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Outline

• Codes and information transmission

• Algorithmic issues

• Codes on Graphs



Goal

Transmit information reliably over an unreliable communication channel.

Examples:

• Transmission of data between deep space probes and earth station

where data may be corrupted.

• Transmission of data on computer networks where data can be lost.

• Storage of information on magnetic disks, where transmission is pre-

serving integrity over time and data may be corrupted.



Basic Idea of Coding

Adding redundancy to be able to correct from errors.
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Objectives: Add as little redundancy as possible, correct as many errors

as possible.

Basic problem: How many errors can we maximally correct for a given

amount of redundancy? (Fundamental trade-offs, algorithmic issues)



Basic Parameters

Encoding k bits of information to n bits.

n is the block-length of the code.

The fraction k/n is the rate of the code.



Communication Channels
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Shannon’s Theorem

To every communication channel there is associated a number C, called

the capacity of the channel such that for any rate R ≤ C there exists

a sequence of codes of rate R such that the probability of error of the

Maximum Likelihood Decoding for these codes approaches zero as the

block-length approaches infinity.

The condition R ≤ C is necessary and sufficient.



Examples of Capacity: BEC

Binary Erasure Channel:
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Examples of Capacity: BSC

Binary Symmetric Channel:
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Problems

• Shannon’s theorem is not constructive (how do we find the codes

promised).

• Even if we can find the codes, the algorithm underlying the theorem

(Maximum likelihood decoding) is exponential time, hence impracti-

cal.

• Algebraic codes (Reed-Solomon, Algebraic-Geometric, etc.) are very

far from reaching the capacity.

Problem has been open for almost 50 years. Groundbreaking progress

came from an unexpected turf: Theoretical Computer Science!



Low-Density Parity-Check Codes

Constructed from sparse bipartite graphs.

Left nodes are called message nodes, right nodes are called check nodes.



Construction
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Every binary linear code has such a representation, but not every code

can be represented by a sparse graph.



Encoding/decoding times

Encoding is quadratic time using a naive algorithm, but close to linear

using a more sophisticated algorithm.

Decoding depends on the communication channel. Concentrate on the

erasure channel.



Dual Construction
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Encoding time is proportional to number of edges.



Algorithmic Issues

• Encoding?

– Is linear time for the dual construction

– Is quadratic time (after preprocessing) for the Gallager construc-

tion.

• Decoding?

– Depends on the channel,

– Depends on the fraction of errors.

Will concentrate on the erasure channel to clarify the concepts.



Decoding

Luby-Mitzenmacher-Shokrollahi-Spielman-Stemann, 1997:

Phase 1: Direct recovery
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Decoding

Phase 2: Substitution
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Decoding time is proportional to number of edges in the graph.



Example

(a) (b) (c)

(d) (e) (f)

Complete Recovery



The (inverse) problem

Have: fast decoding algorithms.

Want: design codes that can correct many errors using these algorithms.

Focus on the BEC in the following.



Experiments

Choose regular graphs.

An (d, k)-regular graph has rate at least 1− d/k. Can correct at most an
d/k-fraction of erasures.

Choose a random (d, k)-graph.

p0 := maximum fraction of erasures the algorithm can correct.

d k d/k p0

3 6 0.5 0.429
4 8 0.5 0.383
5 10 0.5 0.341
3 9 0.33 0.282
4 12 0.33 0.2572

What are these numbers?



Theorem

(Luby, Mitzenmacher, Shokrollahi, Spielman, Stemann 1997) A random
(d, k)-graph allows correction of a p0-fraction of erasures (with high prob-
ability) if and only if

p0 · (1− (1− x)k−1)d−1 < x für x ∈ (0, p0).

d = 3, k = 6: f(x) = p0(1− (1− x)5)2 − x

p0 = 0.435
p0 = 0.429
p0 = 0.41



Analysis: (3,6)-Graph

Expand neighborhood of message node



Analysis: (3,6)-Graph

pi = Probability that a message node is not corrected after the i-th

iteration.

Check

Message p

Check

Message pi+1

i

pi+1 = p0(1− (1− pi)5)2<pi.



Analysis: (3,6)-Graph

Rigorous argument:

• Neighborhood is a tree with high probability.

• Above argument works fine for the expected fraction of erasures after

the i-th iteration.

Actual value is concentrated around the expectation p`: Edge expo-

sure martingale, Azuma’s Inequality.



The General Case

λi and ρi fraction of edges of degree i on the left and the right hand side

of the graph.

λ(x) :=
∑
i λix

i−1, ρ(x) :=
∑
i ρix

i−1.

Condition for successful decoding given a loss fraction p0:

p0λ (1− ρ(1− x)) < x

for all x ∈ (0, p0).



Achieving Capacity: Tornado Codes

Want to design codes which can asymptotically correct an optimal frac-

tion of erasures, i.e., achieve capacity of the erasure channel.

Design λ and ρ such that

p0λ(1− ρ(1− x)) < x

for all x ∈ (0, p0), and p0 arbitrarily close to

1−R =

∫ 1

0
ρ(x)dx∫ 1

0
λ(x)dx

.



Tornado Codes

Choose design parameter D:

λ(x) :=
1

H(D)

(
x+

x2

2
+ · · ·+

xD

D

)

ρ(x) := exp (µ(x− 1)),

H(D) = 1 + 1/2 + · · ·+ 1/D, µ = H(D)(1−R)/ (1− 1/(D + 1)).

p0λ(1− ρ(1− x)) = p0λ(1− exp(−µx)) < −
p0

H(D)
ln(exp(−µx))

= µ
p0

H(D)
x < x.

This is true for p0 < H(D)/µ = (1−R)(1− 1/(D + 1)).



Tornado Codes: Efficiency

Need k · (1 + ε) entries of a codeword to recover the codeword.

Per-bit running time of encoding is O(log(1/ε)).

Per-bit running time of the decoder is O(log(1/ε)/R).

It can be shown that this is essentially optimal for the class of codes

considered.



Theoretical Applications

• Capacity achieving sequences on the erasure channel

• Relationship to random graphs

• Codes on other channels

• Algebraic constructions

• Analysis of finite length codes

• Cryptography

• . . .



Practical Applications: The Internet

Want to transport data from a transmitter to one or more receivers over
IP reliably.

Current solutions have limitations when amount of data is large and

• Number of receivers is large (point-multipoint transmission)

– Video on Demand, new versions of computer games

• Or, network suffers from unpredictable and transient losses

– Satellite, wireless

• Or, connection from transmitter to receiver goes over many hops

– Software company with development sites around the globe



Cost Measures and Scalability

Cost measures:

• Number of servers

• Outgoing server bandwidth

• Bandwidth utilization

A solution is called scalable if its cost does not increase with the number

of recipients. (Server-scalable, bandwidth-scalable.)

Are interested in scalable and reliable solutions which maximize band-

width utilization.



Current Solutions

Current solutions are either not scalable (e.g., TCP/IP), or not reliable

(UDP Unicast, UDP Multicast).

Want best of both worlds!



Channel Model

On a computer network data is sent as packets.

Each packet has an identifier which identifies the entity it is coming from

and its position within that entity.

Each packet has a CRC checksum to check its integrity.

Corrupted packets can be regarded as lost.

Can concentrate on the erasure channel as a model for transmitting

packets.



Solution: Codes

Want to have the advantages of Multicast and TCP/IP, but not their

disadvantages.

Encode the original data and send encoded version across the network.

Reconstruction is possible if not too many packets were lost.

Reliability → Coding.

Scalability → Multicast (or unicast).



A Solution

Broadcast
Server



A Solution

Client joins multicast group until enough of the encoding has been received,

and then decodes to obtain original data.
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Shortcomings of Traditional Codes

Protocols involving erasure correcting codes are excellent candidates for

replacing TCP/IP in certain applications. However, traditional codes

have many disadvantages:

• One has to have a good guess on the loss rate of the clients; this is

very difficult in scenarios like mobile wireless.

• Many applications require coordination between senders and receivers

to avoid reception of duplicate packets.

• Many applications require codes of very small rate. But, the running

time of fast codes like Tornado codes is proportional to the block-

length, rather than the length of the original content.



What we Really Want

To design a completely receiver driven and scalable system one needs
codes

• That adapt themselves to the individual loss rates of the clients;
clients with more loss need longer to recover the content;

• For which the decoding time depends only on the length of the con-
tent;

• That achieve capacity of the erasure channel between server and any
of the clients;

• That have fast encoding and decoding algorithms.



Beyond Tornado: LT Codes

Michael Luby has invented a class of codes that achieves all these goals.

Input Symbols

Output Symbols

Their per-bit complexity of encoding/decoding is log(k). (This is opti-

mal.)

If a receiver has loss rate p, then the code corresponding to that receiver

has rate 1− p− c/
√
k.



Relationship to Random Graphs

Consider codes in which all message nodes have degree 2. These are

graphs on the set of check nodes.
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Choose neighbors of message nodes randomly (Poisson distribution).

This yields a random graph on the set of check nodes.

λ(x) = x, ρ(x) = ea(x−1), a is average degree.

λ(1− ρ(1− x)) < x, i.e., 1− x− e−ax < 0.



Relationship to Random Graphs

Largest solution of 1−x− e−ax = 0 in the interval (0,1) gives fraction of
the largest component of the graph.

There is a giant component if a > 1. The decoder will not be able to
correct all erasures iff a > 1, i.e., iff there is a giant component.
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Relationship to Random Graphs

Above relationship can be put into a general framework, which works

even when not all the message nodes are of degree 2.

The Tornado distribution can be obtained from this observation using a

“self-similarity” assumption.

This connection also yields linear time encoders.


