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1 Introduction

In this report, I will briefly explain the outcome of my readings about ap-
plication of coding theory in neuronal systems. A great deal of what I read
concerns networks of neuron. These networks are mainly responsible for
learning, pattern recognition and memory in the brain. One class of these
networks is particularly interesting as it governs associative memory, the part
of brain responsible for identifying objects that are resemble those observed
before. For instance, when you read a misspelled word, associative memory
identifies the correct word based on this ”erroneous” input.

Furthermore, I read some classical works on the applications of informa-
tion theory in analyzing neural coding. In addition, I have studied some
recent works on neural error correction methods. While it is not completely
the same error correction issue that we have in mind, it seems promising that
research on this topic has already started.



2 Neuronal Networks

As mentioned in the previous report, neurons are connected to each other
via synapses. A group of neurons that are inter-connected constitute a net-
work. There are two important factors that affect the properties of such
networks: the number of synapses between the neurons and the weights of
these synapses. By appropriately adjusting these two parameters, one can
get different networks performing various tasks.

In cortex and other areas of the brain, one finds three major classes of
interconnections:

e Feed-forward: that is a connection from an earlier processing stage to
a later one.

e Top-down: which is the reverse of the feed-forward connection.

e Recurrent synapses: that is an interconnection within the same process-
ing stage.

2.1 Network Model

To model a network of neurons, we would like to determine the output firing
rate of the neuron according to the firing rate of its pre-synaptic neurons.
To do so, we first model the effects of the input firing rates (u) of the pre-
synaptic neurons on the electrical current to somma (I) and then derive the
output firing rate (v) as a function of I [1].

In order to capture the effect of the input firing rates on I, suppose
we have a neuron with N, input (pre-synaptic) neurons. The firing rate of
these neurons is denoted by the row vector u. Moreover, since all synapses
have weights, we denote the weight of synapses by the vector w. Figure 1
illustrates these notations [1].

Now if a spike from a pre-synaptic neuron arrives at time ¢;, it contributes
to Iy with w, * K4(t), where K is the synaptic kernel (for simplicity, we
consider the same kernel for all synapses). Assuming that the spikes at a
single synapse are independent, the total contribution of the pre-synaptic
neuron to I is [1]:

wy Y K (t—t;) = w, /_t Kt — 7py(7)dr (1)
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Figure 1: Network model [1]

where
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is neural response function of neuron b.

Now since we are interested in doing large-scale simulations and since
each neuron has many input neurons, we can estimate the neural response
function of neuron b (p,) with its firing rate, u(¢), which gives us:

Ny t
I, = Zwb/ Kt — 1pp(7)dr (3)
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We can rewrite the above equation in differential equations format as below:
N
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So far, we have derived I,. Now we need to estimate the output firing
rate, v, as a function of I, i.e. v = F(Iy). Different choices for F(.) are
sigmoid function or a linear-threshold function F(I,) = [I; — 7], where 7 is
the firing threshold.

Hence, the output of the network is governed by the dot product of weight
vector w and the input firing rates, u. In fact, this is a crucial property
of neuronal networks since by adjusting w, they can perform different dy-
namical behaviors which help them to accomplish different tasks including
memorizing, learning and pattern recognition. As we will discuss in the next



section, a special class of these networks helps brain to perform some sort of
classification and error correction.

2.2 Plasticity and Learning

In all types of learnings, we have a network of neuron whose task is to adjust
its weights such that an appropriate relationship is constructed between the
input and output of the network. Here, weights refer to the weight of synapses
in the network (see figure 1). There are two types of learning:

1. Supervised: in supervised learning, we give both input and output
to the network of neurons. Hence, the network knows the answer in
advance. All the network has to do is to choose its synapse weights
such that the probability of correct classification is maximized.

2. Unsupervised: in this case, we do not give the answer to the network
and it has to figure out the input/output relationship all by itself.

In supervised learning, the goal is not only to "remember” the previously
”seen” patterns in the training period, but also be able to classify the new
patterns that are close to the previous ones. This task is accomplished by
appropriately adjusting network weights. This could be done in an itera-
tive manner. In other words, we estimate weights and produce an output
(firing rate) based on this estimation. Since we have the actual output, we
compare the estimated output with the actual one and refine our weights ac-
cording to the comparison results. We repeat this process until satisfactory
approximation of the output is found out.

In [1] some weight evolution methods are proposed such that the network
adjust its weights to correct estimation errors. Since neuronal networks re-
semble the graph of iterative codes, coding theory may be able to propose
better updating rules that are in agreement with experimental results.

2.3 Associative Memory

In conventional memories, like RAM, recall is based on address. However,
in an associative memory, recall is based on content [1]. Associative memory
networks have been suggested as models of various parts of the mammalian
brain in which there is substantial recurrent feedback.



During a recall process, an associative memory performs a pattern match-
ing procedure. During this process, the part of the memory that is the closest
match to distorted activity pattern is identified. This is very similar to de-
coding an erroneous data block in which the closest codeword is found and
returned as the output.

Furthermore, an associative memory performs this task in iterative man-
ner, i.e. it starts from one of the memory patterns and approaches a fixed
point which is the closest match to the input pattern.

The basic conclusions from studies of associative memory models with
threshold linear or saturating units is that large networks can store even
larger numbers of patterns, particularly if the patterns are sparse and if a
few errors in recall can be tolerated [1].

2.4 Representational Learning

Brain is a very good processor. Consider tons of data delivered by the visual
system for example: there are 10 photoreceptors that bombard brain with
data. Yet, brain is not only able to select useful stuff out of this bulk of
data, but also do it in real time. The key trick here is that the way data
is represented vary in different stages of visual data processing system, from
retina to cortex. It becomes more high level. The power of brain comes in
extracting ”features” of natural stimuli and focusing on them.

Representational Learning is a kind of unsupervised learning in which we
would like to analyze data in terms of its underlying features. The output
is our estimate of the features. Since the process is unsupervised, the goal is
to adjust network weights such that the ”statistics” of the produced output
matches closes those of the input.

This approach could be useful in decoding algorithms. For instance, we
could provide the decoder with a training period during which it receives
noisy codewords. After a while, received data start clustering around valid
codewords. Using this clustering effect, we can determine the network struc-
ture that extract this feature and help in decoding. Similar examples in
human brain could be found in [1].



3 Neural Error Correction

In [2] and [3] authors have addressed the issue of neural error correction.
The effects of spike timing precision on error correction process are also
investigated. In their approach, two different spike trains, one normal and
one with jitter in spike timings, are fed into a neuron as input and the output
spike train of the neuron is observed. Then, the outputs are compared for
cases when a single spike is missed in the input. The results show that the
effects of an error depends greatly on the ongoing dynamical behavior of the
neuron: in case of phase locking a high degree of presynaptic spike timing
precision can provide significantly faster error recovery. In contrast, for other
cases, isolated missed spikes do not have a big effect on the neuron’s output.

In brief, the method used in [2] and [3] is as follows: first, we generate a
high-precision spike train H in which the inter-arrival times between spikes
are precisely determined and are equal to each other. Then, an erroneous
version of this spike train, denoted by H., is produced by randomly deleting
one spike (or more, but the missed spikes are separated at least 15s from each
other so that neuron reaches its stationary behavior before next error). This
kind of error is equivalent to complete failure of the synapse to transmit a
spike. Then H and H,. are fed to the neuron and the resulting output spike
trains are compared. The same process is repeated for a low-precision spike
train, L, in which the inter-arrival time of spikes are roughly the same, i.e.
we get H and add a random jitter (according to a uniform distribution in
the interval [-epsilon,epsilon]) to the arrival time of each spike (see the figure
below). Again, an erroneous version L, is also produced and the results are
compared.

To compare the results, the time interval between each output spike in
the erroneous case and the most recent one in the normal case was measure
(showed by gpfg/ L, for high precision and low precision respectively, where j
is the index for the missing spike and g is the index of post-synaptic spikes
with respect to this spike in a time frame of ¢ spikes (c is around 40 spikes
after the occurrence of error). Figure 2 illustrates the notations. The faster
gpfg/ L decreases (as g is increased meaning that time has elapsed), the faster
the error recovery would be.

Figure 3 depicts an example result from [2] in which the perturbation
graph for both high precision and low precision sequences of a phase locking
neuron is shown.

Similar results in [2] and [3] show that even small amounts of jitter can
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Figure 2: Perturbation Graph [2]
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Figure 3: Error recovery of a phase locking neuron [2]
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have a significant effect on error recovery.

While their work seems promising, the term "error correction” is quite
different form what is used in coding theory. In coding theory, error correc-
tion refers to the procedure that return the correct code such that the output
of the system is unaffected (to an extent which the code allows) even if the
input is erroneous. However, in [2] and [3], error correction refers to error
recovery. In other words, the authors have investigated the time it takes after
occurring of an error for the neuron to resume its normal behavior.

Nevertheless, the authors argue that the fact that a neuron may produce
differing discharges in response to the same stimulus at different times is often
given as evidence that neural coding is unreliable. However, the neurons
nonlinear dynamical nature means that such responses do not necessarily
indicate that a neurons computation is not sensitive to the precise timing of
input spikes [3].

Moreover, since neuron is non-linear system, authors believe that Shan-
nons information theory is conceptually incompatible with neural informa-
tion processing. Therefore, it gives lower bounds on matters such as spike
timing precision. However, I think if we can write the state of the neuron
as a function of input as well, then we can model neurons as convolutional
encoders.

4 Information Theory and Neural Coding

In [4], authors review the applications of information theory in neural coding.
Researcher generally use information theory to investigate neural coding in
three ways:

1. They estimate the capacity of the neural channel as a function of firing
rate and compare it to the actual amount of information transmitted
to obtain a measure of coding efficiency.

2. They directly measure the actual amount of information being trans-
mitted in the neural channel without any assumption on a particular
parameter of the stimulus being encoded. Then, the results are com-
pared with those of a specific stimulus-response model. The comparison
could help us in quantitatively evaluating the quality of the model.

3. They have used information theory to determine the limiting precision



of spike timing and that is the minimum time scale beyond which spike
timings convey a meaning and information.

Their overview shows that linear models, in which neurons encode stim-
uli linearly, are essentially good and capture much of the transmitted in-
formation. Moreover, as discussed before, each spike carries information.
Information-theoretic calculations also show that certain neurons use precise
temporal (millisecond) spiking patterns in encoding. Precise spike timing
had previously been identified in the auditory system, where it is important
for sound localization and echolocation, and also more recently elsewhere in
the CNS [1], [4].

A very interesting phenomenon mentioned in [4] is the encoding method
used by mock neurons to represent the intensity of a stimulus. The neuron
responds by generating a firing rate according to a Gaussian distribution
whose mean varies from 20Hz for weak stimulus to 80Hz for strong ones.
This is just like that the neuron uses firing ”levels” (just like voltage levels)
and then these levels are susceptible to additive Gaussian noise. Moreover,
since different levels are used, spikes are used to encode them in the binary
format and this binary sequence is transmitted over the nerve. In other
words, it is like that neuron uses some "levels” as the output and uses spikes
just to encode them in the binary format and the other end should decode
this sequence by using optimal thresholds such that the error probability is
minimized

4.1 Estimating Neuron’s Channel Capacity

In [4], a simple method is proposed for estimating the capacity of a neuron.
To estimate the capacity of a neuron, a constant stimulus is applied to the
neuron a couple of times. The resulting response is recorded each time and
then average to obtain the average response (everything is done in frequency
domain). This average response is subtracted from each response to derive
the noise in each trial. The power spectrum of the noise instances are com-
puted and then average to obtain the average noise power spectrum. Having
the average response and the average noise power spectrum, we can calculate
the estimated SNR as a function of frequency. This SNR is used to determine
the channel capacity of a neuron (see figure 4).

Furthermore, this method could be used to determine the limiting pre-
cision of spike timings, that is the minimum precision beyond which spike
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Figure 4: Estimating the capacity of a neuron [4]
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timings do not convey information. The limiting timing precision could be
determined according the mutual information vs. frequency graph. Usu-
ally, we have a low or bandpass behavior in which information rate goes to
zero beyond a cutoff frequency (see figure 4). This means that the tem-
poral changes beyond the precision dictated by this cutoff frequency is not
encoded by the neuron. The cutoff frequency gives us the minimum timing
precision of the neuron. In other words, The information should increase as
the window size is made smaller until it plateaus. This approach revealed
spike timing resolutions of roughly one millisecond [4].

Moreover, high information rates (per spike) could indicate the impor-
tance of single spikes and hence the existence of temporal codes. These
results highlight the importance of each spike to the neural code. However,
an example of temporal encoding for dynamic stimuli has not yet been found.
On the other hand, temporal encoding for stimuli with very slow dynamics
(usually presented as static stimuli) has been shown both in single neurons
[21] and in neuronal ensembles (see [4] and references therein).
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