Some graph products and their expansion properties

Andrew Brown, EPFL

Joint work with Amin Shokrollahi.

Introduction

- Graph products have recently been used to construct **explicit families of expander graphs** (The zig-zag product [RVW]).
- This is a recursive construction that uses graph products.
- **Question**: Can we, in a similar way, use products of codes to recursively construct explicit families of good binary codes?
- It turns out that the problem of finding good binary codes can be rephrased as finding Cayley graphs over $(\mathbb{F}_2^k, +)$ that are good expanders

Expander graphs

- Different ways to characterize expander graphs.
- The most intuitive is that any set of nodes must have many neighbors (combinatorics)
- There is also an **algebraic** characterization: Look at $\lambda(\mathcal{G})$, the **second largest eigenvalue** (in absolute value) of the normalized adjacency matrix of the graph.
- Smaller $\lambda(\mathcal{G})$ means better expansion
- A constant degree expander family is a family $\{\mathcal{G}_i\}_i$ of $[n_i,d,\lambda_i]$ -graphs with $\lim_{i\to\infty}n_i=\infty$ and $\lambda_i\leq\lambda$ for some fixed $\lambda<1$.
- Random regular graphs are good expanders.
- **Applications:** Derandomization, cryptography, circuit complexity, topology, etc...

Code - Expander connection

- Family of good codes: A family $\{C_i\}_i$ of codes with parameters $[n_i, k_i, d_i]$, with $k_i/n_i \leq R$ and $d_i/n_i \leq \delta$ for some $R, \delta < 1$ ($\lim_{i \to \infty} n_i = \infty$).
- Different ways to relate expander graphs to error correcting codes:
- Expander codes (Sipser, Spielman). From a family of expander graphs, construct a family of good codes.
- Since there are known explicit constructions for the required expander families, this leads to explicit constructions of good codes.
- Codes described by their Tanner graph

Code - Expander connection

• Cayley graph: Given a group G and a generating set S. We consider the graph with:

Nodes: elements of G

Edges: $g_1 \sim g_2 \iff \exists s \in S : g_2 = g_1 + s$.

- Take the $k \times n$ generator matrix of binary code C. It has rank k.
- So its n columns generate $(\mathbb{F}_2^k, +)$. We let $\mathcal{G}(\mathcal{C})$ be the **Cayley graph** of $(\mathbb{F}_2^k, +)$ with respect to this generating set.
- Theorem. The parameters are the following:

$$[n, k, d]$$
-code $\rightarrow [2^k, n, 1 - \frac{2d}{n}]$ -graph

So good codes lead to good expanders.

- Recall: We are looking to define code products
 - We have a correspondance:

Code \leftrightarrow Cayley graph over \mathbb{F}_2^k

- Obvious idea: What about applying the zig-zag to the Cayley graphs? *Problem:* The result is no longer an \mathbb{F}_2^k -Cayley graph.
- Need a graph product that preserves this property.
- A graph product that does this: Tensor product

Graph tensoring

 \bullet A, B graphs with node sets

$$[n_A] = \{1, \dots, n_A\}$$

 $[n_B] = \{1, \dots, n_B\}$

- \bullet $A \otimes B$:
 - Nodes: $[n_A] \times [n_B]$
 - Edges: $(a,b) \sim (a',b') \iff a \sim_A a'$ $b \sim_B b'$

Tensor product $A \otimes B$

Graph tensoring

- Parameters $[n_A \cdot n_B, d_A \cdot d_B, \max(\lambda_A, \lambda_B)]$
- Increases the size of the graph (dimension): good
- Maintains the second eigenvalue (distance): good
- But also increases the degree a lot (length): bad
- Problem for codes: Degree increases too much
 length of code increases faster than dimension).
- Idea: Remove some edges from $A \otimes B$ in a clever way.

Reducing the degree

- Graph squaring: \mathcal{G}^2 has the same nodes as \mathcal{G} , take all paths of length 2 as edges.
- August 2005: Rozenman and Vadhan presented a new operation **derandomized squaring** (S). This involves squaring a graph, and then *removing some edges* according to a second graph.
- Reduces degree at the cost of slightly worse expansion
- Can be seen as a projection of the zig-zag product

$$A \otimes (C^2) = P \left[(A \otimes C)^2 \right]$$

- We wanted to remove edges from the tensor product (without losing too much expansion)
- We can use this idea to come up with derandomized tensoring: Take the tensor product of two graphs, and remove edges according to a third bipartite graph.

Derandomized tensoring (1)

- ullet A, B graphs with node sets $[n_A]$, $[n_B]$, degrees d_A, d_B .
- Assume edge colorings

$$\varphi_A: E(A) \to [d_A],$$

and likewise φ_B .

- Suppose we have a bipartite graph C with d_A left nodes, and d_B right nodes.
- So there is a correspondance:

colors of
$$A \leftrightarrow$$
 left nodes of C colors of $B \leftrightarrow$ right nodes of C

• $A \otimes_C B$: node set $[n_A] \times [n_B]$

$$ullet$$
 Edges: $(a,b)\sim (a',b')\iff a\sim_A a'$ $b\sim_B b'$ $arphi_A(a,a')\sim_C arphi_B(b,b')$

Derandomized tensoring (2)

- \bullet $A \otimes_C B$:
 - Number of nodes = $n_A \cdot n_B$
 - Degree = |Edges(C)|
- ullet If C is biregular of left and right degrees ℓ, r :

Degree =
$$d_A \cdot \ell = d_B \cdot r$$
.

If C is the complete bipartite graph then

$$A \otimes_C B = A \otimes B$$
.

• In terms of codes this involves appending certain columns from the two generator matrices.

Expansion properties

 What are the expansion properties of this product?

Theorem. Suppose without loss of generality that $\lambda_B \leq \lambda_A$. Suppose also that C is biregular. Then

$$\lambda_{A \otimes_C B} \leq \max \bigg(\lambda_A, \lambda_B, m(\lambda_A, \lambda_B, \lambda_C)\bigg),$$

where we let

$$f(a,b,c) = ab + c\sqrt{(1-a^2)(1-b^2)},$$

$$g(b,c) = \left(\frac{c^2}{b^2} - c^2 + 1\right)^{-1/2},$$

$$m(a,b,c) = f\left(\min(a,g(b,c)),b,c\right).$$

• Simpler case: If $\lambda_A = \lambda_B$ then

$$\lambda_{A\otimes_C B} \leq \max\left(\lambda_A, \lambda_A^2 + \lambda_C \cdot (1 - \lambda_A^2)\right)$$

Projection

ullet The analysis is done by viewing $A\otimes_C B$ as a **projection** of a larger graph.

Projection

ullet The analysis is done by viewing $A\otimes_C B$ as a **projection** of a larger graph.

Proof of Theorem

- We view our graph over $[n_A] \times [n_B]$ as **projection** of a graph over $[n_A] \times [n_B] \times [\underbrace{d_A + d_B}]$.
- Normal tensoring: $A \otimes B = \hat{A} \cdot \hat{B}$, where

$$\widehat{A} = A \otimes Id(n_B)$$

$$\widehat{B} = Id(n_A) \otimes B$$

• Derandomized tensoring:

$$A \otimes_C B = \operatorname{Proj}[\hat{X} \cdot \hat{C} \cdot \hat{X}],$$

where \bullet \hat{X} depends on A and B,

•
$$\hat{C} = Id(n_A n_B) \otimes C$$
.

$\bullet \ {\rm Graph} \ \widehat{C}$

$\operatorname{Graph} \widehat{X}$

Proof of Theorem

• Lemma. Let S be the space

$$S = (1_{n_A})^{\perp} \otimes (1_{n_B})^{\perp} \otimes 1_d^{\parallel}$$

The second eigenvalue of this projection is

$$\lambda \Big(\operatorname{Proj}[\widehat{X} \widehat{C} \widehat{X}] \Big) = \max_{x \in S} \frac{\left| \langle \widehat{X} \widehat{C} \widehat{X} \cdot x, x \rangle \right|}{\langle x, x \rangle}.$$

We decompose S into

$$\underbrace{ \begin{pmatrix} \mathbf{1}_{n_A}^{\perp} \otimes \mathbf{1}_{n_B}^{\parallel} \otimes \mathbf{1}_d^{\parallel} \end{pmatrix}}_{\widetilde{S}_1} \oplus \underbrace{ \begin{pmatrix} \mathbf{1}_{n_A}^{\parallel} \otimes \mathbf{1}_{n_B}^{\perp} \otimes \mathbf{1}_d^{\parallel} \end{pmatrix}}_{\widetilde{S}_2} \oplus \underbrace{ \begin{pmatrix} \mathbf{1}_{n_A}^{\perp} \otimes \mathbf{1}_{n_B}^{\perp} \otimes \mathbf{1}_d^{\parallel} \end{pmatrix}}_{\widetilde{S}_2}.$$

Show that

$$x_{1} \in S_{1} \Longrightarrow |\langle \widehat{X}\widehat{C}\widehat{X} \cdot x, x \rangle| \leq \lambda_{A} \cdot \langle x, x \rangle$$

$$x_{2} \in S_{2} \Longrightarrow |\langle \widehat{X}\widehat{C}\widehat{X} \cdot x, x \rangle| \leq \lambda_{B} \cdot \langle x, x \rangle$$

$$x_{3} \in S_{3} \Longrightarrow |\langle \widehat{X}\widehat{C}\widehat{X} \cdot x, x \rangle| \leq m(\lambda_{A}, \lambda_{B}, \lambda_{C}) \cdot$$

$$\langle x, x \rangle$$

• Deduce that if $x \in S$ then

$$\frac{|\langle \hat{X}\hat{C}\hat{X} \cdot x, x \rangle|}{\langle x, x \rangle} \le \max\left(\lambda_A, \lambda_B, m(\lambda_A, \lambda_B, \lambda_C)\right)$$

Extensions

 This idea can be also be used to get a different analysis of the derandomized square

$$\lambda(A \otimes C) \le \lambda_A^2 + \lambda_C \cdot (1 - \lambda_A^2)$$

 We can also create a derandomized zig-zag product

$$\lambda(A \otimes_C B) \leq \lambda_A + \lambda_B + \lambda_B^2 + \lambda_C \cdot (1 - \lambda_B^2),$$

smaller degree than the original zig-zag product, at the cost of slightly worse expansion.

Conclusion

- There is a coding theoretic motivation behind finding graph products with good expansion properties and small degree.
- We can define derandomized version of known products, decreasing the degree a lot while only slightly worsening the expansion.
- The analysis is done by looking at the product as a projection of a larger graph, whose adjacency matrix we can express easily.
- These tools can be used to obtain bounds the expansion of other graph products.