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(0) Definitions:
The Burrows-Wheeler Transform (BWT)

[M. Burrows and D.J. Wheeler, 1994]

Operates on a sequence of size n.

Algorithm:

Do

Produces n cyclic shifts of the original sequence

Sorts these cyclic shifts lexicographically

End Do

Output: The result is the last column of the sorted table and the index position

Of the original sequence in the sorted table.

Complexity:  Ο(n) using the prefix tree constructions



(0) Definitions: The BWT
(0) example: S = ‘aLgOLabO’, X = {a, b, g, L, O},

SBWT = ‘LOaLOabg’

LgOLabOa8
gOLabOaL7
OLabOaLg6
LabOaLgO5
abOaLgOL4
bOaLgOLa3
OaLgOLab2
aLgOLabO1
Step1

OLabOaLg8
OaLgOLab7
LgOLabOa6
LabOaLgO5
gOLabOaL4
bOaLgOLa3
aLgOLabO2
abOaLgOL1
Step2

    g8
    b7
    a6
    O5
     L4
    a3
    O2
    L1
Step3



(0) Definitions: BWT
(1) example: S = 1010, X = {0, 1}

 SBWT = 1001

210105

21014

2103
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21
Step1

25
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21013
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210101
Step2
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04

03

12

NULL1
Step3



(0) Some properties:  BWT

Definition : Giv en a random v ector Gn =  (G1, …, Gn) and any  integer 1≤D≤n, we call

Gn  D-piecewise independent and identically  distributed (D-p.i.i.d.) if there exists some

collection {q1, …, qn} of distributions on an alphabet A such that for any  xn ∈ An there

exists an integer transition pattern (T1, …, TC+1), 1= T1 < T2< …< TD+1= n+1,

such that Pr (Gn = xn ) = Πj = 1, …, D Πi = Tj, …, Tj+1 -1 pj (xi)

Theorem: The output distribution of the BWT is approximately memoryless and piecewise
stationary, in the sense that the normalized divergence between the ourput distribution
and a memoryless and piecewise stationary distribution is small

[Karthik Visweswariah et al., 2000]

 Generalization of the prev ious theorem:  For memeory sources
[Michelle Effors et al, 2002]



(1) Definitions: The Move To Front
transformation (MTF)

It operates on a sequence S of nsize n.

Algorithm:

Do

 Initialize  Y a list that contains all the symbol  in the alphabet

 For  j = 0, …, n-1

       SMTF[j] =  # symbols preceding symbol S[j] in Y

Move symbol symbol S[j]  to the front of Y

End For

End Do

The output is a vector of n integers SMTF.

Complexity: Ο(n*k), where k is the alphabet size



(1) Definitions: The MTF
  (0) example: S = ‘LOaLOagb’, X ={a, b, g, L, O}

SMTF = ‘3 4 2 2 2 2 4 4’

‘3 4 2 2 2 2 4 4’[g a O L b]
‘3 4 2 2 2 2 4’[a O L b g]
‘3 4 2 2 2 2‘[O L a b g]
‘3 4 2 2 2 ‘[L a O b g]
‘3 4 2 2’[a O L b g]
‘3 4 2 ‘[O L a b g]
‘3 4’[L a b g O]
‘3’[a b g L O]
S_MTF  (Output)Y (List to update)



(2) Definitions: Tree sources

Consider:

 A finite ordered alphabet C of size |C|

 Length-N input sequences x = x1, …, xN

  X* the set of finite-length sequences over X

 A tree source is a finite set of sequences called states S ⊂ X* that is

complete and proper and a set of conditional probabilities p(α/S) for

each state s ∈ S and each symbol α ∈ X

  A sequence of symbols xi-1, …xi-L that uniquely determine the

current state s are called the context and L is the context depth for state s.

Let D = maxs∈ S |S|, D is the maximum context depth.

(Example on the  blackboard)



(0) Universal source coding
 (0) Model estimation

Goal:  Find a most efficient piecewise i.i.d.   to attain the Merhav bound.

Idea: Model the source tree structure and estimate its state probability by processing the BWT
output sequence. [Dror B., Yoram B., 2004]

The cost model: The source statistics model M is given by the number of segments

S ‘, the distinct transition points and the model segment distributions

 {Qj  (a): j = 1, …, S  ‘, a ∈ A }. The cost of a model M to represent X 
BWT :

C(XBWT, M) = S ‘ *(log k + (q-1)*b) + Σj Σa   ( Nj(a )log (1/Qj (a)) ) ,

Where j = 1, …, S’ and a ∈ A



(0) Universal source coding
 (1) Model estimation

Algorithm:

Depth-dmax segments are arranged as leaves of a q-ary tree where the root is
the whole sequence (segment at depth 0), and for 0 < d < dmax  , the segment
with Context Sdmax  = (Sd…, S1) has at most q childeren segments with contexts
(a, Sd)

Input: The output of the BWT transform XBWT

Output. Estimation of piecewise i.i.d. (segmentation)

Do

Associate to each depth dmax segment its cost

Partition XBWT  into segments of symbols with common context for a certain
maximum depth dmax

 For d = dmax -1  to d = 0,

Compute the cost associate to the segment Sd  by taking the minimum of the
cost of representing its children segments and  the cost of representing him
directly

End For

End Do



 (0) Linear channel codes in data compression

The Shannon-MacMilan theorem: For memoryless sources, there exist fixed length
n-to-m compression codes of any rate m/n exceeding  the entropy rate (H(S)
+d) with vanishing block error probability as the blocklength goes to infinity

[Shannon, 1948]

Fact:  Generalization of the theorem for general sources.

Problems of almost-noiseless fixed-length data compression and almost
noiseless coding of an additive-noise discrete channel whose noise has
the same statistics as the source are identical.

[G. Caire et al.,  2004]



(0) Foutain codes: LT codes
[M. Luby, 2002]

Definition: Fountain code ensemble with parameters (l, Ω) is a map F2   (k)
→F2 (N) represented by an ∞*l matrix where rows are chosen
independently  with identical distribution Ω. The symbols produced
by a Fountain code are called output symbols, and the l symbols from
which these output symbols are calculated are called input symbols

Encoding process: To generate an encoding symbol, randomly choose a
degree v from distribution Ω. Choose uniformly at randomly v input
symbols as neighbors of the encoding symbol. The value of the
encoding symbol is the exclusive-or of the v neighbors.

Decoding process:   Belief propagation algorithm

Extension:  Raptor code  [A. Shokrollahi, 2003]



(0) Belief propagation(BP) algorithm

With mo,i and mi, o  messages sent from output symbols to their adjacent input symbols
and the message sent from input symbols to their adjacent output symbols. At round
0 of the BP algorithm, the input nodes send to all their adjacent output nodes the
value 0.

Algorithm:
Do

T = tanh(W/2)∏i’  tanh(mi’o  (r) )
mo,i (r) =   ln ((1+T/(1-tT)
mi, o (r +1) = Σo’  mo’,i (r)
Reliability of each input node: R = Σo moi (r)
Take a decision to stop or to continue

While (error)

Where W is the initial log-likelihood ratio at output



(0) Closed loop iterative doping (CLID)
algorithm [G. Caire et al.,  2004]

During the BP-algorithm, the input symbol with the smallest reliability is
marke and its log-likelihood is set to +∞ or -∞ depending on whether its
value is o or 1

Do

Every d iterations

Reliability sorting

Least-reliable symbol doping

End of Do

The BP will converge after d*n iterations !



 (1) Closed loop iterative doping (CLID)
algorithm

Qualities properties:

 The position of doped symbols need not be explicitly communicated to
the decoder

      The algorithm never dopes twice the same symbol

      The algorithm stops in at most d*n iterations

     Good strategy to enforce the convergence of the BP

Bad encoding it self!:  The longer the number of required doped bits, and the

higher the resilience against channel error and /or erasures



(0) Universal source coding
 (0) Coding

 The first approach: LT

Compressor:  LT encoder, LT-decoder (BP )

Decompressor: LT-decoder  incorporating the statistics of the source (BP)

 The second approach: LT-CLID

Compressor:  LT-encoder, LT-decoder (BP and CLID algorithms).

Decompressor: LT-decoder incorporating the statistics of the source ( (BP and
CLID algorithms)



(1) Universal source coding: binary case
 (1) Coding

 The  third  approach: Two-stage LT-codes

Compressor:  The input here is an original  k-data vector X

 Block sorting of sequence X

  Move To Front transform to X:  XBWT

  Modeling (X, XBWT) : estimate marginal probabilities on each segment and empirical
entropy H(S). Output is XM

 An intermediate block Y of length k is calculated from XM

  A vector  Z of m symbols is generated from Y through encoding with an LT  code with
porameters (k, W). A bipartite graph is set up between XM, Y and Z

    The BP algorithm is applied to the graph created in the previous step

  The CLID algorithm is applied during the BP algorithm: A vector W of d symbols

is generated

The output of the compressor is the  sequence ZW

The choice of Ω is crucial; m = k (H(S) +∆)



(2) Universal source coding
 (2) Coding

 The  third approach: Two-stage LT-codes

Decompressor:  The input here is  the compressed sequence C = ZW, the seed for
generating the transformation from XM Y, the seed for LT-encoder from Y to
Z, the segmentation transitions points, the segments distribution, a flag to
indicate if the MTF has been done after BWT

  From Z and W, the sequence of intermediate bits  Y is reconstructed

          using a mirror image of the BP and CLID used at the compressor

  Applying the transformation inverse of generating intermediate symbols
used at the compressor

   An inverse block sorting followed or not by the MTF transform recover the
original data sequence



(3) Universal source coding: binary case
 (0) Experiments



(4) Universal source coding: binary case
 (1) Experiments



(5) Universal source coding
 (0) Model estimation

[H. cai et al., 2004]

 Approaches: Uniform segmentation and adaptive segmentation

 Uniform segmentation:  Partition the BWT output so that each segment
contains an equal number of symbols w(n) from the sequence according to
which we are segmenting. Taking w(n) to grow as  sqrt (n) is a balanced
choice.

Theorem:  For a sequence of length n generated from a stationary ergodic
source, the entropy estimator using uniform segmentation with segment
length W(n) = c. nx  (0 < x <1) converges to the entropy rate with probability
one.

 Adaptive segmentation: uses a two-level hierarchical scheme to first obtain
rough estimates for transition locations, followed by a second pass that
refines the locations of the estimates



(6) Universal source coding (non Binary alphabets)

(0) Multilevel coding
[G. Caire et al. , 2004]

We suppose that an alphabet A is of cardinality 2L and X a i.i.d. source with distribution PX

Let f: A → GF(2)L  such that f(x) = (b1,…,bL) is the binary label corresponding to x.

The mapping f and the source probability PX induce a probability assignment

PB1,…, BL(f(x)) = PX (x), where without loss of generalty, B1 ,…,  Bl are random variables in

 the natural order l = 1,…, L

The conditional probability of Bl = 1 given (B1, …, BL) = (b1, …, bL) is given by

Pl (b1, …, bl-1) = P(bl(X) = 1/b1(X) = b1, …,  bl-1 (X) = bl-1)

               = ( Σx ∈ R: PX (x) )/ ( Σx ∈ S: PX (x) )

with R = {x ∈ A : b1(x) = b1, …,  bl-1 (x) = bl-1 , bl(x) = 1 }, and

S = {x ∈ A : b1(x) = b1, …,  bl-1 (x) = bl-1},

The entropy is H(X) = Σ l= 1, …, l= L H(bl(X) /b1(X) , …,  bl-1 (X) )

 = Σ l= 1, …, l= L Σx ∈ S: PX (x) h(Pl (b1, …,  bl- )

With h(p) = -p log (p) - (1 - p) log (1 - p)



(7) Universal source coding (non Binary alphabets)
(1)   Multilevel coding

Examples:

  L = 1 , A = {0, 1}, X = “0 1 1 0 1 0 1 1 0 1 1”, PX (0) =  4/11, PX (1) = 7/11

    Pl (b0 ) = P (b 1 (X) = 1) = 7/11

    H(X) =  PX (0) h(Pl (b0 ) ) + PX (1) h(Pl (b0 ) )  = h(Pl (b0 ) ) = h(4/11)

 L = 2,  A = {0, 1, 2, 3},  X =  “3 1 0 2 2 3 0 1 2 1”,  f (X):     b0  =  1  1  0  0  0  1  0  1  0  0

                        b1 =  1  0  0 1  1   1  0  0  1  1

PX (0) =0.2  , PX (1) =0.3 ,PX (2) = 0.3 , PX (3) = 0.2

Pl (b0 ) = P (b 1 (X) = 1) = 0.4,

P (b 2 (X) = 1/ b 1(X) = 0) =  4/6, P (b 2 (X) = 1/ b 1(X) = 1) =  2/4

H(X) = H( b0 (x) ) + H( b1 (x)/ b0 (x) )

= h(Pl (b0 ) )  + PX (0) h(P (b 2 (X) = 1/ b 1(X) = 0))+ PX (1) h(P (b 2 (X) = 1/ b 1(X) = 1))

+  PX (2) h(P (b 2 (X) = 1/ b 1(X) = 0)) + PX (3) h( P (b 2 (X) = 1/ b 1(X) = 1))

= h(0.4) + 0.5 h(4/6) + 0.5 h(2/4)



Further work

  Optimization of the decoding part of fountain codes to
improve  the compression and decompression time

 Slepian-Wolf problem with Fountain codes

 Fountain codes for lossy compression
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