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1 Introduction

In this report, I am going to analyze the coded Hopfield network as proposed
by Berrou in [1]. The structure of coded Hopfield networks is discussed in
some details in my last report. I start with the local decoding procedure and
calculate its probability of error. Then, I will consider the global probability
of error doing one iteration of decoding.

2 Local Decoding

The local decoder is in charge of determining which neuron (called fanal in
here) should be active given the input pattern. Hence, an error occurs if
there are more than one fanal active or the wrong fanal is selected. A fanal
is selected by the decoder if its weighted input sum is maximum compared to
other fanals. Denote this weighted sum by z1, . . . , zJ , where J is the number
of fanals. Now assume the all one message was sent, i.e. y1 = . . . = yκ = 1,
then the correct fanal is the first one. In this case, the probability of correct
local decoding, PL

c is:

PL
c =

J∏
j=2

Pr{z1 > zj} (1)

Here we have assumed messages, and hence their corresponding fanals, are
independent of each other. Let Pj = Pr{z1 > zj}. Then:

Pj = Pr{z1 > zj} = Pr{
κ∑
i=1

gi1yi >
κ∑
i=1

gijyi} = Pr{
κ∑
i=1

(gi1 − gij)yi > 0}

(2)
Recall that gij is the weight between the input neuron i, yi, and the fanal j.
Furthermore, these weights are determined according the message bits. In
other words, if fanal j corresponds to message mj, then gij is the ith bit of
mj. Since we have assumed that the first fanal corresponds to the all one
message, then gi1 = 1 for i = {1, . . . , κ}.

At this point, we assume gij is chosen uniformly at random. The validity
of this assumption needs to be checked, specially because of the
facts that it involves the way messages are selected. Nevertheless, if
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we assume the uniform distribution assumption, then

gi1 − gij = 1− gij =

{
0, with probability 1/2
2, with probability 1/2

As a result, we obtain:

(gi1 − gij)yi =


0, w.p. 1/2
2, w.p. (1− ε)/2
−2, w.p. ε/2

(3)

where ε is the probability of error in the BSC channel.
Therefore, the sum

∑κ
i=1(gi1−gij)yi is the sum of κ i.i.d. random variables

with mean µ = 1−2ε and variance σ2 = 2−µ2. Thus, equation (2) simplifies
to:

Pj = Pr{
κ∑
i=1

(gi1 − gij)yi > 0} = Q

(
−µκ√
κ(2− µ2)

)

= Q

(√
κ(2ε− 1)2

2− (2ε− 1)2

)
(4)

In which Q is the standard Q-function. By replacing equation (4) int (1) we
obtain the probability of local decoding error as follows:

PL
e = 1−

J∏
j=2

Pr{z1 > zj} = 1−

[
Q

(√
κ(2ε− 1)2

2− (2ε− 1)2

)]J−1

(5)

3 Global Decoding

In the global decoding process, the decoder tries to determine the most prob-
able pattern based on the result of the local decoders inside neural clusters.
More specifically, the global decoding step is as follows:

v`(nij) =
C∑
i′=1

J∑
j′=1

w(ij)(i′j′)v
`(ni′j′) + γv`−1(nij) (6)
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In the above equation, nij is the jth fanal of the ith cluster, v`(nij) is the
output of nij at round `, C is the number of clusters, w(ij)(i′j′) is the weight
(binary) between nij and ni′j′ and finally γ is a constant (greater than or equal
to 1) which simulates the memory effect of neurons. The weights w(ij)(i′j′)

are determined according the message patterns as explained in the previous
reports.

In each round, the output of all neurons are computed based on equation
(6) and then the fanal in each cluster that has the maximum output value
is set to fire, i.e. its output is made equal to 1 while other neurons inside
the same cluster remain silent. Hence, an error occurs if inside a cluster, a
wrong fanal or more than one fanals fire.

For simplicity, suppose we have four clusters and the transmitted pattern
is the one which involves the first fanal of each cluster, i.e. n11, n21, n31 and
n41. In other words, we have w(ij)(i′j′) = 1 for these neurons. To see how
the global decoder handles errors, let’s assume after the local decoding step,
only one cluster is erroneous. More specifically, suppose in the first cluster,
instead of n11, we had n12 to fire. Therefore, in the next round and based on
equation (6), we have:

v`(n11) = 3

v`(n12) = w(12)(21) + w(12)(31) + w(12)(41) + γ

v`(n21) = 2 + γ + w(12)(21)

v`(n31) = 2 + γ + w(12)(31)

v`(n41) = 2 + γ + w(12)(41)

If we denote the probability of global decoding error in round ` by PG
e (`),

then for a given cluster have:

PG
e (`) = Pr{Correct in round `− 1 and wrong in this round} × PL

c (`− 1)

+ Pr{Wrong in round `− 1 and wrong in this round} × PL
e (`− 1)(7)

If we denote Pr{Correct in round `− 1 and wrong in this round} by P1 and
Pr{Wrong in round `− 1 and wrong in this round} by P2, then P1 corre-
sponds to the case that ni1 fires at round `− 1 but mistakenly made silent in
round `. Likewise, P2 corresponds to the case that ni1 was mistakenly made
silent both in rounds `− 1 and `. As a result and according to the values of
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v(nij) displayed above we will have:

1− P1 = Pr{2 + γ + w(12)(21) > w(12)(2j) + w(31)(2j) + w(41)(2j), ∀ j 6= 1}
× Pr{2 + γ + w(12)(31) > w(12)(3j) + w(21)(3j) + w(41)(3j), ∀ j 6= 1}
× Pr{2 + γ + w(12)(41) > w(12)(4j) + w(21)(4j) + w(31)(4j), ∀ j 6= 1}(8)

P2 = Pr{3 6 w(12)(21) + w(12)(31) + w(12)(41) + γ} (9)

To analyze equations (8) and (9), let’s assume there is a link between any
two fanals of different clusters in the graph with probability q (this is what
called graph density in [1]). Then, since γ > 1 we can write:

Pr{2 + γ + w(12)(21) > w(12)(2j) + w(31)(2j) + w(41)(2j), ∀ j 6= 1}
= Pr{w(12)(21) = 1} × 1 + Pr{w(12)(21) 6= 1} × Pr{2 + γ > w(12)(2j) + w(31)(2j) + w(41)(2j),∀ j 6= 1}

= q + (1− q)
J∏
j=2

Pr{2 + γ > w(12)(2j) + w(31)(2j) + w(41)(2j)}

If we assume γ = 1 as in the original paper, then we will have:

Pr{2 + γ + w(12)(21) > w(12)(2j) + w(31)(2j) + w(41)(2j),∀ j 6= 1} = q + (1− q)
(
1− q3

)J−1

Following a similar approach for all the clusters, we get:

P1 = PL
c (`− 1)

[
1− (q + (1− q)

(
1− q3

)J−1
)
]

(10)

In a similar fashion and by assuming γ = 1, we can write P2 as:

P2 = PL
e (`− 1)Pr{2 6 w(12)(21) + w(12)(31) + w(12)(41)}

= PL
e (`− 1)

[
q3 +

(
3

2

)
(1− q)q2

]
(11)

Replacing equations (10) and (11) into (7), we obtain the global decoding
error probability as follows:

PG
e (`) = PL

c (`− 1)
[
1− (q + (1− q)

(
1− q3

)J−1
)
]

+ PL
e (`− 1)

[
q3 +

(
3

2

)
(1− q)q2

]
(12)

where PL
e (` − 1) = 1 − PL

c (` − 1) is the local decoding error probability in
round (` − 1) and could be obtained from equation (5). However, note
that extending the result of equation (5) to rounds ` > 1 requires
extra care as this equation was derived for the first iteration.
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4 Future Works

So far, I have tried to analyze the behavior of the Berrou’s coded Hopfield
network in a simple scenario, i.e. when we have only 4 clusters out of which
one of them returns error. I have already checked the global decoding prob-
ability of error with MATLAB and it drops quite rapidly. Extending this
approach to the general case would be among my next steps. I will also try
to simulate the performance of the proposed network in terms of probability
of error vs. the size of the graph.

References

[1] V. Gripon, C. Berrou, Sparse Neural Networks with Large Learning
Diversity, Submitted to IEEE Transaction on Neural Networks.

6


