A Theory of Coding for Chipto-Chip Communication

Amin Shokrollahi

and the engineering team of Kandou

The Problem

Chip-to-Chip Communication

Abundant....

KANDOU BUS

Noise

Noise scales badly with frequency of transmission: Example: -40dB at frequency *f*, -90dB at 2*f*

Chordal Codes

Brief intro into theory

Chordal Codes

A (n, N)-chordal code (CC) is

- A finite subset $\mathcal{C} \subset [-1, +1]^n$, $|\mathcal{C}| = N$; Codewords (signals)
- A finite subset $\Lambda \subset \mathbb{R}^n \setminus \{0\}$; Comparators (central hyperplanes)
- And certain constraints. Operational constraints

Parameters

A (n, N)-chordal code (CC) is

- A finite subset $\mathcal{C} \subset [-1, +1]^n$, $|\mathcal{C}| = N$;
- A finite subset $\Lambda \subset \mathbb{R}^n \setminus \{0\};$
- And certain constraints.

 (\mathcal{C}, Λ) is (n, N)-CC

- n is called the number of wires
- $\log_2(N)/n$ is the *rate* or the *pin-efficiency* #bits per wires
- $|\Lambda|$ is called the *detection complexity*.

ANDOU BUS

 (\mathcal{C},Λ) is $(n,N)\text{-}\mathrm{CC}$

- n is called the number of wires
- $\bullet \ \log_2(N)/n$ is the $\mathit{rate}\ \mathrm{or}\ \mathrm{the}\ \mathit{pin-efficiency}\ {\tt \#bits}\ {\tt per}\ {\tt wires}$
- $|\Lambda|$ is called the *detection complexity*.

Transmits one bit per *a pair* of wires

$$\begin{aligned} \mathcal{C} &= \{(1,-1),(-1,1)\} \\ \Lambda &= \{(1,-1)\} \end{aligned} \tag{2,2)-CC} \\ \text{Rate} &= 1/2 \end{aligned}$$

Electronics: Comparators

Efficient, High-Speed Electronic Circuits

Geometry: Central Hyperplanes

- A MIC corresponds to a central hyperplane
- Each hyperplane subdivides space into two halves
- Each codeword should ideally lie on one side or another
- Not all codewords should lie on the same side

Transmission Chain

Chordal Codes

A (n, N)-chordal code (CC) is

- A finite subset $\mathcal{C} \subset [-1, +1]^n$, $|\mathcal{C}| = N$;
- A finite subset $\Lambda \subset \mathbb{R}^n \setminus \{0\};$

 $- \forall \lambda \in \Lambda$: $||\lambda||_1 = 2$. No gain

• $\forall c, c' \in \mathcal{C}, c \neq c', \exists \lambda \in \Lambda: \operatorname{sgn}(\langle \lambda, c \rangle \cdot \langle \lambda, c' \rangle) = -1.$ Unique MIC signature Distinguishability

Campinas - September 2016

First Bound

Given n and $|\Lambda|$, determine the largest N. What is the largest rate for a given detection complexity?

$$N \le \sum_{i=0}^{n-1} \binom{|\Lambda|}{i} (1 + (-1)^{n-1-i})$$

Zaslavsky's Formula for the max number of chambers of an arrangement of central hyperplanes

Unbounded Rate

$|\Lambda| = cn \implies \text{Rate} \sim 1 + \log_2(c)$

But:

- Asymptotic results are not really relevant
- Didn't take into account noise

Small Chambers Susceptibility to Noise

Chordal Codes

- A (n, N)-chordal code (CC) is
 - A finite subset $\mathcal{C} \subset [-1, +1]^n$, $|\mathcal{C}| = N$;
 - A finite subset $\Lambda \subset \mathbb{R}^n \setminus \{0\};$

 $- \forall \lambda \in \Lambda$: $||\lambda||_1 = 2.$

• $\forall c, c' \in \mathcal{C}, c \neq c', \exists \lambda \in \Lambda: \operatorname{sgn}(\langle \lambda, c \rangle \cdot \langle \lambda, c' \rangle) = -1.$

 $H := \{ (x_1, \dots, x_n) \in \mathbb{R}^n \mid \sum_i x_i = 0 \}.$

A (n, N, I)-chordal code (CC) is

- A finite subset $\mathcal{C} \subset [-1,+1]^n \cap H$, $|\mathcal{C}| = N$.
- A finite subset $\Lambda \subset H$, Common mode resilience

 $- \forall \lambda \in \Lambda$: $||\lambda||_1 = 2.$

Such that

• $\forall c, c' \in \mathcal{C}, c \neq c', \exists \lambda \in \Lambda: \operatorname{sgn}(\langle \lambda, c \rangle \cdot \langle \lambda, c' \rangle) = -1.$ • $\forall \lambda \in \Lambda, c, c' \in \mathcal{C}: \frac{|\langle \lambda, c \rangle|}{|\langle \lambda, c' \rangle|} \leq I.$ ISI resilience

Parameters

 $H := \{ (x_1, \dots, x_n) \in \mathbb{R}^n \mid \sum_i x_i = 0 \}.$ A (n, N, I)-chordal code (CC) is • A subset $\mathcal{C} \in [-1, +1]^n \cap H, |\mathcal{C}| = N.$ • A subset $\Lambda \in H \cap L_2, \forall \lambda \in \Lambda: ||\lambda||_2 = 2.$ Such that • $\forall c, c' \in \mathcal{C}, c \neq c', \exists \lambda \in \Lambda: \operatorname{sgn}(\langle \lambda, c \rangle \cdot \langle \lambda, c' \rangle) = -1.$ • $\forall \lambda \in \Lambda, c, c' \in \mathcal{C}: \frac{|\langle \lambda, c \rangle|}{|\langle \lambda, c' \rangle|} \leq I.$

(\mathcal{C}, Λ) is (n, N, I)-CC.

- n is called the number of wires
- $\bullet \ \log_2(N)/n$ is the rate or the pin-efficiency "bits per wires"
- $|\Lambda|$ is called the *detection complexity*. The fewer comparators the better (for power/area)
- *I* is called the *ISI-ratio* (if equality holds for some λ, c, c'). Small *I* means better resilience to ISI

Fundamental Problem

Given n and N, determine smallest I such that there is a (n, N, I)-CC. Alternatively

Given n and I, determine largest N such that there is a (n, N, I)-CC.

Examples Differential Signaling

$$\mathcal{C} = \{(1, -1), (-1, 1)\}$$
$$\Lambda = \{(1, -1)\}$$

Same distance

 $H := \{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid \sum_i x_i = 0$

• $\forall \lambda \in \Lambda, c, c' \in \mathcal{C}: \frac{|\langle \lambda, c \rangle|}{|\langle \lambda, c' \rangle|} \leq I.$

• A finite subset $\mathcal{C} \subset [-1, +1]^n \cap H$, $|\mathcal{C}| = N$.

• $\forall c, c' \in \mathcal{C}, c \neq c', \exists \lambda \in \Lambda: \operatorname{sgn}(\langle \lambda, c \rangle \cdot \langle \lambda, c' \rangle) = -1.$

A (n, N, I)-chordal code (CC) is

• A finite subset $\Lambda \subset H$, $-\forall \lambda \in \Lambda$: $||\lambda||_1 = 2$.

Such that

ISIR = 1 (2,2,1)-CC

Examples 3 Wires

 $C = \{(1, 0, -1), (1, -1, 0), (0, 1, -1), (0, -1, 1), (-1, 0, 1), (-1, 1, 0)\}$ $\Lambda = \{(1, 0, -1), (1, -1, 0), (0, 1, -1)\}$ Root system A₂

ISIR = 2 (3,6,2)-CC

KANDOU BUS

- (\mathcal{C}, Λ) is (n, N, I)-CC.
 - $I \geq 1$. Obvious
 - $|\Lambda| \geq \log_2(N)$. Every comparator gives at most one bit of information

Constructions

Some, not all....

Tampering Process

What if sum of coordinates is not zero?

Start with any set of codewords and comparators.

- Construct $(n-1) \times n$ -matrix with
 - All rows orthogonal
 - Row-sum = 0 for all rows
- $c \in \mathcal{C} : c \cdot A$.
- $\lambda \in \Lambda : \lambda \cdot A$.

Tampering process

Linear Chordal Codes

Scaling, so coordinates are between ±1

Apply tampering process to

- Vertices of the hypercube and
- The coordinate axes.

$$C = \frac{1}{m} (\pm 1, \pm 1, \dots, \pm 1) \cdot A$$
$$\Lambda = \text{scaled versions of rows of } A$$

$$\mathcal{C} = (\pm 1) \cdot (1, -1)$$
$$\Lambda = \{(1, -1)\}$$

Differential

ENRZ

Optimal Chordal Codes

$$H := \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid \sum_i x_i = 0\}.$$

A (n, N, I) -chordal code (CC) is
• A finite subset $\mathcal{C} \subset [-1, +1]^n \cap H$, $|\mathcal{C}| = N$.
• A finite subset $\Lambda \subset H$,
 $-\forall \lambda \in \Lambda$: $||\lambda||_1 = 2$.
Such that
• $\forall c, c' \in \mathcal{C}, c \neq c', \exists \lambda \in \Lambda$: $\operatorname{sgn}(\langle \lambda, c \rangle \cdot \langle \lambda, c' \rangle) = -1$.
• $\forall \lambda \in \Lambda, c, c' \in \mathcal{C}$: $\frac{|\langle \lambda, c \rangle|}{|\langle \lambda, c' \rangle|} \leq I$.

- For all $n \ge 2$ there exists $(n, 2^{n-1}, 1)$ -CC with n-1 comparators.
- If (\mathcal{C}, Λ) is (n, N, 1)-CC, then $N \leq 2^{n-1}$.
- Optimal number of comparators
- Optimal number of codewords
- Maximal rate is asymptotically 1
- Doubles rate of differential signaling

Proofs

Construct tampering matrix of size n for all $n \ge 2$ by recursion.

Examples

Phantom

Other ISI Ratios

- Conjecture: (n, N, I)-CC $\implies N \leq (1+I)^{n-1}$.
- Max rate $\leq \log_2(1+I)$
- Can show rate $\sim \log_2(1+I)$ for integer *I*.

Construction Methods Relaxation

- Define stripe around every hyperplane
 - Codewords inside a stripe are "inactive" for that hyperplane (and vice versa)
 - Codewords outside stripe are "active" for that hyperplane (and vice versa)
- Any two codewords are separated by at least one active hyperplane
- For ISI-ratio only active hyperplanes are considered

Relaxation

• ISI-ratio without relaxation = ∞

Example Permutation Modulation Codes

- Take a vector $v \in [-1, +1]^n \cap H$.
- Codebook is the orbit of v under S_n (coordinate permutations)
- Comparators are all "pairwise comparators" $e_i e_j$, $1 \le i < j \le n$.

David Slepian

- Rediscovered for chip-to-chip communication by many companies/individuals
- Relaxation: incident codewords and hyperplanes are inactive
- Many comparators....

Root system A_{n-1}

Example Maximal Rate

• Fix integer ISI-ratio I.

ANDOU BUS

- Alphabet is equidistant of size I + 1.
- Vector v has $\sim n/(I+1)$ coordinates equal to any given alphabet element.
- Take PM code generated by v.

Rate =
$$\frac{1}{n} \log_2 \left(\frac{n}{\frac{1}{I+1}, \frac{n}{I+1}, \dots, \frac{n}{I+1}} \right) = \log_2(1+I) - o(1)$$

Example

What is the best ISI-ratio for n = 4, N = 16?

Best result so far: 2.38933, 11 comparators not practical

How it was Obtained

What point set should we start with???

Spherical code of size 16 in three dimensions Calculate all the bisectors between pairs of points.

Multiply result with a tampering matrix to project to a chordal code in four dimensions. In this example, the Hadamard matrix is used

Other Examples

Archimedean bodies

Spherical codes

(0.735, 0.404, 0 (-0.317, 0.470, -0 (0.052, 0.928, -0 (0.707, -0.234, -0 (0.723, -0.686, -0 (0.084, -0.644, 0 (0.738, -0.338, 0 (-0.468, -0.158, 0 (-0.497, -0.797, -0 (-0.489, 0.860, 0 (0.238, 0.0521, 0	0.543) 0.823) 0.367) 0.666) 0.075) 0.759) 0.582) 0.582) 0.589) 0.340) 0.139) 0.969)	(0.425, 0.442, -0.789) (0.200, -0.776, -0.597) (-0.956, -0.286, -0.055) (0.039, -0.162, -0.986) (0.068, -0.992, 0.101) (0.999, 0.003, -0.025) (-0.659, -0.183, -0.729) (0.717, 0.680, -0.147) (-0.560, -0.726, 0.397) (-0.864, 0.281, 0.417) (-0.858, 0.402, -0.316)
(0.238, 0.0521, 0 (0.220, 0.907, 0).969)).357)	(-0.858, 0.402, -0.316) (-0.277, 0.555, 0.780)

Permutation modulation codes of type II

$(1,\sqrt{2}-1,\sqrt{2}-1)$	$(-1, \sqrt{2} - 1, \sqrt{2} - 1)$
$(1, -\sqrt{2} - 1, \sqrt{2} - 1)$	$(-1, -\sqrt{2} - 1, \sqrt{2} - 1)$
$(1, \sqrt{2} - 1, -\sqrt{2} - 1)$	$(-1, \sqrt{2} - 1, -\sqrt{2} - 1)$
$(1, -\sqrt{2} - 1, -\sqrt{2} - 1)$	$(-1, -\sqrt{2} - 1, -\sqrt{2} - 1)$
$(\sqrt{2}-1, 1, \sqrt{2}-1)$	$(-\sqrt{2}-1, 1, \sqrt{2}-1)$
$(\sqrt{2}-1, -1, \sqrt{2}-1)$	$(-\sqrt{2}-1,-1,\sqrt{2}-1)$
$(\sqrt{2}-1, 1, -\sqrt{2}-1)$	$(-\sqrt{2}-1, 1, -\sqrt{2}-1)$
$(\sqrt{2}-1, -1, -\sqrt{2}-1)$	$(-\sqrt{2}-1,-1,-\sqrt{2}-1)$
$(\sqrt{2}-1,\sqrt{2}-1,1)$	$(-\sqrt{2}-1,\sqrt{2}-1,1)$
$(\sqrt{2}-1, -\sqrt{2}-1, 1)$	$(-\sqrt{2}-1, -\sqrt{2}-1, 1)$
$(\sqrt{2}-1,\sqrt{2}-1,-1)$	$(-\sqrt{2}-1,\sqrt{2}-1,-1)$
$(\sqrt{2}-1, -\sqrt{2}-1, -1)$	$(-\sqrt{2}-1, -\sqrt{2}-1, -1)$

 $(12, 4, (1+\sqrt{5})/2) - CC$ 15 comparators

(24, 4, 2.69) - CC48 comparators $(24, 4, \sqrt{2} + 1) - CC$ 9 comparators

Subset of Root system B_n

State of Affairs

Exact code values are widely unknown except for n = 2.

- Even for case of ISI-ratio 1 under relaxation
 - Does there exist a $(n, > 2^{n-1}, 1)$ -CC under relaxation?
- Good idea about the case n = 3, but otherwise...

Applications

Maybe some other time....

