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The Problem
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Packets in Networks

Data sent in a network is divided into packets which

are routed through the network from a sender to a

recipient.

3



Packet Loss

Each packet has an identifier.

Packets can get lost or corrupted.

Corruption is checked via checksums.

Corrupted packets are regarded as lost.

May without loss of generality only concentrate on

losses.
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Retransmission

In many communication protocols lost packets are re-

transmitted.

Process is repeated until all packets are received.
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Retransmission Protocols

Requires existence of feedback channel.

May not exist, or maybe too expensive.

Example: satellite links.
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Retransmission Protocols

Not good enough in broadcast application: one server,

many clients. Request for retransmission leads to huge

server load.
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Forward Error Correction

Want to make it in first attempt.

Idea: use linear codes!

block stream of packets into blocks each containing k

packets.

Add n− k redundant packets so that recovery possible

after some fraction of packets lost.

If the minimum distance of the code is d, then we can

always correct up to d− 1 erasures.

8



The Codes
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Low Density Parity Check Codes

Rediscovered codes that were built almost 40 years ago

by R. Gallager.

Codes are built from sparse bipartite graphs.

Encoding and Decoding are simple.
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Encoding with Bipartite Graphs

Take a bipartite graph between k nodes on the left and

n − k nodes on the right. Label left nodes with the

k packets to be encoded. Label right nodes with the

redundant packets. Compute value of each right node

as XOR of values of adjacent left nodes.
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Decoding

Stage 1: Direct Recovery
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Decoding

Stage 2: Substitution Recovery
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graph.
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Example

(a) (b) (c)

(d) (e) (f)

Complete Recovery
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The Problem

We now have a fast encoding and decoding algorithm.

Want to design codes that perform good with respect

to these algorithms.

How do we design the graphs?
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Experiments

Choose regular graphs.

Experiments show that a (3,6)-graph recovers from

42.9% erasures.

A (4,8)-graph recovers from 38.3% erasures.

A (5,10)-graph recovers from 34.1% erasures.

What are these numbers?
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Revelation

Theorem. A random (k, d)-graph recovers from a p-

fraction of erasures with high probability iff

p(1− (1− x)d−1)k−1 < x for x ∈ (0, p).

(Luby, Mitzenmacher, Shokrollahi, Spielman, Stemann)

Proof: uses probability theory (martingales, tail in-

equalities, large deviation results).
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General Case

Let λi and ρi be the fraction of edges of degree i on

the left and the right hand side, respectively.

Let λ(x) :=
∑

i λix
i−1 and ρ(x) :=

∑

i ρix
i−1.

Condition for successful decoding for erasure probabil-

ity is then

p0λ (1− ρ(1− x)) < x

for all x ∈ (0, p0).
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Design of Graphs: Linear Programming

Fix right hand side ρ(x), and find best left hand side

λ(x) using the condition

p0λ (1− ρ(1− x)) < x

on (0,1) using linear programming.

Once best left hand side found, fix left hand side and

use dual condition

ρ (1− p0λ(1− x)) > x

on (0,1) with linear programming to find best right

hand side.

Iterate!
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Asymptotically Optimal Codes

Using highly irregular graphs, one obtains, for any rate

R sequences of codes that can get arbitrarily close to

the capacity of the erasure channel.

Degree structure? Fix design parameter D.

λ(x) :=
1

H(D)

(

x+
x2

2
+ · · ·+

xD

D

)

ρ(x) := exp (µ(x− 1))

where H(D) is harmonic sum 1+ 1/2 + · · ·+ 1/D and

µ = H(D)/ (1− 1/(D +1)).
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Other Channels

Erasure channel:

p
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Other Channels

Additive White Gaussian Noise Channel:
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Gaussian noise with variance σ2.

Capacity=

−

∫

∞

−∞

φσ(x) log2 φσ(x)dx−
1

2
log2(2πeσ

2),

where

σ
φ



Other Channels

Decoder? Belief propagation.
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Other Channels

• Certain embodiments of the belief propagation can

be rigorously analysed using the same methods as

the ones used for erasure channels.

• Experiments show that some codes that are good

for the erasure channel are also good for the binary

symmetric or the AWGN-channel. But: can we

prove it?

(Luby, Mitzenmacher, Shokrollahi, Spielman, 1998).
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Analysis

Richardson and Urbanke (both Bell Labs) observed that

the analysis of Luby et al. can be generalized to analyse

the full belief propagation algorithm (1998).

Based on this analysis,Richardson, Shokrollahi, Urbanke

construct low-density codes that are closer to the Shan-

non capacity than other types of codes, such as Turbo

codes.
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Race for Capacity

Explicit sequences of low-density codes which approach

the Shannon-capacity when decoded with belief prop-

agation!

Conjecture: They exist!!

Known only for the erasure channel (Luby et al.).
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