A Pin- and Power-Efficient 20.83Gb/s/wire 0.94pJ/bit Forwarded Clock CNRZ-5 Coded SerDes up to 12mm for MCM Packages in 28nm CMOS

A. Shokrollahi¹, D. Carnelli¹, J. Fox², K. Hofstra¹, B. Holden¹,
A. Hormati¹, P. Hunt², M. Johnston¹, S. Pesenti¹, R. Simpson²,
D. Stauffer¹, A. Stewart², G. Surace², A. Tajalli¹, O. Talebi
Amiri¹, A. Tschank², R. Ulrich¹, Ch. Walter¹, F. Licciardello¹,
Y. Mogentale¹, A. Singh¹

¹Kandou Bus, Lausanne, Switzerland, ²Kandou Bus, Northampton, United Kingdom,

Outline

- Introduction and motivation
- Signaling
- Macro architecture
 - Common block
 - Tx
 - Rx
- System Implementation
- Results
- Conclusion

Motivation

 2.5D integration is a means to connect multiple die in a low-cost package

- Increase yield, lower manufacturing costs

 Efficient solution requires high-bandwidth, low-power SerDes

Constraints of a Versatile 2.5D Solution

- Want very high throughput using few wires
 - Enable use of low cost of substrates
 - Use 20+ Gb/s per signal wire
 - Need very high bandwidth per mm die-edge
- Requires relatively large distance
 - Need up to 12 mm, scalability to longer distances desirable
- Demands very low power
 - Ideally same as or lower than on-chip links

2.5D Options

Method	# wires	Distance	Power
Silicon interposers	Many	Very short	Good
Wafer level Processing	Many	Very short	Good
SerDes	Fewer?	Longer?	?

- Need SerDes with
 - Very high throughput per wire
 - Very low power at desired channel lengths

SerDes: Prior Work

Reference	[1]	[2]	[3]	This work
Year	2009	2012	2014	2016
pJ/bit	1.9	0.54	1.4	0.94
BW/pin (Gb/s)	8.9	20	6	20.83
Technology	45nm	28nm	32nm	28nm
Signaling	D	GRSE	D	CNRZ-5
Channel loss	≤ 20 dB	≤ 1 dB	≤ 3 dB	≤ 3 dB
Substrate	SiC	MCM	Meg6	МСМ
Reach	≤ 40 mm	≤ 4.5 mm	≤ 19 mm	≤ 12 mm

SiCa=Silicon carrier, SE = single ended, D = differential, GRSE=ground referenced single-ended, MCM = MCM organic substrate, Meg 6 = Megtron 6

Outline

- Introduction and motivation
- Signaling
- Macro architecture
 - Common block
 - Tx
 - Rx
- System Implementation
- Results
- Conclusion

Signaling, Implementation

- Choice of signaling scheme is a major ingredient for realizing performance targets, especially power
 - Signaling needs to have high pin-efficiency and built-in robustness to noise (common mode, SSO, ISI, EMI, etc.)

 Correlated signals on wires, matched comparator network

- Signals on wires belong to a codebook

• Chordal code = codebook + comparators

Chord Signaling

- Correct design of code
 - Increases throughput per pin
 - Reduces ISI
 - Eliminates SSO noise
 - Eliminates common mode noise
 - Reduces EMI noise

CNRZ-5

- Transmits 5 bits on a collection of 6 wires in every UI.
- Codewords are judiciously chosen permutations of [+1,-1,+1/3,+1/3,-1/3].
- Five comparators:
 - Two compare one wire value against another,
 - Two compare average of two wire values against a third,
 - One compares average of three wire values against the other three.

CNRZ-5

CNRZ-5

CNRZ-5 Codebook

[1/3. -1/3. -1. -1/3. 1/3. 1] [1, 1/3, -1/3, -1, -1/3, 1/3] [-1/3, -1, 1/3, -1/3, 1/3, 1][1/3, -1/3, 1, -1, -1/3, 1/3] [-1/3, 1/3, -1, -1/3, 1/3, 1] [1/3, 1, -1/3, -1, -1/3, 1/3] [-1, -1/3, 1/3, -1/3, 1/3, 1] [-1/3, 1/3, 1, -1, -1/3, 1/3] [1/3, -1/3, -1, 1, -1/3, 1/3] [1, 1/3, -1/3, 1/3, -1, -1/3] [-1/3, -1, 1/3, 1, -1/3, 1/3] [1/3, -1/3, 1, 1/3, -1, -1/3] [-1/3, 1/3, -1, 1, -1/3, 1/3] [1/3, 1, -1/3, 1/3, -1, -1/3] [-1, -1/3, 1/3, 1, -1/3, 1/3] [-1/3, 1/3, 1, 1/3, -1, -1/3]

[1/3. -1/3. -1. -1/3. 1. 1/3] [1, 1/3, -1/3, -1, 1/3, -1/3] [-1/3, -1, 1/3, -1/3, 1, 1/3] [1/3, -1/3, 1, -1, 1/3, -1/3] [-1/3, 1/3, -1, -1/3, 1, 1/3] [1/3, 1, -1/3, -1, 1/3, -1/3] [-1, -1/3, 1/3, -1/3, 1, 1/3] [-1/3, 1/3, 1, -1, 1/3, -1/3] [1/3, -1/3, -1, 1, 1/3, -1/3] [1, 1/3, -1/3, 1/3, -1/3, -1] [-1/3, -1, 1/3, 1, 1/3, -1/3] [1/3, -1/3, 1, 1/3, -1/3, -1] [-1/3, 1/3, -1, 1, 1/3, -1/3] [1/3, 1, -1/3, 1/3, -1/3, -1] [-1, -1/3, 1/3, 1, 1/3, -1/3] [-1/3, 1/3, 1, 1/3, -1/3, -1]

CNRZ-5 Encoder

 Computes two bits Wi[0], Wi[1], i=0..5 from input bits b0,...,b4, which are used by Tx output driver to create codeword values w0,...,w5 on wires

Binary Values at Input to Slicers

- Core concept is that of ISI-ratio [4], [5].
- This property massively reduces ISI noise

av	erage	avera	ge
\checkmark			
-1/3	[1/3, -1/3, -1,	-1/3, 1/3, 1	1/3
1/3	[1, 1/3, -1/3,	-1, -1/3, 1/3]	-1/3
-1/3	[-1/3, -1, 1/3,	-1/3, 1/3, 1]	1/3
1/3	[1/3, -1/3, 1,	-1, -1/3, 1/3]	-1/3
-1/3	[-1/3, 1/3, -1,	-1/3, 1/3, 1]	1/3
1/3	[1/3, 1, -1/3,	-1, -1/3, 1/3]	-1/3
-1/3	[-1, -1/3, 1/3,	-1/3, 1/3, 1]	1/3
1/3	[-1/3, 1/3, 1,	-1, -1/3, 1/3]	-1/3
-1/3	[1/3, -1/3, -1,	1, -1/3, 1/3]	1/3
1/3	[1, 1/3, -1/3,	1/3, -1, -1/3]	-1/3
-1/3	[-1/3, -1, 1/3,	1, -1/3, 1/3]	1/3
1/3	[1/3, -1/3, 1,	1/3, -1, -1/3]	-1/3
-1/3	[-1/3, 1/3, -1,	1, -1/3, 1/3]	1/3
1/3	[1/3, 1, -1/3,	1/3, -1, -1/3]	-1/3
-1/3	[-1, -1/3, 1/3,	1, -1/3, 1/3]	1/3
1/3	[-1/3, 1/3, 1,	1/3, -1, -1/3]	-1/3

av	erage	avera	ge
↓			↓
-1/3	[1/3, -1/3, -1,	-1/3, 1, 1/3]	1/3
1/3	[1, 1/3, -1/3,	-1, 1/3, -1/3]	-1/3
-1/3	[-1/3, -1, 1/3,	-1/3, 1, 1/3]	1/3
1/3	[1/3, -1/3, 1,	-1, 1/3, -1/3]	-1/3
-1/3	[-1/3, 1/3, -1,	-1/3, 1, 1/3]	1/3
1/3	[1/3, 1, -1/3,	-1, 1/3, -1/3]	-1/3
-1/3	[-1, -1/3, 1/3,	-1/3, 1, 1/3]	1/3
1/3	[-1/3, 1/3, 1,	-1, 1/3, -1/3]	-1/3
-1/3	[1/3, -1/3, -1,	1, 1/3, -1/3]	1/3
1/3	[1, 1/3, -1/3,	1/3, -1/3, -1]	-1/3
-1/3	[-1/3, -1, 1/3,	1, 1/3, -1/3]	1/3
1/3	[1/3, -1/3, 1,	1/3, -1/3, -1]	-1/3
-1/3	[-1/3, 1/3, -1,	1, 1/3, -1/3]	1/3
1/3	[1/3, 1, -1/3,	1/3, -1/3, -1]	-1/3
-1/3	[-1, -1/3, 1/3,	1, 1/3, -1/3]	1/3
1/3	[-1/3, 1/3, 1,	1/3, -1/3, -1]	-1/3

Signal Integrity through Coding

CM Noise	EMI	Crosstalk
 Comparators designed to tolerate common mode noise Balanced values across wires 	Codewords designed to minimize EM-field	 Code designed to tolerate some crosstalk Complemented by sensible design
SSO Noise	ISI	Reference-less

Outline

- Introduction and motivation
- Signaling
- Macro architecture
 - Common block
 - Tx
 - Rx
- System Implementation
- Results
- Conclusion

© 2016 IEEE International Solid-State Circuits Conference

© 2016 IEEE International Solid-State Circuits Conference

Common Block

- CmIP consists of:
 - Main PLL
 - Ring Oscillator, produces 2 phase 8UI clock (3.125GHz)
 - Programmable to cover half rate to full rate links (25Gb/s to 12Gb/s)
 - Bandgap
 - Temperature sensor

Transmitter

International Solid-State Circuits Conference

SerDes up to 12mm for MCM Packages in 28nm CMOS

Transmitter Blocks

• SST output driver

Transmitter Blocks

Transmitter Blocks

- SST output driver
 - 4 levels, 300mVpp
 - Balanced, SSO free

Transmitter Blocks

- SST output driver
 - 4 levels, 300mVpp
 - Balanced, SSO free
 - 75 ohms
 - 125Ω || 190Ω
 - Vcm=Vdd/2
 - ¼ rate arch

Transmitter Blocks

- SST output driver
 - 4 levels, 300mVpp
 - Balanced, SSO free
 - 75 ohms
 - 125Ω || 190Ω
 - Vcm=Vdd/2
 - ¼ rate arch
- CMOS output in JTAG/test mode

- Continuous Time Front End:
 - DC coupled, with level shifter
 - T-Coils for passive equalization
 - Multi-input gain stage (decoder) that performs linear combination of incoming signal

- Continuous Time Front End:
 - DC coupled, with level shifter
 - T-Coils for passive equalization
 - Multi-input gain stage (decoder) that performs linear combination of incoming signal
- Discrete Time Front End:
 - 4-ph data sampling system, followed by 4:32 demux

- Continuous Time Front End:
 - DC coupled, with level shifter
 - T-Coils for passive equalization
 - Multi-input gain stage (decoder) that performs linear combination of incoming signal
- Discrete Time Front End:
 - 4-ph data sampling system, followed by 4:32 demux
- Clock data alignment block (CDA) is used to align sampling clock edge to center of data eye

- Continuous Time Front End:
 - DC coupled, with level shifter
 - T-Coils for passive equalization
 - Multi-input gain stage (decoder) that performs linear combination of incoming signal
- Discrete Time Front End:
 - 4-ph data sampling system, followed by 4:32 demux
- Clock data alignment block (CDA) is used to align sampling clock edge to center of data eye
- Wide-band PLL to track correlated jitter (data/clk)
 - Uses 8UI fwd clock as ref clock

Receiver Block Diagrams

Receiver Block Diagrams

Paper 10.1: A Pin- and Power-Efficient 20.83Gb/s/wire 0.94pJ/bit Forwarded Clock CNRZ-5 Coded SerDes up to 12mm for MCM Packages in 28nm CMOS

SerDes up to 12mm for MCM Packages in 28nm CMOS

Outline

- Introduction and motivation
- Signaling
- Macro architecture
 - Common block
 - Tx
 - Rx
- System Implementation
- Results
- Conclusion

Bump Map and Technology

Process:

- TSMC 28nm HPM
- Metal stack is 9 layer: 6X2R + 1 UTALRDL
- DGO process (dual gate oxide, 1.0V and 1.8V devices).
- Devices used: HVT, LVT and nominal VT (3 types)

Bump Map and Technology

- vss ground
 - vdda Rx/PLL analog
 - power (1.0 V)
 - vddh PLL power supply
 - (1.5V-1.8V) vddd – macro digital
 - power supply (1.0V)

- Anabus signal
- Tx FCLK
- Tx signals
- Rx FCLK
- Rx signals
- \bigcirc Unused

Process:

- TSMC 28nm HPM
- Metal stack is 9 layer: 6X2R + 1 UTALRDL
- DGO process (dual gate oxide, 1.0V and 1.8V devices).
- Devices used: HVT, LVT and nominal VT (3 types)

Testchip

- Architecture:
 - One instance of CNRZ-5 IP (Tx + Rx)
 - One common block
 - 62.5 Gb/s and 125 Gb/s over six wires
- Die size (actual without scribe) 2138.4µm x 1386.9µm (2.96sqmm)

Chip Micrograph

Features

Technology	28nm CMOS HPM, VDD=1.0V, 9M, DGO
MCM Channels	Losses (s21) of ~0.6dB, ~1.25dB and ~2.5dB
Data Rate	10.44-20.83 Gb/s/wire (12.5-25 Gbaud)
Power and Energy Efficiency	117.5 mW at 125 Gbps
BER	< 1e-15 at 25 Gbaud
Testability	 IP: Internal loopback; Rx Eyescope; PRBS31 Pattgen and Verification; Analog test bus. Testchip: Pattern generators; Noise
	Generators.

Demo MCM

- Organic GX13 substrate, 222 stack up.
- 19mm square, 18 x 18 BGA, 1mm pitch.
- Populate up to 4 GW die interconnected in pairs.
- Provides up to 3 channels of 5mm, 12mm and 24mm.
- Channel trace length matched to $\sim 1 \mu m$.
- Channel losses (s21) of ~0.6dB, ~1.25dB and ~2.5dB.
- CNRZ-5 channels, 50Ohms:
 - Trace width = 19.5µm
 - Space = 55.5µm
- Two die provide break out to Rx and Tx
 6-wire interfaces plus FCLK respectively.

Evaluation Board

H+S Connectors. Type H&S MXP MCM is solder ball assembled onto a host PCB. Solder ball array 1mm pitch fully populated. Organic substrate.

- MCM body size
 19mm, 18 x 18
 BGA
- 25 Gb/s HS
 signals off-MCM
 to PCB and H
 +S connectors
 from TC2 and
 TC3
- Single PCB design capable of accepting a socket and soldered MCMs

Outline

- Introduction and motivation
- Signaling
- Macro architecture
 - Common block
 - Tx
 - Rx
- System Implementation
- Results
- Conclusion

Results

© 2016 IEEE International Solid-State Circuits Conference Paper 10.1: A Pin- and Power-Efficient 20.83Gb/s/wire 0.94pJ/bit Forwarded Clock CNRZ-5 Coded SerDes up to 12mm for MCM Packages in 28nm CMOS 70 of 76

Measured Power at 125 Gb/s

		mW	mA	V		
8.48%	1.77%	2.084	2.253	0.925	VDDA	
	6.69%	7.862	5.616	1.400	VDDH	CMIP
	0.02%	0.026	0.032	0.800	VDDD	
54.17%	43.20%	50.807	54.927	0.925	VDDA	
	4.76%	5.594	3.996	1.400	VDDH	TXIP
	6.21%	7.300	9.125	0.800	VDDD	
37.35%	24.50%	28.816	31.152	0.925	VDDA	
	9.73%	11.448	8.177	1.400	VDDH	RXIP
	3.12%	3.667	4.584	0.800	VDDD	
		117.605	P _{total} [mW]			
		125	Rate [Gb/s]			
		0.941	E _{bit} [pJ/b]			

Results

© 2016 IEEE International Solid-State Circuits Conference Paper 10.1: A Pin- and Power-Efficient 20.83Gb/s/wire 0.94pJ/bit Forwarded Clock CNRZ-5 Coded SerDes up to 12mm for MCM Packages in 28nm CMOS 72 of 76

15

10

floor

1.0

0.8

.0 F CDA probability

0.2

___0.0 20
Results (Continued)

- Target BER of 1e-15 achieved at 25 Gbaud
 - Specified 12mm MCM channel across power supply corners and temperature stress
- Target BER of 1e-15 achieved at half data rate 12.5 Gbaud on 24 mm channel
- Target BER achieved under stress test (±5% supply tolerance, temp range from 0 to 100 C)
- Target BER achieved at 30 Gbaud on 12mm channel under nominal power supplies and temperature

Conclusion

- Demonstrated an implementation of a SerDes based on CNRZ-5 coding, transmitting 5 bits on 6 correlated wires in every UI
- Coding has built-in resilience to various types of noise which helps lower the power consumption at high speeds
- Implementation uses a forwarded clock architecture and transmits up to 125 Gb/s on 6 wires at 0.94 pJ/bit

References

- [1] Kim et al., "A 10 Gb/s compact low-power serial I/O with DFE-IIR equalization in 65 nm CMOS", IEEE Journal of Solid State Circuits, vol. 44, pp. 3526-3538, 2009.
- [2] Poulton et al., "A 0.54pJ/b 20 Gb/s Ground-Referenced Single-Ended Short-Haul Serial Link in 28nm CMOS for Advanced Packaging Applications," IEEE Journal of Solid State Circuits, vol. 48, pp. 3207-3218, 2013.
- [3] Dickson et al., "A 1.4 pJ/bit, power scalable 16x12 Gb/s source-synchronous I/O with DFE receiver in 32 nm SOI CMOS technology," in *Proc. IEEE Custom Integrated Circuits Conf.*, 2014, pp. 10-5.
- [4] Hormati et al., "Method and Apparatus for Low-Power Chip-to-Chip Communications with Constrained ISI-Ratio", U.S. Patent 9,100,232.
- [5] A. Hormati and A. Shokrollahi, "ISI tolerant signaling: a comparative study of PAM4 and ENRZ," DesignCon 2016.

Thank you