
Packing Unitary Matrices

Amin Shokrollahi

1



Outline

Want to introduce a new packing problem related to the design of

multiple antenna wireless networks.

2



Transmission: Rayleigh Flat Fading

M transmit antennas, N receiving antennas, coherence interval T .










sT,1 sT−1,1 · · · s1,1

sT,2 sT−1,2 · · · s1,2
...

...
. . .

...

sT,M sT−1,M · · · s1,M











=: S.

Received signal:

X :=
√
ρ

︸︷︷︸

SNR

· H
︸︷︷︸

Fading

· S
︸︷︷︸

Signal

+ W
︸︷︷︸

Noise

,

where H is N × T and W is N ×W and entries are independent

CN(0, 1) random variables.

Decoding: Compute S from X .
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Codebook Modulation

S = {S1, S2, . . . , SL}.
String (e0, . . . , eℓ−1) corresponds to

Si, i = e0 + 2e1 + · · ·+ 2ℓ−1eℓ−1.

Simple encoding possible if presentation of S is appropriate.
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Mobile Communication: H is unknown

Use differential encoding.

T = 2M .

S S S

S S

S S

S S S S S SS

I S

S

1

21 1

1 2 1 2 3

1 2 3 1 2 3 4
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Differential Encoding

Codebook consists of L unitary M ×M -matrices {S1, S2, . . . , SL}
and is called a unitary space-time code.

Signals transmitted:

Si1 , Si1Si2 , Si1Si2Si3 , . . ..

H is eliminated:

X = HS +W, Y = HSR+W, XS + W̃ = Y.
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Unknown Channel: Decoding and Probability of

Error

Maximum likelihood decoding: given X, Y ∈ CN×M , find S ∈ S
that minimizes

||XS − Y ||
for some matrix norm || · ||.
Probability P (S,R) of mistaking S for R (Hochwald-Sweldens)

P (S,R) ≤ 1

2

(
8

ρ

)MN

| det(S −R)|−2N ,

(for high SNR ρ).
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Unknown Channel: Probability of Error

Probability of mistaking S and R is lower the larger the diversity

distance

d(S,R) :=
1

2
| det(S −R)|1/M

is.

Diversity product of S:

ζ(S) := min
S,R∈S,S 6=R

1

2
| det(S −R)|1/M .

Design problem:

Find a large set S of unitary M ×M -matrices for which ζ(S) is as
large as possible.
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Diversity “Distance” and Packing Problems

Diversity distance is NOT a metric!

d




−1 0

0 −1
,
1 0

0 −1



+ d




1 0

0 −1
,
1 0

0 1



 = 0

6≥d




−1 0

0 −1
,
1 0

0 1



 = 1.

So, design problem is HARD.

Main function:

A(M,L) := sup{ǫ | ∃S ⊂ U(M),#S = L, ζ(S) ≥ ǫ}.
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Special Cases

• A(M, 2) = 1: {IM ,−IM} .

• A(M, 3) =
√
3/2? ((S)-Sturmfels-Woodward for SU(M)).

• A(1, L) = 2 sin(π/L).

• A(2, L) = ?
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A(2, L)

SU(2) =










a b

−b a





∣
∣
∣
∣
∣
Re(a)2 + Im(a)2 +Re(b)2 + Im(b)2 = 1






≃ H

×,

so nonzero differences in SU(2) are invertible!

(SU(2), d(·, ·)) is isometric to S3 with euclidean distance, so good

spherical codes in R
4 yield good differential codes for two transmit

antennas

Open question: Can we improve performance by going to U(2)?
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A(2, L): Historical Note

• Use of matrices




a b

−b a



 with a, b roots of unity proposed

by

Alamouti in 1998 for known channel.

• Use of same matrices proposed by Tarokh-Jafarkhani in 1999

for unknown channel (mobile).

• Connection to packings in S3 (re-)discovered by

Oswald-Sweldens-S in 1999, works both for known and the

unknown channel.
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Group Codes

Want to construct finite sets S of unitary M ×M -matrices that

form a group under matrix multiplication, and for which

ζ(S) = 1

2
min

S,R∈S,S 6=R
| det(S −R)|1/M 6=0.

Why a group?

• Multiplication of matrices can be done symbolically.

• We have

ζ(S) = 1

2
min

S∋S 6=I
| det(I − S)|1/M .

• Mathematically interesting.
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Group Representations

A homomorphism

∆: G → U(M)

is called an M -dimensional representation of the group G.

For instance,

〈σ | σL = 1〉 → U(1)

σ 7→ e2πi/L

is a 1-dimensional representation of the cyclic group of order L.
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Diagonal Codes

Homomorphism

∆: 〈σ | σL = 1〉 → U(M)

σ 7→










ηu1 0 · · · 0

0 ηu2 · · · 0

0 0 · · · 0

0 0 · · · ηuM










,

where η = e2πi/L is a reducible representation of the cyclic group

with L elements.

Other abelian constellations? NO!
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Group Constellations

Want groups that have a representation ∆ such that ∆(g) does not

have eigenvalue 1 for any g ∈ G except for the identity.

fixed-point-free groups, fixed-point-free representations.

Example: Quaternion group of order 8:

Q := 〈σ, τ | σ4 = 1, τ2 = σ2, τ−1στ = σ−1〉.

The elements of this group are

1, σ, σ2, σ3

τ, τσ, τσ2, τσ3
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The Quaternion Group

Fixed-point-free representation: ∆:Q → U(2)

∆(σ) =




i 0

0 −i



, ∆(τ) =




0 1

−1 0



.

Same for generalized Quaternion groups

〈σ, τ | σ2
p

= 1, τ2 = σ2
p−1

, τ−1στ = σ−1〉.
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The General Case

All fixed-point-free groups have been classified by Zassenhaus in

1936 (with some minor shortcomings)!

After correcting the shortcomings we constructed all

fixed-point-free representations of these groups.

This gives us a list of all group constellations (up to equivalence

and reducibility).
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Glimpse of ideas

Observation.

• Subgroups of fixed-point-free groups are fixed-point-free.

• Cyclic groups are fixed-point-free.

• Abelian fixed-point-free groups are cyclic.

Proof. G fixed-point-free and cyclic via character χ. Then χ

has trivial kernel. So, G is cyclic.
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p-Groups for odd p

Theorem (Burnside–1905). G p-group and fixed-point-free, p

odd. Then is G cyclic.

Proof. #G = pn. Induction for n. Trivial for n = 0.

− G has normal subgroup of index p which is cyclic (by induction

hypothesis), generated by σ, say.

− G = 〈σ, τ | σpn−1

= 1, τp = σk, τ−1στ = σℓ〉, k ≡ 0 mod p

(assuming G not cyclic), ℓp ≡ 1 mod pn−1, and ℓ 6≡ 1 mod pn−1

(since G not abelian).
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p-Groups continued

• G has an irreducible representation ∆ of degree p which

satisfies

∆(σ) =













η 0 0 · · · 0

0 ηℓ 0 · · · 0

0 0 ηℓ
2 · · · 0

...
...

...
. . .

...

0 0 0 · · · ηℓ
p−1













, ∆(τ ) =













0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

ηk 0 0 · · · 0













.

• We have det(I −∆(σsτu)) = 1− ηs
ℓp−1

ℓ−1
+ku, η = e2πi/p

n−1

.

• For any u 6≡ 0 mod p there exists s 6≡ 0 mod pn−1 such that

s ℓp−1

ℓ−1
+ ku ≡ 0 mod pn−1.

• G is not fixed-point-free.
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Groups of Odd Order

All fixed-point-free groups of odd order are of the type

Gm,r = 〈σ, τ | σm = 1, τn = σt, τ−1στ = σr〉,

where n is the order of r mod m, t = m/ gcd(m, r − 1), and all

prime divisors of n divide gcd(r − 1,m).

• Are connected to the classification of near-fields.

• Gm,1 is the cyclic group of order m.

• G21,4 gives constellation with 63 signals and ζ = 0.3851.

∆(σ) =







η 0 0

0 η4 0

0 0 η16







, ∆(τ) =







0 1 0

0 0 1

η7 0 0






, η = e2πi/21.
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2-Groups

Theorem (Burnside–1905). G 2-group and fixed-point-free.

Then is G either cyclic or a generalized Quaternion group.

Proof. Similar to p-groups for odd p.
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Group Codes for Two Transmit Antennas

− Cyclic groups,

− Gm,r for appropriate (m, r),

− Quaternion groups,

− The group Em of order 24m generated by

a√
2




1 1

i −i



 ,




i 0

0 −i



 ,




0 1

−1 0





for appropriate a.

− The group of order 120 generated by the two matrices

1√
5




µ2 − µ3 µ− µ4

µ− µ4 µ3 − µ2



 ,
1√
5




µ− µ2 µ2 − 1

1− µ3 µ4 − µ3



,

where µ = e2πi/5, which is ismorphic to SL2(F5).

− A direct product of any of these groups if the orders are co-prime.
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The Group SL2(F5)

We have ζ(SL2(F5)) = 0.309. Excellent performance in simulations.
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All Groups

Hassibi-Hochwald-S-Sweldens:

Group type order dim of rep

Gm,r mn n

Dm,r,ℓ 2mn 2n

Em 24m 2

Fm,r 2mn 2n

Hm,ℓ 48m 4

SL2(F5) 120 2

Km,r,ℓ 240mn 4n

U ×H |U ||H| dim(U) dim(H)
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Performance
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Practical!

The group G21,4 with 63 elements is being used on a prototypical

3-antenna constellation in the Bell Labs hallways. (Mike Andrews,

Wim Sweldens)
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Further Work

• Group-inspired constructions (Hassibi-Hochwald-S-Sweldens)

• Fast decoding using closest vector approximation in lattices

(Clarkson-Sweldens-Zheng, HHSS)

• Representations of certain compact Lie groups (S)

• Representations of non fixed-point free groups (S, Feit-S)

• Reducible representations (S)
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Representations of Compact Lie Groups

Observation of Hassibi-Khorrami: the only fixed-point-free Lie

groups are U(1) and SU(2).

Only hope: restrict representations of Lie groups to appropriate

subsets.

Need copmact Lie groups to guarantee that irreducible

representations are unitary and finite dimensional.
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Representations of SU(2)

Use 4-dimensional representation R of SU(2) given by action on

homogenous bivariate polynomials of degree 3:

R




a b

−b a



 =


















a3
√
3a2b

√
3ab2 b3

−
√
3a2b a(|a|2 − 2|b|2) b(2|a|2 − |b|2)

√
3ab2

√
3ab

2
b(|b|2 − 2|a|2) a(2|b|2 − |a|2)

√
3ba2

−b
3 √

3 b
2
a −

√
3 ba2 a3


















.

Eigenvalues: η, η, η3, η3, if eigenvalues of original matrix are η, η.
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4-dimensional Representation of SU(2)

Want subset S of SU(2) such that for any A,B ∈ S the matrices

AB∗ and (AB∗)3 are “away” from the identity matrix.

Restricted spherical codes: no two points too close and no two

points have angle close to 2π/3.

Can be constructed from normal spherical codes.

Representations of other groups could lead to interesting results.

32



Open Question

Upper and (better) lower bounds for A(M,L).
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