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Why	

an example of real-world application to promote Raptor 
(the best FEC code ever invented) and our lab (ALGO);

TCP is not good for video streaming over long distance 
and it does not scale. UDP alone is not good either 
because video becomes unwatchable at < 0.5% loss;

Raptor allows to have many concurrent sources for the 
same stream 

Amin wants to watch TV (football) while abroad;
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Target scenarios
global internet television: 
watch your favorite tv 
shows from anywhere in 
the world (e.g. slingbox)

‣ scale for thousands of users
➡ avoid tcp and unicast. Use multicast 

instead

➡ protect from packet loss

‣ fast channel change

broadcast live television 
on a controlled network 
(e.g. bluewin-tv)

‣ keep the video watchable in 
lossy network 

‣ optimize bandwidth usage
➡ adapt stream bitrate

➡ make best use of available bandwidth

➡ good quality at any distance from the 
source
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Video Streaming
comparison chart

TCP UDP Raptor

Best video quality for 
given bandwidth Only on short RTT

Only on non lossy 
network (~nowhere) Yes

No glitches Yes Only on non lossy 
network (~nowhere) Yes

Scale using mcast No Yes Yes

Easy multiple source No No Yes
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Our prototype system

input from DVB-T signal from cable TV;

unicast streaming for users @ home and on EPFL WiFi 
(our slingbox);

multicast streaming within EPFL local network (our 
bluewin-tv);

Stream using Raptor protected UDP;

Many channels and users in parallel.
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WHO

Zeno Crivelli

Laurent Fasnacht

Nicolas Heiniger

Damir Laurenzi

Amin Shokrollahi
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Laurent Fasnacht

new server code

prototype client

linux sys optimization

hardware test/selection
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System Overview (1)
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System Overview (2)
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System Overview 
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TCP control
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client
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How - outline

front-end

server concept

few implementation details
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Front-end (proxy)
collect information on available channels from servers

advertise multicast channels

listen for TCP connection from [unicast] clients and sends 
the xml list of channels/options

process client’s requests: check availability, select good 
server, reply to the client and forward the request to the 
designated server

proxy for STUN/activity messages

stop unused streams
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Stream Server Concept

transcode

single MPEG2-TS stream

4 ÷ 8 Mbit/s

188 Bytes/packet 
including 32bit header

bursty

source

add FEC

send
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Stream Server Concept

ffmpeg

MPEG4 or H264

optimized for various bit-rates 
700÷4000 Kbit/s

problem: adds >2 sec of delay

source

add FEC

send

transcode
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transcode

add FEC

Stream Server Concept

systematic Raptor (in progress)

live => small blocks (source ~128 pkts )

live => fixed no. repair symbols

RS for comparison (in progress)

source

send
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add FEC

send

transcode

Stream Server Concept

2÷5 blocks concurrently sent

better if packets are uniformly 
distributed over time

ready packets are stored 
(interleaved) on the same buffer

1320 Bytes/packet (7*188+4)

multicast or [many] unicast

source
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Source: DVB-T feed details

DVB-tuner

TS splitter

unix 
socket

unix 
socket

unix 
socket

unix 
socket

DVB-tuners (2 per server, Linux driver)

fix frequency

up to 8 channels per frequency

channels are composed of various packet 
streams (audio, video, subtitles...) all with 
the same PID.

discard PAT packets

split channels (send to distinct unix socket) 
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Much simpler than version 0
Apache + php

Applescript

EyeTV

Buffer files

Buffer file watcher

Streamer

DVB-
tuner

TS splitter

unix 
socket

unix 
socket

unix 
socket

unix 
socket

vs.

many external programs 
(also closed source)

single channel

useless hard disk usage

huge delay

only kernel and a C 
program of 100 lines

multiple channels

very small cpu usage

no delay
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Server Implementation Details

written in python => pragmatic, nice, didactic

includes an user friendly Python interface to DFRaptor

extensible modular architecture

configured using a simple channel description xml file
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Server Implementation Details

every stream is a chain of 
modules auto-generated 
from a unique program 
description string

the server recycles as 
many modules as possible 
on multiple requests

Dvb,Name=TSR1|RaptorCoder,Ks=64,Kr=32,nRot=5

Dvb,Name=TSR1|FFMpeg,params=-f mpegts -vcodec mpeg4 -s 360x288 -b 500000|
RaptorCoder,Ks=128,Kr=32,nRot=5

program description examples:

DvbChannel

(DvbChannel,Name=TSR1)

FFMpeg

(-f mpegts -vcodec mpeg4

-s 360x288 -b 500000)

UDPStream

RaptorCoder

(Ks=64,Kr=32,nRot=5)
UDPStream

UDPStream UDPStream

Streaming Chains
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WRRR

the buffer

get input from parent

process

store on output buffer

manage access to buffer from 
children

thread

chain elem.

src tcod FEC snd

Server Implementation Details
Server modules

R WRRR

the buffer
22Tuesday, May 13, 2008



The big enemy: delay
small delay = faster startup time

short delay = faster channel change

a lot done but we can do better

Sources of delay:

protocol < 0.5 s (unicast only)

transcoding~1÷2 s (not relevant in channel change)

not using systematic ~ 0.3 s (may be)

player buffer > 3 s
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source block (src)

repair data (rep)

(1) protection period

(2) play delay

Live TV

SRC

Send

PLAY t

(1)

(2)

Live => repair is finite and fixed ( ~ rep < 0.3 * src )

play delay = src + rep [ + extra player buffer ]

send bitrate = src bitrate * (rep+src)/src    client bandwidth

smaller protection period (src) => shorter play delay

larger protection period => less sensible to burst loss

>~
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Recordings (vod) extension

t
Send

SRC

PLAY

0 1 2

0 21

0 1 2

Multiple senders

Protect against any loss

Nicer buffering and block partitioning schemes:

Better video codec (e.g. 2 pass h264)

P2P

Fountain

any Z is ok
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TODO (0)

built-in player (in progress)

➡ embeddable

➡ better control of player buffer

➡ smart block size

➡ drastically reduce delay

send source as soon as we get it (in progress)
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TODO (1) “easy”

GUI client

try alternative buffer in chain element

optimize parameters (block size, protection, block 
interleaving) for various network condition and video 
bit-rates

let the client tune the amount of protection by sending 
repair packets on different channels

built-in h264 transcoder, progressive stream
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TODO (2) “harder”

embedded linux client (prototype set-top-box)

fluendo elisa plugin (=> gstreamer module)

distributed collaborative slingbox
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