- A node called from(v) which is the predecessor of v in the

shortest path from u0 to v.

• Maintains a set S which at each iteration contains the

nodes for which the shortest path has already been
determined.

• At the beginning of the algorithm

- S = 4

- L(u0) = 0, and L(v) = 3 for all v≠u0

- from(u0) = u0, from(v) = nil for v≠u0

Discrete Structures - 2015 13

Dijkstra’s Algorithm

• As long as S≠V
- Select u;S with L(u) minimal.

- Replace S by SW{u}.

- For all v;S:

➡ Set c(v) := L(u) + w(u,v)

➡ If c(v) < L(v) then replace L(v) by c(v)

๏ and replace from(v) by u.

Discrete Structures - 2015 14

Dijkstra’s Algorithm Example pp. 684

C

A B

D E

GF

u0

33

3

3

3

3 3

0

7

8

4
2

2

3
1 2 5

1

3

64

6

7

3
4

final distance L

Vertex that we know how to reach best

Vertex that has not been visited yet

Current distance

Vertex that has already been visited

S = 4
L(u0) = 0
L(A) = 3
L(B) = 3
L(C) = 3
L(D) = 3
L(E) = 3
L(F) = 3
L(G) = 3

q minimum

nil nil

nil
nil

nil

nilnil

u0

Discrete Structures - 2015 15

Dijkstra’s Algorithm Example pp. 684

C

A B

D E

GF

u0

21

3

7
8

4 3

0

7

8

4
2

2

3
1 2 5

1

3

64

6

7

3
4

final distance L

Vertex that we know how to reach best

Vertex that has not been visited yet

Current distance

Vertex that has already been visited

S = {u0}
L(u0) = 0
L(A) = 1
L(B) = 2
L(C) = 8
L(D) = 7
L(E) = 3
L(F) = 4
L(G) = 3

q minimum

u0 u0

u0
u0

u0

u0

nil

nil

Discrete Structures - 2015 16

Dijkstra’s Algorithm Example pp. 684

C

A B

D E

GF

u0

21

4
7

8

4 3

0

7

8

4
2

2

3
1 2 5

1

3

64

6

7

3
4

final distance L

Vertex that we know how to reach best

Vertex that has not been visited yet

Current distance

Vertex that has already been visited

S = {u0, A}
L(u0) = 0
L(A) = 1
L(B) = 2
L(C) = 8
L(D) = 7
L(E) = 4
L(F) = 4
L(G) = 3

q minimum

u0 u0

u0

u0

u0

A

u0

nil

Discrete Structures - 2015 17

Dijkstra’s Algorithm Example pp. 684

final distance L

Vertex that we know how to reach best

Vertex that has not been visited yet

Current distance

Vertex that has already been visited

S = {u0, A, B}
L(u0) = 0
L(A) = 1
L(B) = 2
L(C) = 8
L(D) = 7
L(E) = 3
L(F) = 4
L(G) = 3

q minimum

C

A B

D E

GF

u0

21

3
7

8

4 3

0

7

8

4
2

2

3
1 2 5

1

3

64

6

7

3
4

u0 u0

u0

u0

u0

B

u0

nil

Discrete Structures - 2015 18

Dijkstra’s Algorithm Example pp. 684

C

A B

D E

GF

u0

21

3
6

8

4 9

0

7

8

4
2

2

3
1 2 5

1

3

64

6

7

3
4

final distance L

Vertex that we know how to reach best

Vertex that has not been visited yet

Current distance

Vertex that has already been visited

S = {u0, A, B, E}
L(u0) = 0
L(A) = 1
L(B) = 2
L(C) = 8
L(D) = 6
L(E) = 3
L(F) = 4
L(G) = 9

q minimum

u0 u0

E
u0

u0

B

E

u0

Discrete Structures - 2015 19

Dijkstra’s Algorithm Example pp. 684

C

A B

D E

GF

u0

21

3
6

6

4 9

0

7

8

4
2

2

3
1 2 5

1

3

64

6

7

3
4

final distance L

Vertex that we know how to reach best

Vertex that has not been visited yet

Current distance

Vertex that has already been visited

S = {u0, A, B, E, F}
L(u0) = 0
L(A) = 1
L(B) = 2
L(C) = 6
L(D) = 6
L(E) = 3
L(F) = 4
L(G) = 9

q minimum

u0 u0

E
F

u0

B

E

u0

Discrete Structures - 2015 20

Dijkstra’s Algorithm Example pp. 684

C

A B

D E

GF

u0

21

3
6

6

4 9

0

7

8

4
2

2

3
1 2 5

1

3

64

6

7

3
4

final distance L

Vertex that we know how to reach best

Vertex that has not been visited yet

Current distance

Vertex that has already been visited

S = {u0, A, B, E, F, D}
L(u0) = 0
L(A) = 1
L(B) = 2
L(C) = 6
L(D) = 6
L(E) = 3
L(F) = 4
L(G) = 9

q minimum

u0 u0

E
F

u0

B

E

u0

Discrete Structures - 2015 21

Dijkstra’s Algorithm Example pp. 684

C

A B

D E

GF

u0

21

3
6

6

4 9

0

7

8

4
2

2

3
1 2 5

1

3

64

6

7

3
4

final distance L

Vertex that we know how to reach best

Vertex that has not been visited yet

Current distance

Vertex that has already been visited

S = {u0, A, B, E, F, D, C}
L(u0) = 0
L(A) = 1
L(B) = 2
L(C) = 6
L(D) = 6
L(E) = 3
L(F) = 4
L(G) = 9 q minimum

u0 u0

E
F

u0

B

E

u0

Discrete Structures - 2015 22

Dijkstra’s Algorithm Example pp. 684

C

A B

D E

GF

u0

21

3
6

6

4 9

0

7

8

4
2

2

3
1 2 5

1

3

64

6

7

3
4

final distance L

Vertex that we know how to reach best

Vertex that has not been visited yet

Current distance

Vertex that has already been visited

S = {u0, A, B, E, F, D, C, G}
L(u0) = 0
L(A) = 1
L(B) = 2
L(C) = 6
L(D) = 6
L(E) = 3
L(F) = 4
L(G) = 9

u0 u0

E
F

u0

B

E

u0

Discrete Structures - 2015 23

Proof of Correctness of Dijkstra’s Algorithm

• We use induction on the |S| to prove the following
two facts:

(1) For all vdS: L(v) is length of shortest path from u0

to v.

(2) For all vfS: L(v) is length of shortest path from u0

to v in which all nodes (except for v) are in S.

• Note that (1) is enough to show correctness:

- At the end of the algorithm, S=V, and hence the L-

values are the lengths of shortest paths

pp. 684-686

Discrete Structures - 2015 24

Induction Start

• Start: S=4

- (1) is true, since there are no vertices in S.

- (2) The only vertex for which L(v) is not infinity is u0

and for this vertex the L-value is correctly set to 0.

pp. 684-686

Discrete Structures - 2015

• Let |S|=k.

• At the (k+1)st iteration, a node a is chosen for

which L(a) is minimal, and it is added to the set S.

• The new set is S’ = S union {a}.

• We need to prove (1) and (2) for S’.

25

Induction Step

S

aS’

pp. 684-686

Discrete Structures - 2015

• Need to show: for all udS': L(u) is length of
shortest path from u0 to u.

• If u≠a, then this is true by induction hypothesis

• Suppose that u=a, i.e., we need to show that L(a) is

length of shortest path from u0 to a.

• If not, then shortest path has some length c < L(a).

• This path will not be entirely in S

- By induction hypothesis, L(a) is length of shortest
path to a that is entirely in S (Condition (2)).

• Therefore, there is node u on this shortest path that
is outside of S, and u≠a.

26

Proof of (1) for S’

a

u

pp. 684-686

Discrete Structures - 2015 27

Proof of (1) for S’

• Note that L(u) ≥ L(a)

- Because a was chosen to have smallest L-value

• Let u0-u1-…-u-v1-…-vt-a be a shortest path (of total
length c) from u0 to a.

• By induction hypothesis L(u) is length of shortest
path to u with vertices in S, hence length of
shortest path, i.e., c, equals L(u)+w(u,v1)+…
+w(vt,a).

• Because the edge weights are positive, c > L(u).

• By hypothesis, c < L(a), but this is a contradiction

to L(a)≤L(u).

• So L(a) is length of shortest path

• Proof of (1) for S’ is complete.

a

u

pp. 684-686

Discrete Structures - 2015 28

Proof of (2) for S’
• We need to show: For all vfS' L(v) is length of

shortest path from u0 to v in which all nodes (except
for v) are in S’.

• We distinguish two cases.

- Case 1: shortest path to v does not pass through a.

➡ In this case the assertion is true by induction hypothesis.

- Case 2: shortest path to v passes through a.

➡ Value L(v) is defined as min(old L(v), L(a)+w({a,v})).

➡ This is L(a) + w({a,v}), since path passes through a.

➡ Length of path cannot be smaller than this value, since

L(a) is length of shortest path to a.

๏ Shorter path would mean that L(a) is not length of

shortest path.

- This finishes proof of (2) for S’. QED

pp. 684-686

Discrete Structures - 2015 29

Running Time

• Dijkstra’s algorithm uses O(|V|2) operations.

- At every iteration of the loop one node is added to

the set S, so in total |V| iterations.

- At iteration k, the L-value of at most |V|-k other

nodes is updated.

- Total number of updates is therefore at most

➡ (|V|-1)+ (|V|-21)+ (|V|-13)+….. +1 = O(|V|2)

