

EXPONENTIAL PATTERN RETRIEVAL CAPACITY WITH NON-BINARY ASSOCIATIVE MEMORY

Joint work with: Raj K. Kumar Amin Shokrollahi

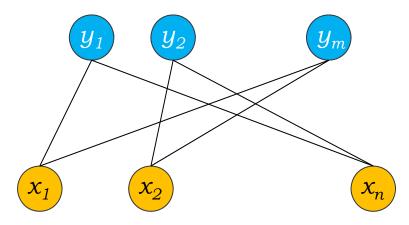
Amir Hesam Salavati

IN THIS TALK...

- The problem
- Our proposed solution
 - Intuition
 - Details
 - Results
- Work in progress
- Conclusions and final remarks

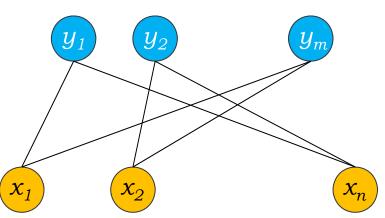
The Problem in a Nutshell

- For a coding theorist:
 - Given: A parity check graph.
 - Required: A "simple" message passing decoding algorithm with restrictions on decoding nodes.



The Problem in a Nutshell

- For a coding theorist:
 - Given: A parity check graph.
 - Required: A "simple" message passing decoding algorithm with restrictions on decoding nodes.



- For a neuroscientist:
 - Given: A hetero-associative neural network.
 - Required: A method to increase the storage capacity.

WHY IS IT INTERESTING?

Associative memory problem: store a set of random binary patterns of length n reliably. Later, return the closest stored pattern in response to a noisy query.

WHY IS IT INTERESTING?

- Introduction
- Hopfield, 1982
- Amit et al., 1985
- McEliece et al. 1987
- Komlos et al., 1993
- Muezzinoglu et al., 2003

- Associative memory problem: store a set of random binary patterns of length n reliably. Later, return the closest stored pattern in response to a noisy query.
- For the past three decades, best neural realizations yield pattern retrieval capacities linear in n.

WHY IS IT INTERESTING?

- Introduction
- Hopfield, 1982
- Amit et al., 1985
- McEliece et al. 1987
- Komlos et al., 1993
- Muezzinoglu et al., 2003

- Associative memory problem: store a set of random binary patterns of length n reliably. Later, return the closest stored pattern in response to a noisy query.
- For the past three decades, best neural realizations yield pattern retrieval capacities linear in n.
- For similar structures, we have exponential "pattern retrieval" capacities in coding theory.

SOLUTION IDEA

- The reason for the gap? Might be the pure randomness requirement.
- What if we only focus on memorizing structured patterns?
 - Better distant properties.

SOLUTION IDEA

• C. Berrou, V. Gripon, 2010

• Salavati, Kumar, Shokrollahi, Gerstner, 2011

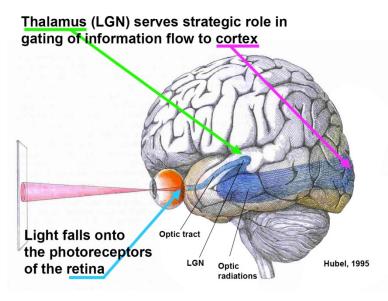
- The reason for the gap? Might be the pure randomness requirement.
- What if we only focus on memorizing structured patterns?
 - Better distant properties.
 - Successful recent attempts to increasing storage capacities using *structured* patterns.

SOLUTION IDEA

• C. Berrou, V. Gripon, 2010

• Salavati, Kumar, Shokrollahi, Gerstner, 2011

- The reason for the gap? Might be the pure randomness requirement.
- What if we only focus on memorizing structured patterns?
 - Better distant properties.
 - Successful recent attempts to increasing storage capacities using structured patterns.
 - It seems biologically relevant as well.

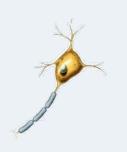


OUR SUGGESTED SOLUTION

Our Suggested Solution

- In coding theoretical terminology:
 - An algorithm with simple decoding nodes.
 - Message passing over non-binary codes with expander parity check graphs and majority voting broadcast nodes.

Our Suggested Solution



- In coding theoretical terminology:
 - An algorithm with simple decoding nodes.
 - Message passing over non-binary codes with expander parity check graphs and majority voting broadcast nodes.
- Rephrased in neuroscience parlance:
 - Only store patterns that satisfy some constraints.
 - Constraints from pre-processing stages in brain or outside world.
 - Constraints will help in dealing with noise.

Model and Method

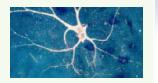
Neural Networks

Neuron: a basic processor in the nervous system.

Neural Networks

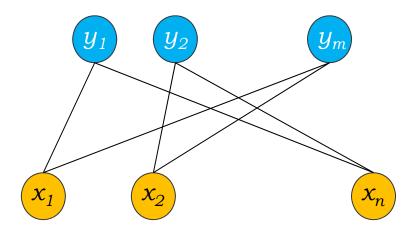
- Neuron: a basic processor in the nervous system.
- Neurons communicate via spikes.

Neural Networks

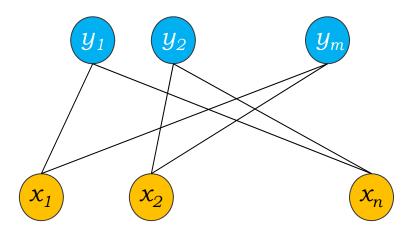


- Neuron: a basic processor in the nervous system.
- Neurons communicate via spikes.
- Neurons can:
 - Compute a linear sum (count the spikes they receive).
 - Transmit a spike train based on this sum.
 - What they transmit goes to all their neighbors (broadcast system).

- A bipartite graph with *n* pattern nodes and *m* constraint nodes.
 - Nodes represent neurons.
 - Link weights are 0 or 1.



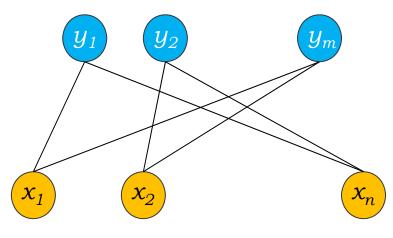
- A bipartite graph with *n* pattern nodes and *m* constraint nodes.
 - Nodes represent neurons.
 - Link weights are 0 or 1.
- Broadcast system.



- A bipartite graph with *n* pattern nodes and *m* constraint nodes.
 - Nodes represent neurons.
 - Link weights are 0 or 1.
- Broadcast system.
- Sparse: constant number of 1's in a row and column.

0

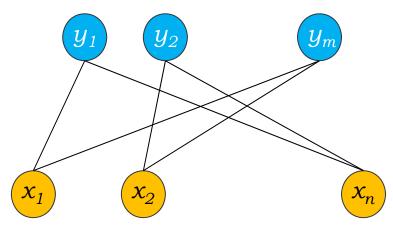
Sparse and expander.



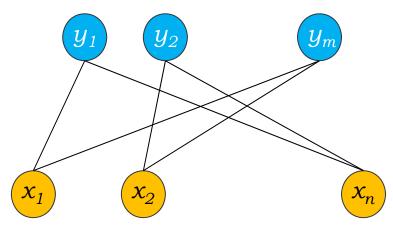
- A bipartite graph with *n* pattern nodes and *m* constraint \bigcirc nodes.
 - Nodes represent neurons. \odot
 - Link weights are 0 or 1. \odot
- Broadcast system. 0
- Sparse: constant number of 1's in a row and column.

0

Sparse and expander.



- A bipartite graph with *n* pattern nodes and *m* constraint nodes.
 - Nodes represent neurons.
 - Link weights are 0 or 1.
- Broadcast system.
- Expander: a graph that *expands* well.
- Sparse and expander.



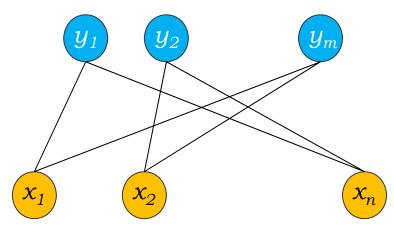
Solution

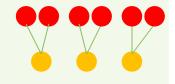
- A bipartite graph with *n* pattern nodes and *m* constraint nodes.
 - Nodes represent neurons.
 - Link weights are 0 or 1.
- Broadcast system.
- Expander: a graph that *expands* well.

Solution

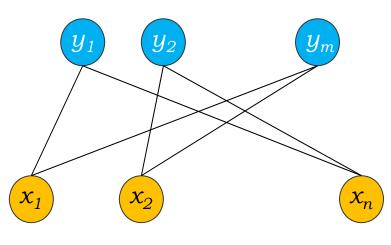
0

Sparse and expander.





- A bipartite graph with *n* pattern nodes and *m* constraint nodes.
 - Nodes represent neurons.
 - Link weights are 0 or 1.
- Broadcast system.
- Sparse and expander.
- Non-binary neurons
 - Output of a node is the firing rate of the neuron.



HOW IT WORKS

- 1. Initialization
- Iterative update of nodes states according to some update rule.
- 2. Iterative update
- 3. Convergence

HOW IT WORKS

- 1. Initialization
- Iterative update of nodes states according to some update rule.
- 2. Iterative update
- Hopefully, we can correct errors in the input.
- 3. Convergence

HOW IT WORKS

Initialization 1.

- Iterative 2. update
- Convergence 3.

- Iterative update of nodes states according to some update rule.
- Hopefully, we can correct errors in the input. 0

- The structure is the same as LDPC parity check 0 matrices except for:
 - Real field operations. \bigcirc
 - Simple broadcast nodes. 0

How IT Works

1. Initialization

0

0

- 2. Iterative update
- 3. Convergence

The structure is the same as LDPC parity check matrices except for:

Hopefully, we can correct errors in the input.

Iterative update of nodes states according to some update rule.

- Real field operations.
- Simple broadcast nodes.
- The structure is similar to a *hetero-associative* memory.
- State of each node = short term firing rate of neurons.

Design Goal

- Given: a set of integer-valued vectors of length n.
- Required:
 - These patterns are stable states of the network.
 - Some noise be tolerated.

Design Goal

- Given: a set of integer-valued vectors of length n.
- Required:
 - These patterns are stable states of the network.
 - Some noise be tolerated.
- Oesign parameters:
 - The connectivity matrix H.
 - The nodes/neurons update rule.

Design Goal

- Given: a set of integer-valued vectors of length n.
- Required:
 - These patterns are stable states of the network.
 - Some noise be tolerated.
- Oesign parameters:
 - The connectivity matrix H.
 - The nodes/neurons update rule.
- For the moment, we assume H is given and only address the neural update rule.

THE ALGORITHM: INTUITION

- We are interested in patterns that satisfy certain number of constraints.
 - Different from the widely used assumption of memorizing any set of purely random patterns.

THE ALGORITHM: INTUITION

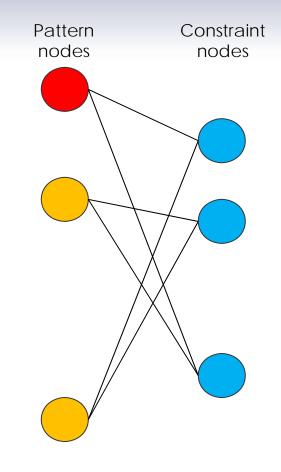
- We are interested in patterns that satisfy certain number of constraints.
 - Different from the widely used assumption of memorizing any set of purely random patterns.
- Onstraint nodes check for such constraints.
- Given a correct pattern x^µ, all constraints are satisfied.
 - Constraint nodes do not fire anything.

THE ALGORITHM: INTUITION

- We are interested in patterns that satisfy certain number of constraints.
 - Different from the widely used assumption of memorizing any set of purely random patterns.
- Onstraint nodes check for such constraints.
- Given a correct pattern x^µ, all constraints are satisfied.
 - Constraint nodes do not fire anything.

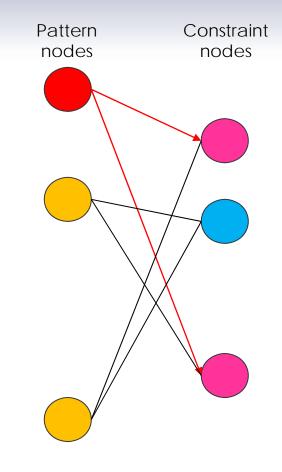
THE ALGORITHM: INTUITION (CONTD.)

If the network is given x^µ + noise:

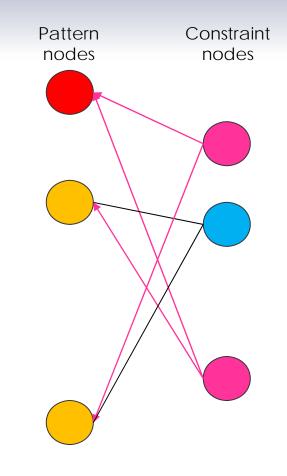


THE ALGORITHM: INTUITION (CONTD.)

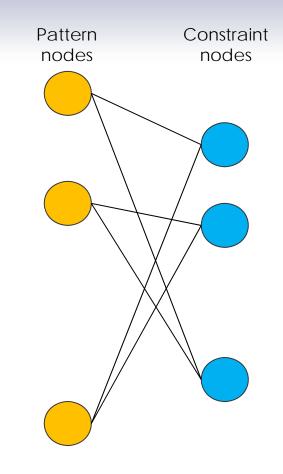
- If the network is given x^µ + noise:
 - 1. Some constraints are violated.



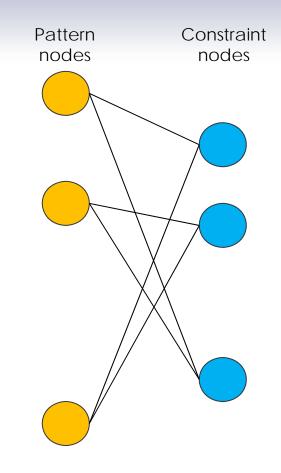
- If the network is given x^µ + noise:
 - Some constraints are violated.
 - 2. They send some feedback to their neighbors.



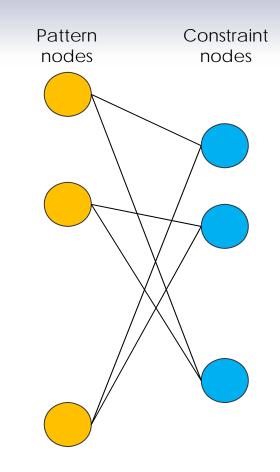
- If the network is given x^µ + noise:
 - Some constraints are violated.
 - 2. They send some feedback to their neighbors.
 - 3. Based on the number of constraint nodes they receive feedback from, pattern nodes update their value.



- If the network is given x^µ + noise:
 - 1. Some constraints are violated.
 - 2. They send some feedback to their neighbors.
 - Based on the number of constraint nodes they receive feedback from, pattern nodes update their value.



- If the network is given x^µ + noise:
 - Some constraints are violated.
 - 2. They send some feedback to their neighbors.
 - Based on the number of constraint nodes they receive feedback from, pattern nodes update their value.



Similar in nature to Sipser & Spielsman's expander codes.

Noise 👌 tolerance

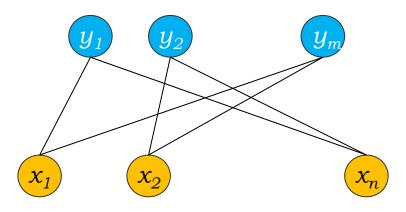
Solution

H: m×n 0/1 matrix.

x: n×1 integer vector.

b: m×1 integer vector.

• The constraint satisfaction problem: Hx=b



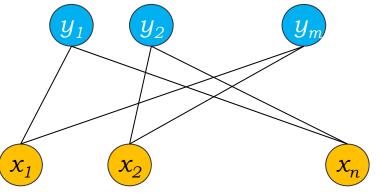
H: m×n 0/1 matrix.

x: n×1 integer vector.

b: m×1 integer vector.

Solution

Firing rate of a number of pattern nodes should always add up to some value.



H: m×n 0/1 matrix.

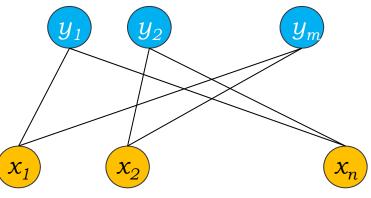
 $\begin{array}{l} \textbf{x:} \ \textbf{n}{\times}1 \ \text{integer} \\ \text{vector.} \end{array}$

b: m×1 integer vector.

 \bigcirc

Firing rate of a number of pattern nodes should always add up to some value.

The constraint satisfaction problem: Hx=b



Constraint nodes:

$$y_i = \begin{cases} 1, & h_i < b_i \\ 0, & h_i = b_i \\ -1, & \text{otherwise} \end{cases}$$

 $h_i = \Sigma H_{ij} x_j$

Solution

H: m×n 0/1 matrix.

 $\begin{array}{l} x: \ n \times 1 \ \text{integer} \\ \text{vector.} \end{array}$

b: m×1 integer vector.

$$h_i = \Sigma H_{ij} x_j$$

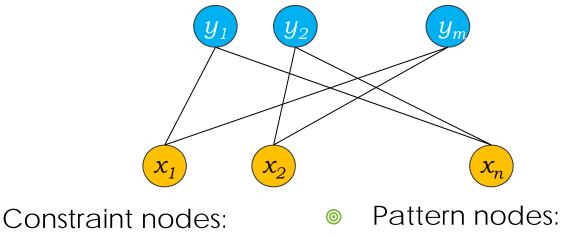
 $d_p = \deg(x_j)$

 \bigcirc

 \bigcirc

Firing rate of a number of pattern nodes should always add up to some value.

The constraint satisfaction problem: Hx=b



$$g_j = \frac{\sum_{i=1}^m H_{ij} y_i}{d_p}$$

$$y_i = \begin{cases} 0, & h_i = b_i \\ -1, & \text{otherwise} \end{cases}$$

1, $h_i < b_i$

H: m×n 0/1 matrix.

 $\begin{array}{l} \textbf{x:} \ \textbf{n}{\times}1 \ \text{integer} \\ \text{vector.} \end{array}$

b: m×1 integer vector.

Solution

$$h_i = \Sigma H_{ij} x_j$$

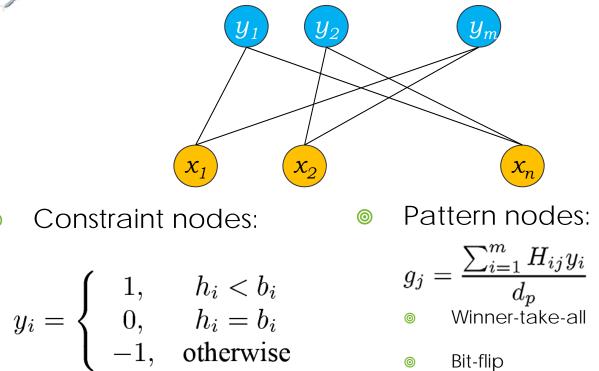
 $d_p = \deg(x_j)$

 \bigcirc

 \bigcirc

Firing rate of a number of pattern nodes should always add up to some value.

The constraint satisfaction problem: Hx=b



THE ALGORITHM: DETAILS (CONTD.)

THE ALGORITHM: DETAILS (CONTD.)

 $\mathbf{H} \mathbf{x}^{\mu} = \mathbf{b}$

 $h_i = \Sigma H_{ij} x_j$

Noise free case: If x^{μ} is given, no constraint node fires.

 $y_i = \begin{cases} 1, & h_i < b_i \\ 0, & h_i = b_i \\ -1, & \text{otherwise} \end{cases}$

Solution

THE ALGORITHM: DETAILS (CONTD.)

 $Hx^{\mu} = b$

 $h_i = \Sigma H_{ij} x_j$

Noise free case: If x^{μ} is given, no constraint \bigcirc node fires.

$$y_i = \begin{cases} 1, & h_i < b_i \\ 0, & h_i = b_i \\ -1, & \text{otherwise} \end{cases}$$

- $g_j = \frac{\sum_{i=1}^m H_{ij} y_i}{d_p}$ If x^{μ} + noise is given: \bigcirc \odot
 - g_i is larger for corrupted nodes.
 - If the graph is expander, the update will reduce \bigcirc noise.
 - Firing rates are saturated to make this happen. \odot

RESULTS

The pattern retrieval capacity:

 $S^n/(d_cS)^m$

- S: the maximum firing rate.
- d_c : deg(constraint nodes)

RESULTS

The pattern retrieval capacity:

 $S^n/(d_c S)^m$

- S: the maximum firing rate.
- d_c : deg(constraint nodes)
- Is exponential if: $\log(S) > m \log(d_c)/(n-m)$

RESULTS

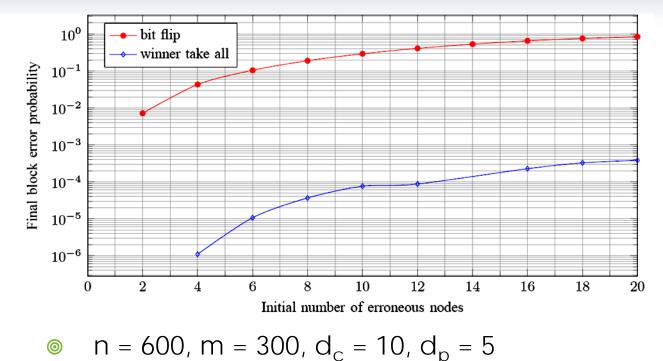
The pattern retrieval capacity:

 $S^n/(d_cS)^m$

- S: the maximum firing rate.
- d_c : deg(constraint nodes)
- Is exponential if: $\log(S) > m \log(d_c)/(n-m)$
- Theorem: If H is an expander graph, the winner-take-all and bit-flipping* algorithms are guaranteed to correct two erroneous nodes.

RESULTS (CONTD.)

For more than two errors:



Noise model: integer values in [-5,5]

Ongoing Work

WHAT HAPPENS TO H?

- So far, H was assumed to be given.
- In order to find H, there are two possible approaches:

WHAT HAPPENS TO H?

- So far, H was assumed to be given.
- In order to find H, there are two possible approaches:
- 1. Infer H from data

WHAT HAPPENS TO H?

- So far, H was assumed to be given.
- In order to find H, there are two possible approaches:

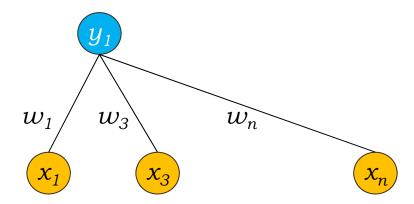
1. Infer H from data

- Back propagation does not work: H is not guaranteed to be an expander.
- Low activity assumption might help us here.
- If data is sparse itself, we might be able to use a similar structure to learn from data

NORK IN PROGRESS

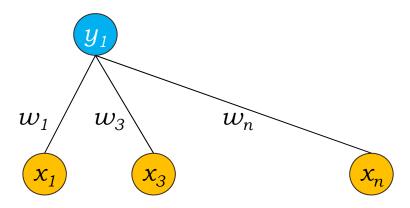
INFERRING H FROM DATA

Consider the neighborhood of constraint node one.



INFERRING H FROM DATA

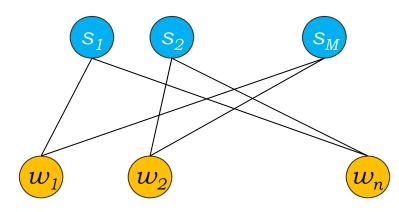
Consider the neighborhood of constraint node one.



- If the weights are correct, y_1 will be zero for all patterns.
- If not, let of s_µ be the output of y_1 for pattern
 µ.

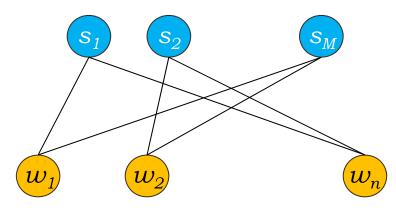
INFERRING H FROM DATA (CONTD.)

- Consider the following structure:
 - Link weights are patterns.



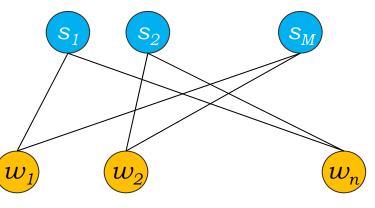
INFERRING H FROM DATA (CONTD.)

- Consider the following structure:
 - Link weights are patterns.
- If w_1, \ldots, w_n are correct, s_1, \ldots, s_M will all be zero.
- If not, we have the same problem as before.



INFERRING H FROM DATA (CONTD.)

- Consider the following structure:
 - Link weights are patterns.
- If w_1, \ldots, w_n are correct, s_1, \ldots, s_M will all be zero.
- If not, we have the same problem as before.
- If we have low activity patterns, this graph is also sparse!
- We might apply the previous algorithm for the learning phase as well!



2. Map a set of random inputs to a higher dimension:

2. Map a set of random inputs to a higher dimension:

- Similar to encoding problem: Find a generator matrix G that HG = 0.
- But G must be sparse as well!

2. Map a set of random inputs to a higher dimension:

- Similar to encoding problem: Find a generator matrix G that HG = 0.
- But G must be sparse as well!

0

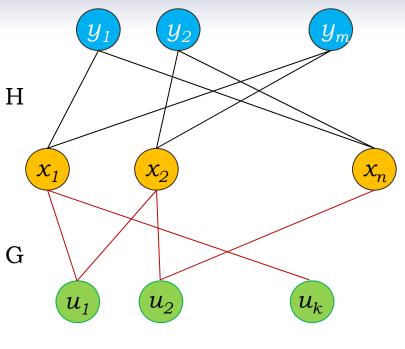
This corresponds to pre-processing stages in the brain.

2. Map a set of random inputs to a higher dimension:

- Similar to encoding problem: Find a generator matrix G that HG = 0.
- But G must be sparse as well!

- This corresponds to pre-processing stages in the brain.
- For the second approach, noise model must be modified.

- \odot Gu^{μ}=x^{μ}
- \odot HG = 0
- G Should be sparse as well.



Random input

Conclusions and Final Remarks

- An associative memory with exponential capacity is proposed.
 - All that is needed is a two-layer neural network which is also an expander.
 - Simple update rules

Conclusions and Final Remarks

- An associative memory with exponential capacity is proposed.
 - All that is needed is a two-layer neural network which is also an expander.
 - Simple update rules
- We are now working on:
 - Inferring H from data or
 - Mapping input to a higher dimension.

THANKS FOR YOUR ATTENTION

Any Questions?

