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Outline

Want to introduce a new packing problem related to the design of

multiple antenna wireless networks.
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Transmission: Rayleigh Flat Fading

M transmit antennas, /NV receiving antennas, coherence interval 7.

{ ST,1 Sp—1,1 0 S1.1 \
ST,2 ST—1,2 0 81,2
=: 5.
\ ST.mM ST—1,M *°° S1,M )

Received signal:

X= . /p- H - S + W,

gNR Fading Signal Noise

where H is N x T and W is N x W and entries are independent
C'N(0,1) random variables.

Decoding: Compute S from X.



Codebook Modulation
S=1{S1,8,...,5.}.

String (eq, ..., er—1) corresponds to
Si, i:60—|—261—|—“-—|—2€_16g_1.

Simple encoding possible if presentation of § is appropriate.



Mobile Communication: H is unknown

Use differential encoding.

T =2M.

S S 595

%S | 8555




Differential Encoding

Codebook consists of L unitary M x M-matrices {S1,S2,...,5L}

and is called a unitary space-time code.

Signals transmitted:
Siys S Sins SiySiaSigs - -
H is eliminated:

X=HS+W, Y =HSR+W, XS+W =Y.



Unknown Channel: Decoding and Probability of
Error

Maximum likelihood decoding: given X,Ye CVN*M find S € S
that minimizes

XS =Y
for some matrix norm || - ||.

Probability P(S, R) of mistaking S for R (Hochwald-Sweldens)

/8" _oN

(for high SNR p).



Unknown Channel: Probability of Error

Probability of mistaking S and R is lower the larger the diversity

distance
1
d(S, R) := 5| det(S — R)|V/M
1S.

Diversity product of S:

L : 1 1/M
((S) := s R o | det(S — R)|*/™.
Design problem:

Find a large set S of unitary M x M-matrices for which ((S5) is as

large as possible.



Diversity “Distance” and Packing Problems

Diversity distance is NOT a metric!

1 0 1 0 1 0 1 0
d , +d , —0
0 -1 0 -1 0 -1 0 1
1 0 1 0
Zzd : =1
0 -1 0 1

So, design problem is HARD.

Main function:

A(M,L) :=suple | IS CU(M),#S = L,((S) > €}.



Special Cases
o A(M,2) = 1: {In;, —Ips).
o A(M,3) = +/3/27 ((S)-Sturmfels-Woodward for SU(M)).
o A(1,L) = 2sin(r/L).

o A(2,L) =7
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A(2, L)

b
SU(2) = ag 7| | Re(@)? + Im(a)? + Re(b)? + Im(b)2 = 1 p ~ H*,
— a

so nonzero differences in SU(2) are invertible!

(SU(2),d(-,+)) is isometric to S? with euclidean distance, so good
spherical codes in R* yield good differential codes for two transmit

antennas

Open question: Can we improve performance by going to U(2)?
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A(2, L): Historical Note

a
e Use of matrices with a, b roots of unity proposed

b a
by

Alamouti in 1998 for known channel.

e Use of same matrices proposed by Tarokh-Jafarkhani in 1999

for unknown channel (mobile).

e Connection to packings in S° (re-)discovered by
Oswald-Sweldens-S in 1999, works both for known and the

unknown channel.
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Group Codes

Want to construct finite sets S of unitary M x M-matrices that

form a group under matrix multiplication, and for which

1 - v 1/M
C(S)—Q&Rgggﬂldet(s R)[/ 0.

Why a group?
e Multiplication of matrices can be done symbolically.

e We have

1 oy1/M
C(S)—ngnslgf\det(f S)H.

e Mathematically interesting.
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Group Representations

A homomorphism
A G—UM)

is called an M-dimensional representation of the group G.

For instance,

(ool =1) — U®Q)

o eQﬂ'i/L

is a 1-dimensional representation of the cyclic group of order L.
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Diagonal Codes

Homomorphism

A: (o|lot =1 — UWM)

(e 0 0

0 U 0
g )
K 0 0o --- UUM)

2mi/ L

where n = e is a reducible representation of the cyclic group

with L elements.

Other abelian constellations? NO!
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Group Constellations

Want groups that have a representation A such that A(g) does not
have eigenvalue 1 for any g € G except for the identity.

fixed-point-free groups, fixed-point-free representations.

Example: Quaternion group of order 8:
Q:=(o,7|o*=1,7 =07 or=0"1).
The elements of this group are

1,0,0%, 07

’7',’7'0',’7'0'2,’7'0'3
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The Quaternion Group

Fixed-point-free representation: A: Q — U(2)
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The General Case

All fixed-point-free groups have been classified by Zassenhaus in

1936 (with some minor shortcomings)!

After correcting the shortcomings we constructed all

fixed-point-free representations of these groups.

This gives us a list of all group constellations (up to equivalence

and reducibility).
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Glimpse of ideas
Observation.
e Subgroups of fixed-point-free groups are fixed-point-free.
e Cyclic groups are fixed-point-free.

e Abelian fixed-point-free groups are cyclic.

Proof. G fixed-point-free and cyclic via character yv. Then y

has trivial kernel. So, G is cyclic.
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p-Groups for odd p

Theorem (Burnside—1905). G p-group and fixed-point-free, p
odd. Then is G cyclic.

Proof. #G = p". Induction for n. Trivial for n = 0.

— G has normal subgroup of index p which is cyclic (by induction
hypothesis), generated by o, say.

— G ={o,7| o’ = 1,77 =oF 77 tor = ¢"), k= 0mod p

(assuming G not cyclic), /» = 1 mod p" !, and £ # 1 mod p" !
(since G not abelian).
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p-Groups continued

e (7 has an irreducible representation A of degree p which

satisfies
(7 0 0 - 0 ) [0 1
o nt 0 -~ 0 0 0
Alo)=] 0 0 n° 0 |, A=
ST 0 0
\0 0 0 ) \ ¥ 0

P _1

e We have det(I — A(c®7%)) =1—n°71 +k’“, n = e2mi/p

n—1

e For any u # 0 mod p there exists s Z 0 mod p"”~! such that
sggp_—_ll + ku =0 mod p™— 1.

e (5 is not fixed-point-free.
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Groups of Odd Order

All fixed-point-free groups of odd order are of the type
Gmr= (0,70 =1,7"=0" 70T =0"),

where n is the order of » mod m, t = m/ ged(m,r — 1), and all

prime divisors of n divide ged(r — 1, m).
e Are connected to the classification of near-fields.
e G, 1 is the cyclic group of order m.

e (5o1 4 gives constellation with 63 signals and ¢ = 0.3851.

n 0 0 0 1 0
Ale)=] 0 »* 0 [, A@=| 0 0 1|,  p=e&"/"
0 0 nlt n” 0 0
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2-Groups

Theorem (Burnside—-1905). G 2-group and fixed-point-free.
Then is G either cyclic or a generalized Quaternion group.

Proof. Similar to p-groups for odd p.
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Group Codes for Two Transmit Antennas

— Cyclic groups,

— Gy, » for appropriate (m,r),

— Quaternion groups,

— The group E,, of order 24m generated by

o [ 1 1 i 0 0 1
V2 \ i —i ) \Vo =]\ —1 0

for appropriate a.
— The group of order 120 generated by the two matrices

1 [ = p—pt 1 [ p—p® p—1
Vo -t pd -2 VB 1—p ot s
where p = 2™/ which is ismorphic to SLo(F5).

— A direct product of any of these groups if the orders are co-prime.
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The Group SL,(F5)
We have ((SLy(F5)) = 0.309. Excellent performance in

simulations.
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All Groups
Hassibi-Hochwald-S-Sweldens:

Group type | order dim of rep
G r mn n
Dpyre 2mn 2n
E,, 24m 2
Fo v 2mn 2n
Hyp, 0 48m 4
SLo(F5) 120 2
Ko re 240mn 4dn
UxH \U||H| | dim(U)dim(H)
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Practical!

The group G214 with 63 elements is being used on a prototypical
3-antenna constellation in the Bell Labs hallways. (Mike Andrews,

Wim Sweldens)
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Further Work

Group-inspired constructions (Hassibi-Hochwald-S-Sweldens)

Fast decoding using closest vector approximation in lattices
(Clarkson-Sweldens-Zheng, HHSS)

Representations of certain compact Lie groups (S)
Representations of non fixed-point free groups (S, Feit-S)

Reducible representations (S)
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Representations of Compact Lie Groups

Observation of Hassibi-IKhorrami: the only fixed-point-free Lie
groups are U(1) and SU(2).

Only hope: restrict representations of Lie groups to appropriate

subsets.

Need copmact Lie groups to guarantee that irreducible

representations are unitary and finite dimensional.
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Representations of SU(2)

Use 4-dimensional representation /2 of SU(2) given by action on

homogenous bivariate polynomials of degree 3:

\

a’ V3a2b V/3ab?
—V3a%b a(lal? = 2b2)  b(2lal? — [b]?)
V3ab B2 —2la?) a2lp|? — |af?)

-5 N _ /3 ba?

b3 \
v/ 3ab?
vV 3ba?

@

Figenvalues: n,7,n3,7°, if eigenvalues of original matrix are n, .
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4-dimensional Representation of SU(2)

Want subset & of SU(2) such that for any A, B € S the matrices
ABx and (AB*)? are “away” from the identity matrix.

Restricted spherical codes: no two points too close and no two

points have angle close to 27/3.
Can be constructed from normal spherical codes.

Representations of other groups could lead to interesting results.

32



Open Question
Upper and (better) lower bounds for A(M, L).
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