
Py-Raptor TV Server

A prototype for

streaming DVB-T television

Laurent Fasnacht, Amin Shokrollahi, Giovanni Cangiani

1Tuesday, May 13, 2008

Outline

★ why

★ what

★ who

★ how

★ TODO

2Tuesday, May 13, 2008

Why	

an example of real-world application to promote Raptor
(the best FEC code ever invented) and our lab (ALGO);

TCP is not good for video streaming over long distance
and it does not scale. UDP alone is not good either
because video becomes unwatchable at < 0.5% loss;

Raptor allows to have many concurrent sources for the
same stream

Amin wants to watch TV (football) while abroad;

3Tuesday, May 13, 2008

Target scenarios
global internet television:
watch your favorite tv
shows from anywhere in
the world (e.g. slingbox)

‣ scale for thousands of users
➡ avoid tcp and unicast. Use multicast

instead

➡ protect from packet loss

‣ fast channel change

broadcast live television
on a controlled network
(e.g. bluewin-tv)

‣ keep the video watchable in
lossy network

‣ optimize bandwidth usage
➡ adapt stream bitrate

➡ make best use of available bandwidth

➡ good quality at any distance from the
source

4Tuesday, May 13, 2008

Video Streaming
comparison chart

TCP UDP Raptor

Best video quality for
given bandwidth Only on short RTT

Only on non lossy
network (~nowhere) Yes

No glitches Yes Only on non lossy
network (~nowhere) Yes

Scale using mcast No Yes Yes

Easy multiple source No No Yes

5Tuesday, May 13, 2008

Our prototype system

input from DVB-T signal from cable TV;

unicast streaming for users @ home and on EPFL WiFi
(our slingbox);

multicast streaming within EPFL local network (our
bluewin-tv);

Stream using Raptor protected UDP;

Many channels and users in parallel.

6Tuesday, May 13, 2008

WHO

Zeno Crivelli

Laurent Fasnacht

Nicolas Heiniger

Damir Laurenzi

Amin Shokrollahi

7Tuesday, May 13, 2008

Laurent Fasnacht

new server code

prototype client

linux sys optimization

hardware test/selection

8Tuesday, May 13, 2008

System Overview (1)

EPFL LAN

srv
dvb

dvb

client

client
srv

dvb

dvb

ftend client

9Tuesday, May 13, 2008

System Overview (2)

EPFL LAN

srv
dvb

dvb

clientclientclientclient

srv
dvb

dvb

ftend

10Tuesday, May 13, 2008

System Overview

EPFL LAN

srv
dvb

dvb

clientclientclientclient

client

client
srv

dvb

dvb

ftend

TCP control

mcast anounce

mcast stream

unicast stream

unicast “STUN”

client

11Tuesday, May 13, 2008

How - outline

front-end

server concept

few implementation details

12Tuesday, May 13, 2008

Front-end (proxy)
collect information on available channels from servers

advertise multicast channels

listen for TCP connection from [unicast] clients and sends
the xml list of channels/options

process client’s requests: check availability, select good
server, reply to the client and forward the request to the
designated server

proxy for STUN/activity messages

stop unused streams

13Tuesday, May 13, 2008

Stream Server Concept

transcode

single MPEG2-TS stream

4 ÷ 8 Mbit/s

188 Bytes/packet
including 32bit header

bursty

source

add FEC

send

14Tuesday, May 13, 2008

Stream Server Concept

ffmpeg

MPEG4 or H264

optimized for various bit-rates
700÷4000 Kbit/s

problem: adds >2 sec of delay

source

add FEC

send

transcode

15Tuesday, May 13, 2008

transcode

add FEC

Stream Server Concept

systematic Raptor (in progress)

live => small blocks (source ~128 pkts)

live => fixed no. repair symbols

RS for comparison (in progress)

source

send

16Tuesday, May 13, 2008

add FEC

send

transcode

Stream Server Concept

2÷5 blocks concurrently sent

better if packets are uniformly
distributed over time

ready packets are stored
(interleaved) on the same buffer

1320 Bytes/packet (7*188+4)

multicast or [many] unicast

source

17Tuesday, May 13, 2008

Source: DVB-T feed details

DVB-tuner

TS splitter

unix
socket

unix
socket

unix
socket

unix
socket

DVB-tuners (2 per server, Linux driver)

fix frequency

up to 8 channels per frequency

channels are composed of various packet
streams (audio, video, subtitles...) all with
the same PID.

discard PAT packets

split channels (send to distinct unix socket)

18Tuesday, May 13, 2008

Much simpler than version 0
Apache + php

Applescript

EyeTV

Buffer files

Buffer file watcher

Streamer

DVB-
tuner

TS splitter

unix
socket

unix
socket

unix
socket

unix
socket

vs.

many external programs
(also closed source)

single channel

useless hard disk usage

huge delay

only kernel and a C
program of 100 lines

multiple channels

very small cpu usage

no delay
19Tuesday, May 13, 2008

Server Implementation Details

written in python => pragmatic, nice, didactic

includes an user friendly Python interface to DFRaptor

extensible modular architecture

configured using a simple channel description xml file

20Tuesday, May 13, 2008

Server Implementation Details

every stream is a chain of
modules auto-generated
from a unique program
description string

the server recycles as
many modules as possible
on multiple requests

Dvb,Name=TSR1|RaptorCoder,Ks=64,Kr=32,nRot=5

Dvb,Name=TSR1|FFMpeg,params=-f mpegts -vcodec mpeg4 -s 360x288 -b 500000|
RaptorCoder,Ks=128,Kr=32,nRot=5

program description examples:

DvbChannel

(DvbChannel,Name=TSR1)

FFMpeg

(-f mpegts -vcodec mpeg4

-s 360x288 -b 500000)

UDPStream

RaptorCoder

(Ks=64,Kr=32,nRot=5)
UDPStream

UDPStream UDPStream

Streaming Chains

21Tuesday, May 13, 2008

WRRR

the buffer

get input from parent

process

store on output buffer

manage access to buffer from
children

thread

chain elem.

src tcod FEC snd

Server Implementation Details
Server modules

R WRRR

the buffer
22Tuesday, May 13, 2008

The big enemy: delay
small delay = faster startup time

short delay = faster channel change

a lot done but we can do better

Sources of delay:

protocol < 0.5 s (unicast only)

transcoding~1÷2 s (not relevant in channel change)

not using systematic ~ 0.3 s (may be)

player buffer > 3 s

23Tuesday, May 13, 2008

source block (src)

repair data (rep)

(1) protection period

(2) play delay

Live TV

SRC

Send

PLAY t

(1)

(2)

Live => repair is finite and fixed (~ rep < 0.3 * src)

play delay = src + rep [+ extra player buffer]

send bitrate = src bitrate * (rep+src)/src client bandwidth

smaller protection period (src) => shorter play delay

larger protection period => less sensible to burst loss

>~

24Tuesday, May 13, 2008

Recordings (vod) extension

t
Send

SRC

PLAY

0 1 2

0 21

0 1 2

Multiple senders

Protect against any loss

Nicer buffering and block partitioning schemes:

Better video codec (e.g. 2 pass h264)

P2P

Fountain

any Z is ok

25Tuesday, May 13, 2008

TODO (0)

built-in player (in progress)

➡ embeddable

➡ better control of player buffer

➡ smart block size

➡ drastically reduce delay

send source as soon as we get it (in progress)

26Tuesday, May 13, 2008

TODO (1) “easy”

GUI client

try alternative buffer in chain element

optimize parameters (block size, protection, block
interleaving) for various network condition and video
bit-rates

let the client tune the amount of protection by sending
repair packets on different channels

built-in h264 transcoder, progressive stream

27Tuesday, May 13, 2008

TODO (2) “harder”

embedded linux client (prototype set-top-box)

fluendo elisa plugin (=> gstreamer module)

distributed collaborative slingbox

28Tuesday, May 13, 2008

