Conjunctive Keyword Search

Lorenz Minder

lorenz.minder@epfl.ch

LMA, EPFL

The Problem

- $\blacksquare(V_{i,j})_{1\leq i\leq n,1\leq j\leq m}$: database containing n records. A record has m keyword fields.
- Stored on an *untrusted* server.
- Need to be able to *search*: Find the i^s such that

$$
V_{i,j_1}=k_{j_1}\wedge\cdots\wedge V_{i,j_\ell}=k_{j_\ell}.
$$

The UNIX-password approach

Idea: Use ^a distinct hashing function for each keyword field separately.

- m number of keyword fields
- h_1, \ldots, h_m hashing functions **Encryption**: $(k_1, \ldots, k_m) \mapsto (h_1(k_1), \ldots, h_m(k_m)).$ **Search**:
	- **Query** $k_{j_1} = w_1 \wedge \cdots \wedge k_{j_\ell} = w_\ell$ transmitted as $(\ell, (j_1, \ldots, j_\ell), (h_{j_1} (w_1), \ldots, h_{j_\ell} (w_\ell))).$
	- Server checks for each file if $h_{j_i}(k_i)=h_{j_i}(w_i)$ for $i = 1, \ldots, \ell.$

The server can construct queries itself.

Condition: A search is *secure*, if ^a server can only deduce logic combinations of requested queries.

The (simpler) GSW scheme

Basis: Decisional Diffie Hellman problem.

 $G = \langle \alpha \rangle$, group generated by α . $V_{i,j} \in \mathbb{Z}_q$, where $q = |G|$. $a_i \in \mathbb{Z}_q$, chosen randomly $(i=1,\ldots,n)$ **Encrypt the** *i***th message as**

$$
(\alpha^{a_i}, \alpha^{a_iV_{i,1}}, \ldots, \alpha^{a_iV_{i,m}}).
$$

Queries in the GSW scheme

Query:
$$
V_{i,j_1} = k_1 \wedge \cdots \wedge V_{i,j_\ell} = k_\ell
$$
,

Proto-part of size $O(n)$: $s \in R \mathbb{Z}_q$; transmit

$$
Q:=\big(\alpha^{a_1s},\alpha^{a_2s},\ldots,\alpha^{a_ns}\big).
$$

*Request-*part: Let $C := s + \sum_{w=1}^\ell k_w$ Transmit $\overline{|(C,\{j_1,\ldots,j_\ell\})|}.$

Verify by checking if α^{a_i} ^C · $(\alpha^{\sum_{w=1}^{\ell} V_{i,jw}})^{-1} = \alpha^{a_i s}$.

Security of GSW

Proofs based on *hardness of DH* for G. *Leak*: Server knows $\{j_1, \ldots, j_\ell\}$ for every query.

Idea: Build ^a graph collecting knowledge.

Look at connected components!

Effect: Reduction to UNIX-password scheme.

Effect: Reduction to UNIX-password scheme. Single keyword queries must be avoided.

- Effect: Reduction to UNIX-password scheme.
- Single keyword queries must be avoided.
- The success depends on the distribution of keywords and queries.

- Effect: Reduction to UNIX-password scheme.
- Single keyword queries must be avoided.
- The success depends on the distribution of keywords and queries.
- Simple model: Need $O(n \log n)$ matches.

Larger Example (Simulation)

Database with 100000 entries, search for 2 keywords.

total # of queries 210260 empty returns ⁼ 173677 (82.6011%) useless returns (0 or 1 match)= 192468 (91.5381%) cumulative # query results was 218801 adjusted cumulative # query results was 200010 field 0: largest is 15000, largest contained comp is 9592 field 1: largest is 20000, largest contained comp is 14573 field 2: largest is 10000, largest contained comp is 175 field 3: largest is 16600, largest contained comp is 11668 field 4: largest is 12500, largest contained comp is 1887

Possible remedies

Disallow single keyword queries.

Possible remedies

Disallow single keyword queries. Obfuscation with artificial keyword fields.

Possible remedies

Disallow single keyword queries.

- Obfuscation with artificial keyword fields.
- **Periodically reencrypt, permuting the entries.**

Different approach:

Coding based schemes

RS codes

$$
[n, k]_q
$$
 RS code: $\alpha_1, \ldots, \alpha_n \in \mathbb{F}_q$, encode:

$$
\mathbb{F}_q[X]_{

$$
(f_0, \ldots, f_{k-1}) \mapsto (f(\alpha_1), \ldots, f(\alpha_n)).
$$
$$

We write d the minimum distance, and e the correction bound.

 (y_1, \ldots, y_n) : received erroneous codeword.

Find $g \in \mathbb{F}_q[X]_{< k+e}$ and $h \in \mathbb{F}_q[X]_{< e+1}$ such that $g(\alpha_i) = y_i \cdot h(\alpha_i), \qquad i = 1, \ldots, n.$

 (y_1, \ldots, y_n) : received erroneous codeword.

Find $g \in \mathbb{F}_q[X]_{< k+e}$ and $h \in \mathbb{F}_q[X]_{< e+1}$ such that $g(\alpha_i) = y_i \cdot h(\alpha_i), \qquad i = 1, \ldots, n.$

If the number of errors is small enough, then

 (y_1, \ldots, y_n) : received erroneous codeword.

Find $g \in \mathbb{F}_q[X]_{< k+e}$ and $h \in \mathbb{F}_q[X]_{< e+1}$ such that $g(\alpha_i) = y_i \cdot h(\alpha_i), \qquad i = 1, \ldots, n.$ If the number of errors is small enough, then

 i th position in error $\implies h(\alpha_i)=0.$

 (y_1, \ldots, y_n) : received erroneous codeword.

Find $g \in \mathbb{F}_q[X]_{< k+e}$ and $h \in \mathbb{F}_q[X]_{< e+1}$ such that $g(\alpha_i) = y_i \cdot h(\alpha_i), \qquad i = 1, \ldots, n.$ If the number of errors is small enough, then i th position in error $\implies h(\alpha_i)=0.$ **f** $f = g/h$.

To find g and $h,$ solve the linear system

$$
V_{k+e}g = DV_{e+1}h,
$$

where

$$
V_{\ell}:=\left(\begin{array}{cccc} 1 & \alpha_1 & \cdots & \alpha_1^{\ell-1} \\ & 1 & \alpha_2 & \cdots & \alpha_2^{\ell-1} \\ \vdots & \vdots & \ddots & \vdots \\ & 1 & \alpha_n & \cdots & \alpha_n^{\ell-1} \end{array}\right) \text{ and } D:=\left(\begin{array}{cccc} y_1 & & & \\ & y_2 & & \\ & & \ddots & \\ & & & y_n \end{array}\right).
$$

The kernel of the BW-matrix

So, need to determine (an element in) the kernel of

$$
A:=\left[V_{k+e}\right]-DV_{e+1}].
$$

With the number of errors increasing, the size of the kernel goes down.

The kernel of the BW-matrix

So, need to determine (an element in) the kernel of

$$
A:=\left[V_{k+e}\right]-DV_{e+1}].
$$

- With the number of errors increasing, the size of the kernel goes down.
- If the number of errors goes above the decoding bound, usually the kernel is trivial. Stray solutions are controllable via the choice of e .

$$
W(S):=(s_{I_1,1},s_{I_2,2},\ldots,s_{I_n,n}).
$$

$$
W(S):=(s_{I_1,1},s_{I_2,2},\ldots,s_{I_n,n}).
$$

$$
W(S):=(s_{I_1,1},s_{I_2,2},\ldots,s_{I_n,n}).
$$

$$
W(S):=(s_{I_1,1},s_{I_2,2},\ldots,s_{I_n,n}).
$$

Set resemblance with d_H (cont'd)

S as before, T another such set, $|T| = \ell$. If $|T \cap S| = t$,

$$
\mathbb{E}[\# \text{ zeros in } W(S) - W(T)] = n \left(\frac{t}{m\ell} (1 - q^{-1}) + q^{-1} \right).
$$

So,

Distance of $W(S)-W(T)$ to the zero codeword estimates of the number of matches of S and T.

Set resemblance with d_H (cont'd)

S as before, T another such set, $|T| = \ell$. If $|T \cap S| = t$,

$$
E[\text{# zeros in } W(S) - W(T)] = n \left(\frac{t}{m\ell} (1 - q^{-1}) + q^{-1} \right).
$$

So,

Distance of $W(S)-W(T)$ to the zero codeword estimates of the number of matches of S and T. **Problem:** Cannot get close enough to zero!

Dedicated correct positions

One possibility: Fix ^a few *dedicated correct positions* (dcp).

A dcp is not subject to the random process, where instead the difference will always be zero.

Dedicated correct positions

One possibility: Fix ^a few *dedicated correct positions* (dcp).

- A dcp is not subject to the random process, where instead the difference will always be zero.
- If we want t matches to be good enough, need c dcp, where

$$
c + (n - c)\frac{t}{m\ell} > \frac{n + k}{2}.
$$

Dedicated correct positions

One possibility: Fix ^a few *dedicated correct positions* (dcp).

- A dcp is not subject to the random process, where instead the difference will always be zero.
- If we want t matches to be good enough, need c dcp, where

$$
c + (n - c)\frac{t}{m\ell} > \frac{n + k}{2}.
$$

dcp are an artifact: For some codes, they are not needed.

Generalization of the conjunctive keyword search problem.

No keyword fields.

Generalization of the conjunctive keyword search problem.

- No keyword fields.
- $\mathbf D$ ocument = Encrypted set of keywords $D.$

Generalization of the conjunctive keyword search problem.

- No keyword fields.
- $\mathbf D$ ocument = Encrypted set of keywords $D.$
- Query = Encrypted set of keywords Q .

Generalization of the conjunctive keyword search problem.

- No keyword fields.
- $\mathbf D$ ocument = Encrypted set of keywords $D.$
- \overline{Query} = Encrypted set of keywords Q .
- The server can $\operatorname{checkinter}(D,Q)$, to see if the intersection of D and Q is significant.

A is $n \times n$ random invertible (secret). The jth record has the cryptogram

 $AD_iV_{e+1}S_i,$

where S_j is $(e+1)\times(e+1)$ random invertible, D_j is diagonal, containing the information and dcp, all entries nonzero. (At the *i*th dcp, store 1.)

Query encryption

Encryption of ^a query:

 AD $\tilde{}$ $V_{k+e}T,$

T is $k+e\times k+e$ random invertible (one-time). Construction of \tilde{D} \cup :

Pick a random codeword $(c_1,\ldots,c_n).$

$$
\tilde{D}_{ii} = \begin{cases} c_i^{-1} & \text{for a dep,} \\ (c_i y_i)^{-1} & \text{otherwise.} \end{cases}
$$

Verification

The server counts the number of solutions to

$$
A\tilde{D}V_{k+e}T\tilde{g} = AD_jV_{e+1}S_j\tilde{h}
$$

$$
\iff V_{k+e}T\tilde{g} = \tilde{D}^{-1}D_jV_{e+1}S_j\tilde{h}
$$

to see if the j th document matches.

 $\tilde{}$

Note that D $^{-1}D_j$ is diagonal, with entries equal to c_i on dcp and on matching positions.

 \implies the number of solutions gives an indication on the quality of the match.

Security considerations

Right scramblers haven't been broken in > 20 years.

Security considerations

Right scramblers haven't been broken in > 20 years. Use AG codes, not RS codes.

Security considerations

Right scramblers haven't been broken in > 20 years. Use AG codes, not RS codes. ■ What about left scramblers?

It's a question of ongoing work. Do not know reduction of hard problems from this. It's a question of ongoing work. Do not know reduction of hard problems from this. Unaware of ^a good algorithm breaking it.

It's a question of ongoing work.

- Do not know reduction of hard problems from this.
- Unaware of ^a good algorithm breaking it.
- If the left scrambler is *defeated*:
	- Might possibily result in similar attacks as the one presented against the GSW-scheme.

A query should not reveal *which* keyword is queried.

A query should not reveal *which* keyword is queried. Codes are promising candidates for the CKW problem.

- A query should not reveal *which* keyword is queried. Codes are promising candidates for the CKW problem.
	- The Hamming metric fits well in this context.

- A query should not reveal *which* keyword is queried.
- Codes are promising candidates for the CKW problem.
	- The Hamming metric fits well in this context.
	- Possible extensions: Keyword weighting, fuzzy search.

- A query should not reveal *which* keyword is queried.
- Codes are promising candidates for the CKW problem.
	- The Hamming metric fits well in this context.
	- Possible extensions: Keyword weighting, fuzzy search.
- More theoretical insight on the left scramblers is needed.

- A query should not reveal *which* keyword is queried.
- Codes are promising candidates for the CKW problem.
	- The Hamming metric fits well in this context.
	- Possible extensions: Keyword weighting, fuzzy search.
- More theoretical insight on the left scramblers is needed.
- Complexities are polynomial in the parameters, but currently too large for practical uses.

- A query should not reveal *which* keyword is queried.
- Codes are promising candidates for the CKW problem.
	- The Hamming metric fits well in this context.
	- Possible extensions: Keyword weighting, fuzzy search.
- More theoretical insight on the left scramblers is needed.
- Complexities are polynomial in the parameters, but currently too large for practical uses.
- Search time is $O(N)$ instead of $O(\log(N)).$

References

Golle, P.; Waters, B.; Staddon, J. *Secure conjunctive keyword search over encrypted data*. Proceedings of the Second International Conference on Applied Cryptography and Network Security (ACNS-2004); 2004 June 8-11; Yellow Mountain, China. Heidelberg: Springer-Verlag; 2004; Lecture Notes in Computer Science 3089: 31-45.

