
Joint work with: Raj K. Kumar Amin Shokrollahi Amir Hesam Salavati

EXPONENTIAL PATTERN RETRIEVAL CAPACITY
WITH NON-BINARY ASSOCIATIVE MEMORY



IN THIS TALK…

� The problem

� Our proposed solution

~ Intuition

~ Details

~ Results

� Work in progress

� Conclusions and final remarks

Introd
uction

D
iscussion

C
onclusion

Solution



THE PROBLEM IN A NUTSHELL

x1 x2 xn

y1 y2 ym

Introd
uction

 

 

 

� For a coding theorist:

~ Given: A parity check graph.

~ Required: A “simple” message passing decoding 
algorithm with restrictions on decoding nodes.



THE PROBLEM IN A NUTSHELL

x1 x2 xn

y1 y2 ym

Introd
uction

� For a neuroscientist:

~ Given: A hetero-associative neural network.

~ Required: A method to increase the storage capacity.

� For a coding theorist:

~ Given: A parity check graph.

~ Required: A “simple” message passing decoding 
algorithm with restrictions on decoding nodes.



WHY IS IT INTERESTING?

� Associative memory problem: store a set 
of random binary patterns of length n
reliably. Later, return the closest stored 
pattern in response to a noisy query. 

 

 

Introd
uction



WHY IS IT INTERESTING?

� Associative memory problem: store a set 
of random binary patterns of length n
reliably. Later, return the closest stored 
pattern in response to a noisy query. 

� For the past three decades, best neural 
realizations yield pattern retrieval 
capacities linear in n.

 

Introd
uction

• Hopfield, 1982

• Amit et al., 1985

• McEliece et al. 1987

• Komlos et al., 1993

• Muezzinoglu et al., 

2003



WHY IS IT INTERESTING?

� Associative memory problem: store a set 
of random binary patterns of length n
reliably. Later, return the closest stored 
pattern in response to a noisy query. 

� For the past three decades, best neural 
realizations yield pattern retrieval 
capacities linear in n.

� For similar structures, we have 
exponential “pattern retrieval” 
capacities in coding theory.

Introd
uction

• Hopfield, 1982

• Amit et al., 1985

• McEliece et al. 1987

• Komlos et al., 1993

• Muezzinoglu et al., 

2003



SOLUTION IDEA

� The reason for the gap? Might be the pure 
randomness requirement.

� What if we only focus on memorizing 
structured patterns?

� Better distant properties. 

 

 

Introd
uction



SOLUTION IDEA

• C. Berrou, V. 
Gripon, 2010

• Salavati, Kumar, 
Shokrollahi, Gerstner, 
2011

� The reason for the gap? Might be the pure 
randomness requirement.

� What if we only focus on memorizing 
structured patterns?

� Better distant properties. 

~ Successful recent 
attempts to increasing 
storage capacities 
using structured
patterns. 

 

Introd
uction



SOLUTION IDEA

• C. Berrou, V. 
Gripon, 2010

• Salavati, Kumar, 
Shokrollahi, Gerstner, 
2011

� The reason for the gap? Might be the pure 
randomness requirement.

� What if we only focus on memorizing 
structured patterns?

� Better distant properties. 

~ Successful recent 
attempts to increasing 
storage capacities 
using structured
patterns. 

~ It seems biologically 
relevant as well.

Introd
uction



OUR SUGGESTED SOLUTION

 

 

 

Introd
uction

 

 

 

 



OUR SUGGESTED SOLUTION

� In coding theoretical terminology:

~ An algorithm with simple decoding nodes.

~ Message passing over non-binary codes 
with expander parity check graphs and 
majority voting broadcast nodes.

Introd
uction

 

 

 

 



OUR SUGGESTED SOLUTION

� In coding theoretical terminology:

~ An algorithm with simple decoding nodes.

~ Message passing over non-binary codes 
with expander parity check graphs and 
majority voting broadcast nodes.

Introd
uction

� Rephrased in neuroscience parlance:

~ Only store patterns that satisfy some 
constraints.

~ Constraints from pre-processing stages in 
brain or outside world.

~ Constraints will help in dealing with noise.



MODEL AND METHOD



NEURAL NETWORKS

� Neuron: a basic processor in the nervous 
system.

 

 

 

 

 

Solution



NEURAL NETWORKS

� Neuron: a basic processor in the nervous 
system.

� Neurons communicate via spikes.
 

 

 

 

Solution



NEURAL NETWORKS

� Neuron: a basic processor in the nervous 
system.

� Neurons communicate via spikes.
� Neurons can:
~ Compute a linear sum (count the spikes 

they receive).

~ Transmit a spike train based on this sum.

~ What they transmit goes to all their 
neighbors (broadcast system).

Solution



MODEL

� A bipartite graph with n pattern nodes and m constraint 
nodes.

~ Nodes represent neurons.

~ Link weights are 0 or 1.

 

Solution

 

 

 x1 x2 xn

y1 y2 ym



MODEL

� A bipartite graph with n pattern nodes and m constraint 
nodes.

~ Nodes represent neurons.

~ Link weights are 0 or 1.

� Broadcast system.

Solution

 

 

 x1 x2 xn

y1 y2 ym



MODEL

� A bipartite graph with n pattern nodes and m constraint 
nodes.

~ Nodes represent neurons.

~ Link weights are 0 or 1.

� Broadcast system.

Solution

� Sparse: 
constant 
number of 
1’s in a 
row and 
column. 

� Sparse and expander.

 

 
x1 x2 xn

y1 y2 ym



MODEL

� A bipartite graph with n pattern nodes and m constraint 
nodes.

~ Nodes represent neurons.

~ Link weights are 0 or 1.

� Broadcast system.

Solution

� Sparse: 
constant 
number of 
1’s in a 
row and 
column. 

� Sparse and expander.

 

 
x1 x2 xn

y1 y2 ym



MODEL

� A bipartite graph with n pattern nodes and m constraint 
nodes.

~ Nodes represent neurons.

~ Link weights are 0 or 1.

� Broadcast system.

Solution

� Expander: 
a graph 
that 
expands
well.

� Sparse and expander.

 

 
x1 x2 xn

y1 y2 ym



MODEL

� A bipartite graph with n pattern nodes and m constraint 
nodes.

~ Nodes represent neurons.

~ Link weights are 0 or 1.

� Broadcast system.

Solution

� Expander: 
a graph 
that 
expands
well.

� Sparse and expander.

 

 
x1 x2 xn

y1 y2 ym



MODEL

� A bipartite graph with n pattern nodes and m constraint 
nodes.

~ Nodes represent neurons.

~ Link weights are 0 or 1.

� Broadcast system.

Solution

� Sparse and expander.

� Non-binary neurons

� Output of a node is 
the firing rate of the 
neuron.

x1 x2 xn

y1 y2 ym



HOW IT WORKS

� Iterative update of nodes states according to some update rule.

 

Solution

 

 

 

 

 

1. Initialization

2. Iterative 
update

3. Convergence



HOW IT WORKS

� Iterative update of nodes states according to some update rule.

� Hopefully, we can correct errors in the input.

Solution

 

 

 

 

 

1. Initialization

2. Iterative 
update

3. Convergence



HOW IT WORKS

� Iterative update of nodes states according to some update rule.

� Hopefully, we can correct errors in the input.

Solution

� The structure is the same as LDPC parity check 
matrices except for:

� Real field operations.

� Simple broadcast nodes.

 

 

1. Initialization

2. Iterative 
update

3. Convergence



HOW IT WORKS

� Iterative update of nodes states according to some update rule.

� Hopefully, we can correct errors in the input.

Solution

� The structure is the same as LDPC parity check 
matrices except for:

� Real field operations.

� Simple broadcast nodes.

� The structure is similar to a hetero-associative 
memory.

� State of each node = short term firing rate of neurons.

1. Initialization

2. Iterative 
update

3. Convergence



DESIGN GOAL

� Given: a set of integer-valued vectors of 
length n.

� Required:

~ These patterns are stable states of the 
network.

~ Some noise be tolerated. 

 

 

 

 

Solution



DESIGN GOAL

� Given: a set of integer-valued vectors of 
length n.

� Required:

~ These patterns are stable states of the 
network.

~ Some noise be tolerated. 

� Design parameters:

~ The connectivity matrix H.

~ The nodes/neurons update rule.

 

Solution



DESIGN GOAL

� Given: a set of integer-valued vectors of 
length n.

� Required:

~ These patterns are stable states of the 
network.

~ Some noise be tolerated. 

� Design parameters:

~ The connectivity matrix H.

~ The nodes/neurons update rule.

� For the moment, we assume H is given and 
only address the neural update rule. 

Solution



THE ALGORITHM: INTUITION

� We are interested in patterns that satisfy certain 
number of constraints. 

~ Different from the widely used assumption of 
memorizing any set of purely random patterns. Solution

 

 

 



THE ALGORITHM: INTUITION

� We are interested in patterns that satisfy certain 
number of constraints. 

~ Different from the widely used assumption of 
memorizing any set of purely random patterns. Solution

� Constraint nodes check for such constraints.

� Given a correct pattern xμ, all constraints are 
satisfied. 

~ Constraint nodes do not fire anything.



THE ALGORITHM: INTUITION

� We are interested in patterns that satisfy certain 
number of constraints. 

~ Different from the widely used assumption of 
memorizing any set of purely random patterns. Solution

� Constraint nodes check for such constraints.

� Given a correct pattern xμ, all constraints are 
satisfied. 

~ Constraint nodes do not fire anything.Stability



THE ALGORITHM: INTUITION
(CONTD.)

� If the network is given xμ + 
noise:

 

 

 

Solution

 

Constraint 
nodes

Pattern 
nodes



THE ALGORITHM: INTUITION
(CONTD.)

� If the network is given xμ + 
noise:

1. Some constraints are 
violated.

 

 

Solution

 

Constraint 
nodes

Pattern 
nodes



THE ALGORITHM: INTUITION
(CONTD.)

� If the network is given xμ + 
noise:

1. Some constraints are 
violated.

2. They send some 
feedback to their 
neighbors.

 

Solution

 

Constraint 
nodes

Pattern 
nodes



THE ALGORITHM: INTUITION
(CONTD.)

� If the network is given xμ + 
noise:

1. Some constraints are 
violated.

2. They send some 
feedback to their 
neighbors.

3. Based on the number of 
constraint nodes they 
receive feedback from, 
pattern nodes update 
their value.

Solution

 

Constraint 
nodes

Pattern 
nodes



THE ALGORITHM: INTUITION
(CONTD.)

� If the network is given xμ + 
noise:

1. Some constraints are 
violated.

2. They send some 
feedback to their 
neighbors.

3. Based on the number of 
constraint nodes they 
receive feedback from, 
pattern nodes update 
their value.

Solution

Noise 
tolerance

 

Constraint 
nodes

Pattern 
nodes



THE ALGORITHM: INTUITION
(CONTD.)

� If the network is given xμ + 
noise:

1. Some constraints are 
violated.

2. They send some 
feedback to their 
neighbors.

3. Based on the number of 
constraint nodes they 
receive feedback from, 
pattern nodes update 
their value.

Solution

Noise 
tolerance

Similar in 
nature to 
Sipser & 
Spielsman’s 
expander 
codes.

Constraint 
nodes

Pattern 
nodes



THE ALGORITHM: DETAILS

� The constraint satisfaction problem: Hx=b

 

H: m×n 0/1 
matrix.

x: n×1 integer 
vector.

b: m×1 integer 
vector.

x1 x2 xn

y1 y2 ymSolution

 

 

 



THE ALGORITHM: DETAILS

� The constraint satisfaction problem: Hx=b

~ Firing rate of a number of pattern nodes 
should always add up to some value.

H: m×n 0/1 
matrix.

x: n×1 integer 
vector.

b: m×1 integer 
vector.

x1 x2 xn

y1 y2 ymSolution

 

 

 



THE ALGORITHM: DETAILS

� The constraint satisfaction problem: Hx=b

~ Firing rate of a number of pattern nodes 
should always add up to some value.

H: m×n 0/1 
matrix.

x: n×1 integer 
vector.

b: m×1 integer 
vector.

� Constraint nodes:

x1 x2 xn

y1 y2 ymSolution

 

 

 

hi = Σ Hij xj



THE ALGORITHM: DETAILS

� The constraint satisfaction problem: Hx=b

~ Firing rate of a number of pattern nodes 
should always add up to some value.

H: m×n 0/1 
matrix.

x: n×1 integer 
vector.

b: m×1 integer 
vector.

� Constraint nodes:

x1 x2 xn

y1 y2 ym

dp = deg(xj)

Solution

� Pattern nodes:

 

 

hi = Σ Hij xj



THE ALGORITHM: DETAILS

� The constraint satisfaction problem: Hx=b

~ Firing rate of a number of pattern nodes 
should always add up to some value.

H: m×n 0/1 
matrix.

x: n×1 integer 
vector.

b: m×1 integer 
vector.

� Constraint nodes:

x1 x2 xn

y1 y2 ym

dp = deg(xj)

Solution

� Pattern nodes:

� Winner-take-all

� Bit-flip

hi = Σ Hij xj



THE ALGORITHM: DETAILS (CONTD.)

 

 

 

 

 

Solution



THE ALGORITHM: DETAILS (CONTD.)

� Noise free case: If xμ is given, no constraint 
node fires.

 

 

 

 

Hxμ = b

hi = Σ Hij xj

Solution



THE ALGORITHM: DETAILS (CONTD.)

� Noise free case: If xμ is given, no constraint 
node fires.

� If xμ + noise is given:

~ gj is larger for corrupted nodes.

~ If the graph is expander, the update will reduce 
noise. 

~ Firing rates are saturated to make this happen.

Hxμ = b

hi = Σ Hij xj

Solution



RESULTS

Solution

� The pattern retrieval capacity:

Sn/(dcS)m

~ S: the maximum firing rate.

~ dc: deg(constraint nodes)

 

 



RESULTS

Solution

� The pattern retrieval capacity:

Sn/(dcS)m

~ S: the maximum firing rate.

~ dc: deg(constraint nodes)

~ Is exponential if: log(S)>m log(dc)/(n-m)

 



RESULTS

Solution

� The pattern retrieval capacity:

Sn/(dcS)m

~ S: the maximum firing rate.

~ dc: deg(constraint nodes)

~ Is exponential if: log(S)>m log(dc)/(n-m)

� Theorem: If H is an expander graph, the 
winner-take-all and bit-flipping*

algorithms are guaranteed to correct 
two erroneous nodes.



RESULTS (CONTD.)

� For more than two errors:

Solution

� n = 600, m = 300, dc = 10, dp = 5

� Noise model: integer values in [-5,5]



ONGOING WORK



WHAT HAPPENS TO H?

� So far, H was assumed to be given.

� In order to find H, there are two possible 
approaches:

 

 

 

 

D
iscussion



WHAT HAPPENS TO H?

� So far, H was assumed to be given.

� In order to find H, there are two possible 
approaches:

1. Infer H from data
 

 

 

D
iscussion



WHAT HAPPENS TO H?

� So far, H was assumed to be given.

� In order to find H, there are two possible 
approaches:

1. Infer H from data
| Back propagation does not work: H is not 

guaranteed to be an expander. 

| Low activity assumption might help us 
here.

| If data is sparse itself, we might be able to 
use a similar structure to learn from data

D
iscussion



INFERRING H FROM DATA

� Consider the neighborhood of constraint 
node one.

 

 

x1 x3 xn

y1

w1 w3 wn

D
iscussion



INFERRING H FROM DATA

� Consider the neighborhood of constraint 
node one.

� If the weights are correct, y1 will be zero for all 
patterns. 

� If not, let of sμ be the output of y1 for pattern 
μ.

x1 x3 xn

y1

w1 w3 wn

D
iscussion



INFERRING H FROM DATA (CONTD.)

� Consider the following structure:

~ Link weights are patterns.

 

 

w1 w2 wn

s1 s2 sM
 

 

D
iscussion



INFERRING H FROM DATA (CONTD.)

� Consider the following structure:

~ Link weights are patterns.

� If w1,…, wn are correct, s1,…,sM will all be zero.

� If not, we have the same problem as before. 

w1 w2 wn

s1 s2 sM
 

 

D
iscussion



INFERRING H FROM DATA (CONTD.)

� Consider the following structure:

~ Link weights are patterns.

� If w1,…, wn are correct, s1,…,sM will all be zero.

� If not, we have the same problem as before. 

w1 w2 wn

s1 s2 sM
� If we have low activity 

patterns, this graph is also 
sparse!

� We might apply the previous 
algorithm for the learning 
phase as well!

D
iscussion



WHAT HAPPENS TO H? (CONTD.)

2. Map a set of random inputs to a higher 
dimension: 

 

 

 

 

D
iscussion



WHAT HAPPENS TO H? (CONTD.)

2. Map a set of random inputs to a higher 
dimension: 

| Similar to encoding problem: Find a 
generator matrix G that HG = 0.

| But G must be sparse as well!

 

 

D
iscussion



WHAT HAPPENS TO H? (CONTD.)

2. Map a set of random inputs to a higher 
dimension: 

| Similar to encoding problem: Find a 
generator matrix G that HG = 0.

| But G must be sparse as well!

| This corresponds to pre-processing stages 
in the brain. 

 

D
iscussion



WHAT HAPPENS TO H? (CONTD.)

2. Map a set of random inputs to a higher 
dimension: 

| Similar to encoding problem: Find a 
generator matrix G that HG = 0.

| But G must be sparse as well!

| This corresponds to pre-processing stages 
in the brain. 

� For the second approach, noise model 
must be modified.

D
iscussion



WHAT HAPPENS TO H? (CONTD.)

� u1,…,uk can 
be purely 
random.

� Guμ=xμ

� HG = 0

� G Should be 
sparse as well.

D
iscussion

x1 x2 xn

y1 y2 ym

u2 uku1

H

G

Random input



CONCLUSIONS AND FINAL
REMARKS

� An associative memory with exponential 
capacity is proposed.

~ All that is needed is a two-layer neural 
network which is also an expander. 

~ Simple update rules

 

 

 C
onclusion



CONCLUSIONS AND FINAL
REMARKS

� An associative memory with exponential 
capacity is proposed.

~ All that is needed is a two-layer neural 
network which is also an expander. 

~ Simple update rules

� We are now working on:

~ Inferring H from data or 

~ Mapping input to a higher dimension.C
onclusion



THANKS FOR YOUR ATTENTION

Any 
Questions?


	Exponential Pattern Retrieval Capacity with Non-Binary Associative Memory
	In This Talk…
	The Problem in a Nutshell
	The Problem in a Nutshell
	Why Is It Interesting?
	Why Is It Interesting?
	Why Is It Interesting?
	Solution Idea
	Solution Idea
	Solution Idea
	Our Suggested Solution
	Our Suggested Solution
	Our Suggested Solution
	Model and Method
	Neural Networks
	Neural Networks
	Neural Networks
	Model
	Model
	Model
	Model
	Model
	Model
	Model
	How It Works
	How It Works
	How It Works
	How It Works
	Design Goal
	Design Goal
	Design Goal
	The Algorithm: Intuition
	The Algorithm: Intuition
	The Algorithm: Intuition
	The Algorithm: Intuition (contd.)
	The Algorithm: Intuition (contd.)
	The Algorithm: Intuition (contd.)
	The Algorithm: Intuition (contd.)
	The Algorithm: Intuition (contd.)
	The Algorithm: Intuition (contd.)
	The Algorithm: Details
	The Algorithm: Details
	The Algorithm: Details
	The Algorithm: Details
	The Algorithm: Details
	The Algorithm: Details (contd.)
	The Algorithm: Details (contd.)
	The Algorithm: Details (contd.)
	Results
	Results
	Results
	Results (Contd.)
	Ongoing Work
	What Happens to H?
	What Happens to H?
	What Happens to H?
	Inferring H from Data
	Inferring H from Data
	Inferring H from Data (Contd.)
	Inferring H from Data (Contd.)
	Inferring H from Data (Contd.)
	What Happens to H? (Contd.)
	What Happens to H? (Contd.)
	What Happens to H? (Contd.)
	What Happens to H? (Contd.)
	What Happens to H? (Contd.)
	Conclusions and Final Remarks
	Conclusions and Final Remarks
	Thanks For Your Attention

