Some graph products and their expansion properties

Andrew Brown, EPFL

Joint work with Amin Shokrollahi.

Introduction

• Graph products have recently been used to construct **explicit families of expander graphs** (The zig-zag product [RVW]).

• This is a **recursive** construction that uses **graph products**.

• **Question**: Can we, in a similar way, use products of codes to recursively construct explicit families of good binary codes?

• It turns out that the problem of finding good binary codes can be rephrased as finding Cayley graphs over (\mathbb{F}_2^k) $\binom{k}{2}, +$ that are good expanders

Expander graphs

• Different ways to characterize expander graphs.

• The most intuitive is that any set of nodes must have many neighbors (**combinatorics**)

• There is also an **algebraic** characterization: Look at $\lambda(G)$, the **second largest eigenvalue** (in absolute value) of the normalized adjacency matrix of the graph.

- Smaller $\lambda(G)$ means better expansion
- A **constant degree expander family** is a family $\{\mathcal{G}_i\}_i$ of $[n_i,d,\lambda_i]$ -graphs with $\lim_{i\to\infty}n_i=\infty$ and $\lambda_i \leq \lambda$ for some fixed $\lambda < 1$.
- Random regular graphs are good expanders.

• **Applications:** Derandomization, cryptography, circuit complexity, topology, etc...

Code - Expander connection

• Family of good codes: A family $\{\mathcal{C}_i\}_i$ of codes with parameters $[n_i, k_i, d_i]$, with $k_i/n_i~\leq~R$ and $d_i/n_i \leq \delta$ for some $R, \delta < 1$ (lim $_{i\rightarrow\infty} n_i = \infty$).

• Different ways to relate expander graphs to error correcting codes:

• **Expander codes** (Sipser, Spielman). From a family of expander graphs, construct a family of good codes.

• Since there are known explicit constructions for the required expander families, this leads to explicit constructions of good codes.

• Codes described by their **Tanner graph**

Code - Expander connection

• **Cayley graph:** Given a group G and a generating set S. We consider the graph with:

> Nodes: elements of G Edges: $g_1 \sim g_2 \iff \exists s \in S : g_2 = g_1 + s$.

• Take the $k \times n$ generator matrix of binary code C. It has rank k .

• So its n columns generate (\mathbb{F}_2^k $k_2^k, +$). We let $\mathcal{G}(\mathcal{C})$ be the \textbf{Cayley} graph of (\mathbb{F}_2^k) $k \choose 2, +$) with respect to this generating set.

• **Theorem.** The parameters are the following:

$$
\left[n,k,d\right]\text{-code} \rightarrow \left[2^k, n, 1-\frac{2d}{n}\right]\text{-graph}
$$

• So good codes lead to good expanders.

• **Recall:** • We are looking to define code products • We have a correspondance:

> Code \leftrightarrow Cayley graph over \mathbb{F}_2^k 2

• **Obvious idea:** What about applying the zig-zag to the Cayley graphs? Problem: The result is no longer an \mathbb{F}_2^k $_2^k$ -Cayley graph.

- Need a graph product that preserves this property.
- A graph product that does this: **Tensor product**

Graph tensoring

- \bullet A, B graphs with node sets $[n_A] = \{1, \ldots, n_A\}$ $[n_B] = \{1, \ldots, n_B\}$
- \bullet $A \otimes B$:
	- Nodes: $[n_A] \times [n_B]$
	- \bullet Edges: $(a, b) \sim (a', b') \iff a \sim_A a'$ $b \sim_B b'$

Tensor product A & B

Graph tensoring

- Parameters $[n_A \cdot n_B, d_A \cdot d_B, max(\lambda_A, \lambda_B)]$
- Increases the size of the graph (dimension): **good**
- Maintains the second eigenvalue (distance): **good**
- But also increases the degree a lot (length): **bad**

• **Problem** for codes: Degree increases too much $(\Longrightarrow$ length of code increases faster than dimension).

• **Idea:** Remove some edges from A⊗B in a clever way.

Reducing the degree

• Graph squaring: G^2 has the same nodes as G , take all paths of length 2 as edges.

• August 2005: Rozenman and Vadhan presented a new operation **derandomized squaring** (S). This involves squaring a graph, and then removing some edges according to a second graph.

• Reduces degree at the cost of slightly worse expansion

• Can be seen as a projection of the zig-zag product

$$
A\circledS(C^2) = P\left[(A\circledS C)^2\right]
$$

• We wanted to remove edges from the tensor product (without losing too much expansion)

• We can use this idea to come up with **derandomized tensoring**: Take the tensor product of two graphs, and remove edges according to a third **bipartite graph**.

Derandomized tensoring (1)

• A, B graphs with node sets $[n_A]$, $[n_B]$, degrees d_A, d_B .

• Assume **edge colorings**

$$
\varphi_A:E(A)\to [d_A],
$$

and likewise φ_B .

• For a Cayley graph: 1 color \leftrightarrow 1 generator

• Suppose we have a bipartite graph C with d_A left nodes, and d_B right nodes.

- So there is a correspondance: colors of $A \leftrightarrow$ left nodes of C colors of $B \leftrightarrow$ right nodes of C
- $A \otimes_C B$: node set $[n_A] \times [n_B]$

• Edges:
$$
(a, b) \sim (a', b')
$$
 \iff $a \sim_A a'$
\n $b \sim_B b'$
\n $\varphi_A(a, a') \sim_C \varphi_B(b, b')$

Derandomized tensoring (2)

- $\bullet A \otimes_C B$:
	- Number of nodes $=n_A \cdot n_B$
	- Degree $=$ $|\text{Edges}(C)|$
- If C is biregular of left and right degrees ℓ, r : Degree $= d_A \cdot \ell = d_B \cdot r$.
- If C is the **complete bipartite graph** then $A \otimes_C B = A \otimes B$.

• **In terms of codes** this involves appending certain columns from the two generator matrices.

Expansion properties

• What are the expansion properties of this product?

Theorem. Suppose without loss of generality that $\lambda_B \leq \lambda_A$. Suppose also that C is biregular. Then

$$
\lambda_{A\otimes_C B}\leq \max\bigg(\lambda_A,\lambda_B,m(\lambda_A,\lambda_B,\lambda_C)\bigg),
$$

where we let

$$
f(a, b, c) = ab + c\sqrt{(1 - a^2)(1 - b^2)},
$$

\n
$$
g(b, c) = \left(\frac{c^2}{b^2} - c^2 + 1\right)^{-1/2},
$$

\n
$$
m(a, b, c) = f\left(\min(a, g(b, c)), b, c\right).
$$

• Simpler case: If
$$
\lambda_A = \lambda_B
$$
 then
\n
$$
\lambda_{A \otimes_C B} \le \max \left(\lambda_A, \lambda_A^2 + \lambda_C \cdot (1 - \lambda_A^2) \right)
$$

Projection

• The analysis is done by viewing $A \otimes_C B$ as a **projection** of a larger graph.

Projection

• The analysis is done by viewing $A \otimes_C B$ as a **projection** of a larger graph.

Proof of Theorem

• We view our graph over $[n_A] \times [n_B]$ as **projection** of a graph over $[n_A] \times [n_B] \times [\underbrace{d_A + d_B}_d]$].

• **Normal tensoring:** $A \otimes B = \hat{A} \cdot \hat{B}$, where $\widehat{A} = A \otimes Id(n_B)$ $\widehat{B} = Id(n_A) \otimes B$

• **Derandomized tensoring:**

 $A \otimes_C B = \text{Proj}[\hat{X} \cdot \hat{C} \cdot \hat{X}],$

where \bullet \hat{X} depends on A and B,

• $\hat{C} = Id(n_A n_B) \otimes C$.

Proof of Theorem

• Lemma. Let S be the space

$$
S=(1_{n_A})^{\perp}\otimes (1_{n_B})^{\perp}\otimes 1_d^{\parallel}
$$

The second eigenvalue of this projection is

$$
\lambda\big(\text{Proj}[\hat{X}\hat{C}\hat{X}]\big) = \max_{x \in S} \frac{\big|\langle \hat{X}\hat{C}\hat{X} \cdot x, x \rangle\big|}{\langle x, x \rangle}.
$$

• Show that

$$
x_1 \in S_1 \Longrightarrow |\langle \hat{X}\hat{C}\hat{X}\cdot x, x \rangle| \leq \lambda_A \cdot \langle x, x \rangle
$$

\n
$$
x_2 \in S_2 \Longrightarrow |\langle \hat{X}\hat{C}\hat{X}\cdot x, x \rangle| \leq \lambda_B \cdot \langle x, x \rangle
$$

\n
$$
x_3 \in S_3 \Longrightarrow |\langle \hat{X}\hat{C}\hat{X}\cdot x, x \rangle| \leq m(\lambda_A, \lambda_B, \lambda_C).
$$

\n
$$
\langle x, x \rangle
$$

• Deduce that if $x \in S$ then

$$
\frac{|\langle \hat{X}\hat{C}\hat{X}\cdot x, x\rangle|}{\langle x, x\rangle} \le \max\left(\lambda_A, \lambda_B, m(\lambda_A, \lambda_B, \lambda_C)\right)
$$

Extensions

• This idea can be also be used to get a different analysis of the derandomized square

$$
\lambda\left(A \circledS C\right) \leq \lambda_A^2 + \lambda_C \cdot (1 - \lambda_A^2)
$$

• We can also create a derandomized zig-zag product

$$
\lambda\left(A\textcircled{2}_CB\right) \leq \lambda_A + \lambda_B + \lambda_B^2 + \lambda_C \cdot (1 - \lambda_B^2),
$$

smaller degree than the original zig-zag product, at the cost of slightly worse expansion.

Conclusion

• There is a coding theoretic motivation behind finding graph products with good expansion properties and small degree.

• We can define derandomized version of known products, decreasing the degree a lot while only slightly worsening the expansion.

• The analysis is done by looking at the product as a projection of a larger graph, whose adjacency matrix we can express easily.

• These tools can be used to obtain bounds the expansion of other graph products.