Rank of Random Matrices over Finite Fields

Picture of an instantiation of a random matrix, color coded

> Amin Shokrollahi EPFL

Problem

m, n positive integers \mathcal{D} probability distribution on $\mathbb{F}_q^{m \times n}$ $X \sim \mathcal{D}$

 $\Pr[\operatorname{rk}(X) = m]$ $\Pr[\operatorname{rk}(X) = k]$ $1 \le k \le m$

Example

$\mathcal D$ uniform distribution on $\mathbb F_2^{m\times n}$

Every entry is independently chosen to be 1 with prob 0.5

Dynamic Programming

 $p_i := \Pr[\operatorname{rk}(X) = i]$ Rank profile: $(p_m, p_{m-1}, \dots, p_0)$

Add columns one at a time, evolve rank profile

Dynamic Programming

Dynamic Programming

Possible to get approximative analytic expressions

Sparser Matrices

Uniform distribution is not sparse.

Fix $0 \le p \le 1$. Each entry is independently 1 with prob p.

Fix $0 \le p \le 1$. Each entry is independently nonzero with prob p. If nonzero, then every nonzero element of \mathbb{F}_q appears with equal probability.

Picture goes here

Sparser Matrices

Previous method does not work.

Upper bounds on probability of rank deficiency Method of Bloemer, Karp, Welzl: Union Bound

$$\Pr[\operatorname{rk}(X) < m] = \Pr[\exists 0 \neq a \in \mathbb{F}_q^m : aX = 0]$$
$$\leq \sum_{\mathbb{F}_q^m \ni a \neq 0} \Pr[aX = 0]$$

Sparser Matrices

Biased distribution: I with prob p Bloemer, Karp, Welzl Kernel method

Higher moments: matrices over GF(4)

Examples

Other types of randomness: matrices of fixed row weight fewer rows than columns Example: random multigraph row-weight is 2 Full rank: no cycles Matrix is cycle-free iff all components are trees Erdoes-Renyi model of random graphs Example: random multigraph row-weight is 2 Full rank: no cycles Matrix is cycle-free iff all components are trees Erdoes-Renyi model of random graphs Larger row weights kernel method Klochin's results Larger row weights kernel method Klochin's results

Phase transition: one- or two-sided?

Phase transition: one- or two-sided?

Larger fields? GF(q): prob for square matrices Prob for rectangular matrices? Applications: Erasure coding in the random setting Applications: Erasure coding in the random setting Applications: Erasure coding in the random setting