Numerical experiments to design codes on Grassmannians Who? Bertrand ' When? Algo Day - September 30th, 2009 ▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

What is a Grassmanian ?

Definition

Fix integers $d \leq n$. The set of all *d*-dimensional vector subspaces of \mathbb{R}^n is called the Grassmannian and denoted $\mathcal{G}_{n,d}$.

Properties Any element can be represented by a $n \times d$ matrix X, unique up to a left multiplication by $\mathbf{GL}_d(\mathbb{R})$.

It is a *variety* (\rightsquigarrow we can do geometry). It is an *homogeneous space* (\rightsquigarrow under the action of $\mathbf{GL}_n(\mathbb{R})$, it looks everywhere the same).

(ロ) (同) (三) (三) (三) (三) (○) (○)

Where coding theory comes in

The setting

Non coherent case : *H* is not known . Up to noise, the receiver can only "see" the space spanned by u_1 , $u_2 \dots u_d$.

A mathematical problemDefinitionFor $x, x' \in \mathcal{G}_{n,d}$, define the product distance by

 $d_{\Pi}(x, x') = \det(I_n - p_x \circ p'_x)$

Problem

with $p_x = x(x^{\dagger}x)^{-1}x^{\dagger}$ the orthogonal projector on x. Given n, d and N, find $C \subseteq \mathscr{G}_{n,d}$ such that |C| = N $\min_{x,x' \in C} d_{\Pi}(x, x')$ be as big as possible.

(日) (日) (日) (日) (日) (日) (日)

A first attempt

Goal Find numerically good configuration, try to identify them, detect families.

cf. Work by Conway, Hardin & Sloane, *Packing Lines, Planes, etc., Packings in Grassmannian Spaces*, Experimental Mathematics, Vol. 5 (1996), 139-159, for other distances on $\mathcal{G}_{n,d}$ We focus on n = 4, d = 2.

Method

Pick randomly *N* points *C* of $\mathcal{G}_{n,d}$.

Imagine that a "force" separate them if the distance is to small by trying to minimise a potential

$$\mathcal{P}(\mathcal{C}) = \sum_{x,x'\in\mathcal{C}} \frac{1}{\left(d_{\Pi}(x,x') - \alpha\right)^k}$$

(for some parameter α , *k* to adjust).

Try to improve the minimum distance by small moves.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The Hooke - Jeeves algorithm

Start with a configuration C

[Exploration move] Sample the potential function \mathcal{P} successively on each direction (in the tangent space) by a step Δ to find a better configuration.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- [Pattern move] If the exploratory move gives a new configuration, use this direction to find a new configuration and repeat.
- Else, reduce the step Δ .
- Stop when Δ is small.

Numerical result for d_{Π}

How to visualise the configuration (I)

Compute the principal angles,

i.e. find an orthonormal basis (u_1, u_2) of $x \in C$ and an orthonormal basis (u'_1, u'_2) such that (u_1, u_2) has maximal angle in $[0, \frac{\pi}{2}]$. By the way, $d_{\Pi}(x, x') = \sin(u_1, u'_1)^2 \sin(u_2, u'_2)^2$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Are they nice values ? e.g. 90°, 45°, 30° ...

How to visualise the configuration (II)

Use binocular code,

Represent a plane $x = \langle u_1, u_2 \rangle$ of $\mathscr{G}_{4,2}$ by the rotation $\alpha = p_x - p_{x^{\perp}}$ in quaternions.

Property

There exists ℓ , r purely imaginary quaternions such that $\alpha = x \mapsto \overline{\ell}xr$. The pair $\pm(\ell, r)$ is unique up to sign and equal to $\pm(u_1\overline{u_2} - u_2\overline{u_1}, \overline{u_2}u_1 - \overline{u_1}u_2)$. Thus we can visualise any code C as a subset of $S^2 \times S^2$. Given (ℓ, r) and (ℓ', r) in $S^2 \times S^2$, the principal angles more or less are given by

$$\frac{1}{2}\left(\widehat{(\ell,\ell')}\pm\widehat{(r,r')}\right).$$

シック・ 川 ・ 山 ・ 小田 ・ 小田 ・ 小田 ・

Results

N = 3: Principal angles : $\left(\frac{\pi}{3}, \frac{\pi}{3}\right)$ $d_{\min} = \sin^4 \frac{\pi}{3} = \frac{9}{16}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ