Capacity Achieving Sequences for the Erasure Channel

Amin Shokrollahi

(Joint work with Peter Oswald – Bell Laboratories)

1

Outline

This talk will provide:

- Partial description of capacity achieving sequences for the erasure channel.
- Notes on the convergence speed.
- Notes on the asymptotic fraction of degree 2 nodes in terms of convergence speed.
- Reasons why linear programming methods behave as they do!

LDPC Codes

Erasure Decoding

Successful Decoding

$$
p_0\lambda(1-\rho(1-x)) < x \qquad \text{for } 0 < x < p_0.
$$

Design degree distributions so that maximal $p_{\mathbf{0}} \, \sim \, 1-R$ and average degree of graph small. $(R = \text{rate.})$

Capacity Achieving Sequences

Want sequences for which maximal $p_{\mathbf{0}}$ can be arbitrarily close to $\mathbf{1}-R.$

- Tornado sequence—Luby et al. 1997: $\lambda(x) = \frac{1}{H(x)}$ $\overline{H(D)}$ \sum \overline{D} $i{=}1$ x^i $\frac{c^i}{i}, \rho(x) =$ $e^{\alpha(x-1)}$.
- Right-regular sequence—Shokrollahi 1999: $\rho(x) = x^d$.
- Other sequences ?

Some Function Spaces

$$
\mathcal{P} := \left\{ f(x) = \sum_{n=1}^{\infty} f_k x^k, \quad x \in [0,1] \mid f_k \ge 0, \quad f(1) = 1 \right\},\
$$

$$
\mathcal{A} := \{ f \in \mathcal{P} \mid \mathcal{T}f \in \mathcal{P} \},
$$

where

$$
\mathcal{T}f(x) := 1 - f^{-1}(1 - x).
$$

Functions in $\mathcal A$ can be used to design degree distributions.

Properties

- $\mathcal{T}(f \circ g) = \mathcal{T}g \circ \mathcal{T}f$, so A is closed under \circ since \mathcal{P} is. $((f \circ g)(x) :=$ $f(g(x))$.
- $f \in \mathcal{A}$, then $\frac{f(ax+b)-f(b)}{f(a+b)-f(b)} \in \mathcal{A}$ for any $0 < a \le a+b \le 1$.

Can construct new capacity achieving sequences from old ones:

- $f(x) = \frac{e^{ax}-1}{e^{a}-1}, a > 0$ (Tornado): $f \circ f$,
- $f(x) = x^n$ (right-regular): $x^{2n} + x^n$,
- $f(x) = \frac{(1-b)x}{1-bx}, 0 < b < 1.$

Convergence Speed

How fast (in terms of their average degrees) do these graphs converge to capacity?

P largest fraction of tolerable erasures, A average degree.

Shokrollahi 1999: if $P = 1 - R - \epsilon$, then

$$
\epsilon \ge R^A, \text{ i.e., } A = \Omega(\log(1/\epsilon))
$$

for fixed R ;

Tornado codes and right regular codes are optimal in the logarithmic sense.

Convergence Speed

Measure: $\epsilon \geq R^{A}$,

$$
\mu := \frac{\log\left(\frac{1}{\epsilon}\right)}{A\log\left(\frac{1}{R}\right)}, \qquad \Delta := \frac{\epsilon}{R^A}
$$

Tornado sequence:

$$
\mu \to \frac{\log(1/R)}{1-R}, \qquad \Delta \to \infty.
$$

Right-regular sequence

$$
\mu \to 1 \qquad \Delta \to e^{\gamma} = 1.7810...
$$

Convergence Speed

No other sequence known for which Δ converges to a smaller number.

Conjecture: The right-regular sequence is optimal!

Gives reason to why linear programming approaches favor one degree on the right.

Degree 2 Nodes

Can we get the fraction of degree 2 nodes asymptotically below $1 - R$? (Has consequences for the encoding/decoding.)

Take $\phi \in A$ and consider the sequence with right distribution $\phi(x^n)$.

 μ corresponding constant for this sequence.

 Λ_2^n is fraction of degree 2 nodes of corresponding left hand side.

$$
\lim_{n\to\infty}\Lambda_2^n=\frac{\mu}{2\phi'(1)}.
$$

Degree 2 Nodes

Fraction can be made less than $1 - R$, while still capacity achieving.

The smaller this fraction, the large corresponding μ of the sequence. Explains LP-results!

Is this result true in general?

Are there capacity achieving codes with $\Lambda_2 = 0$ for almost all elements in the sequence?

Does not contradict the flatness condition