
Fountain Codes

Amin Shokrollahi

EPFL

Overview

PART I: The Erasure Channel
• Communication Problem
• Fountain Codes
• Asymptotic and Finite Length Design
• Designs for very small lengths (3GPP)
• Applications

PART II: General Symmetric Channels
• Communication Problem
• Fountain Codes for Symmetric Channels
• Asymptotic Design
• Applications

BEC

BEC(p1)

BEC(p2)

BEC(p3)

BEC(p4)

BEC(p5)

BEC(p6)

Communication on Multiple Unknown Channels

Example: Popular Download

Example: Peer-to-Peer

Example: Satellite

The erasure probabilities are unknown.

Want to come arbitrarily close to capacity on each of
the erasure channels, with minimum amount of
feedback.

Traditional codes don’t work in this setting since their
rate is fixed.

Need codes that can adapt automatically to the erasure
rate of the channel.

Original Content

Blocks

O
rig

in
al

O
rig

in
al

O
rig

in
al

R
ed

un
da

nt

R
ed

un
da

nt

R
ed

un
da

nt

Traditional FEC

• Fraction of losses must be less than

• Worst user dictates amount of redundancy

• Loss provisioning is complicated and leads to overhead

Problems with FEC

Users adjust to their individual reception rate.

Time

Download
size

FEC + Carousel

• Need fast codes for large content (e.g., Tornado)

• Need high redundancy to avoid coupon collector phenomenon

• Tornado codes run in time O(n) not O(k)

FEC + Carousel

Original
content

Encoded packets
Users reconstruct
Original content as
soon as they receive
enough packets

E
nc

od
in

g
E

ng
in

e
Tr

an
sm

is
si

on

Reconstruction time should depend only on size of content

What we Really Want

Content

Enc

Digital buckets

Fountain Codes

Sender sends a potentially limitless stream of encoded bits.

Receivers collect bits until they are reasonably sure that
they can recover the content from the received bits, and
send STOP feedback to sender.

Automatic adaptation: Receivers with larger loss rate need
longer to receive the required information.

Want that each receiver is able to recover from the minimum
possible amount of received data, and do this efficiently.

Fountain Codes

Fix distribution on , where is number of input
symbols.

For every output symbol sample independently from
and add input symbols corresponding to sampled subset.

Distribution
on

Fountain Codes

Universality and Efficiency

[Universality]
Want sequences of Fountain Codes for which the
overhead is arbitrarily small

[Efficiency]
Want per-symbol-encoding to run in close to constant
time, and decoding to run in time linear in number of
output symbols.

LT-Codes

• Invented by Michael Luby in 1998.

• First class of universal and almost efficient
Fountain Codes

• Output distribution has a very simple form

• Encoding and decoding are very simple

LT-Codes

LT-codes use a restricted distribution on :

Fix distribution on

Distribution is given by

where is the Hamming weight of

Parameters of the code are

2

Insert header, and send

XOR Choose weight

Choose 2
Random original
symbols

Input symbols

Weight Prob

1 0.055

0.0004

0.32

0.13

0.084

100000

Weight table

The LT Coding Process

Decoding

Decoding

Decoding

Decoding

Decoding

Decoding

Decoding

Decoding

Decoding

Average Degree of Distribution should be

Average Degree of Distribution should be

Not covered

Prob. Non-coverageProb. Decoding error

Average Degree of Distribution should be

Not covered

Luby has designed universal LT-codes with average
degree around and overhead

So:

Average degree constant) error probability constant

How can we achieve constant workload per output
symbol, and still guarantee vanishing error probability?

Raptor codes achieve this!

LT-light

Traditional pre-code
Input symbols

δ – fraction erasures

Raptor Codes

Output symbols

Redundant

Checks

Not covered

Raptor Codes

If pre-code is chosen properly, then the LT-distribution can
have constant average degree, leading to linear time
encoding.

Raptor Code is specified by the input length , precode
and output distribution .

How do we choose and ?

X

Raptor Codes: History

Raptor Codes were invented in late 2000, and patented
in 2001.

They were originally designed to solve a speed
bottleneck problem for LT-Codes in Digital Fountain’s
products.

The first preprint of Raptor Codes appeared in late 2002.

Special Raptor Codes: LT-Codes

LT-Codes are Raptor Codes with trivial pre-code: Need
average degree

LT-Codes compensate for the lack of the pre-code with a
rather intricate output distribution.

Pre-code-only (PCO) codes:

Special Raptor Codes: PCO-Codes

Trivial output distribution, state of the art, very low rate
pre-code.

Large computational and storage overhead.

Universal Raptor Codes: Asymptotic Design

Pre-code can be chosen to be of rate very close to

Given any , want to construct output distribution so that after
decoding the residual erasure probability is at most .

The pre-code has to be chosen so that it can successfully decode
if erasure probability is .

Use modified Soliton distribution: Choose

Gives code that can come arbitrarily close to capacity with
constant encoding time per symbol, and linear decoding time!

Finite Length Design

Expected number of output symbols of reduced degree 1, when
x-fraction of input symbols decoded:

Solve

Heuristic: Process is like random walk on set of output symbols of
reduced degree one, with a binomial distribution.

Output distribution can be optimized using linear programming.

Finite Length Design: Error Probabilities

After a candidate output distribution is obtained, and a
precode is determined the error probability of the Raptor
Code can be calculated using a combination of

• Finite Length Analysis of LT-Codes [Karp-Luby-S]

• Finite Length Analysis of the pre-code [S-Urbanke for
certain pre-codes]

Example:

Error probability of LT-decoder

Combined error probability is less than
for overhead less than 2%.

Fraction of decoded input symbols

3GPP-MBMS

Digital Fountain is involved in the 3GPP-MBMS standard for
Multimedia Broadcast Multicast Service to handsets.

The proposal of Digital Fountain is a Raptor Code suited for a
wide range of applications (very small file sizes to large file
sizes).

The pre-coder is a multi-stage code consisting of a suitable
LDPC and a Hamming code.

The LT-part has been particularly designed for robustness and
efficient encoding/decoding (joint work with Michael Luby, and,
in part, Andrew Brown).

Systematic Codes

Systematic versions of Raptor Codes are sometimes
desirable.

The trivial way of making these codes systematic does not
work.

However, there is a method to make these codes
systematic.

Applications: Multi-site downloads

Server 1 Server 2

Content

Reception from
multiple servers

Applications: Path Diversity

original
content

MetacontentTM

Engine

client

client

original
content

client

original
content

MetacontentTM

Engine

original
content

Encoding
Engine

layers

client

client

original
content

client

Applications: Congestion Control

Sender 1 Sender 2 Sender 3

Rec 1 Rec2 Rec 3

Applications: Peer-2-Peer

BIMSC

Content

• How do Raptor Codes designed for the BEC perform on
other symmetric channels (with BP decoding)?

• Information theoretic bounds, and fraction of nodes of
degrees one and two in capacity-achieving Raptor
Codes.

• Some examples

• Applications

Parameters

Overhead , if decoding is possible from
many output symbols.

Channel

Raptor Code with parameters

Measure residual error probability as a function of the
overhead for a given channel.

Incremental Redundancy Codes

Raptor codes are true incremental redundancy codes.

A sender can generate as many output bits as necessary
for successful decoding.

Suitably designed Raptor codes are close to the Shannon
capacity for a variety of channel conditions (from very good
to rather bad).

Raptor codes are competitive with the best LDPC codes
under different channel conditions.

Sequences Designed for the BEC

Type:

Left-regular of degree 4, right Poisson, rate 0.98

Simulations done on AWGN(σ) for various σ

Sequences Designed for the BEC

0.067 0.135 0.194 0.267 0.331 0.391 0.459 0.522 0.584 0.6500.000

Th
re

sh
ol

d

Tu
rb

o

Normalized SNR
Eb/N0

B
es

t d
es

ig
ns

(s

o
fa

r)

Sequences Designed for the BEC

Not too bad, but quality decreases when the amount of
noise on the channel increases.

Need to design better distributions.

Idea: adapt the Gaussian approximation technique of
Chung, Richardson, and Urbanke.

Gaussian Approximation

Assume that the messages sent from input to output
nodes are Gaussian.

Track the mean of these Gaussians from one round to
another.

Degree distributions can be designed using this
approximation.

However, they don’t perform that well.

Anything else we can do with this?

Nodes of Degree 2

Use equality, differentiate, and compare values at 0

where

and

It can be rigorously proved that above condition is
necessary for error probability of BP to converge to zero.

Nodes of Degree 2

What is the fraction of nodes of degree 2 for capacity-
achieving Raptor Codes?

Turns out, that in the limit we need to have equality:

where, in general

and is the LLR of the channel.

Use graph induced on input symbols by output symbols
of degree 2.

Nodes of Degree 2

Nodes of Degree 2: BEC

New output
node of
degree 2

Information Loss!

Nodes of Degree 2: BEC

Fraction of Nodes of Degree 2

If there exists component of linear size (i.e., a giant
component), then next output node of degree 2 has constant
probability of being useless.

Therefore, graph should not have giant component.

This means that for capacity achieving degree distributions
we must have:

On the other hand, if then algorithm cannot start
successfully.

So, for capacity-achieving codes:

General Symmetric Channels: Mimic Proof

Proof is information theoretic: if fraction of nodes of
degree 2 is larger by a constant, then :

• Expectation of the hyperbolic tangent of messages
passed from input to output symbols at given round
of BP is larger than a constant.

• This shows that

• So code cannot achieve capacity.

General Symmetric Channels: Mimic Proof

Fraction of nodes of degree one for capacity-achieving
Raptor Codes:

Therefore, if , and if denote output nodes
of degree one, then

Noisy
observations
of

So

A better Gaussian Approximation

Uses adaptation of a method of Ardakani and Kschischang.

Heuristic: Messages passed from input to output symbols
are Gaussian, but not vice-versa.

Find recursion for the means of these Gaussians, and apply
linear programming.

Density Evolution

Other Applications

Raptor codes have a variety of applications, some outside
the normal communications scenario.

For example, they can be used to perform lossless
compression (joint work with Caire, Shamai, and Verdu).

The algorithm can be used to perform joint source channel
coding.

Conclusions

• Raptor Codes can be adapted to general symmetric
channels using the Belief Propagation algorithm.

• Raptor Codes designed for the BEC are not bad on
other channels, but their performance can be
improved.

• There are no universal codes on channels other than
the BEC, as the fraction of degree 2 nodes in capacity-
achieving codes depends on the channel noise.

• General design techniques can be adapted to design
good Raptor Codes that perform very well under a
variety of channel conditions.

Given LT-code with parameters , calculate the error
probability of the belief propagation decoder given a random
subset of the output symbols.

Stopping sets: seems to be difficult in this case.

Alternative: detailed analysis of the decoder.

• Define the state of the decoder,
• Derive a recursion for the generating function of the states,
• Explain how to calculate these efficiently.

Finite Length Analysis

Decoded Undecoded

Ripple Cloud

Ripple = Set of output symbols of reduced degree 1

Cloud = Set of output symbols of reduced degree > 1

Decoder is successful iff ripple is not empty until the end

Decoder is in state if there are elements in the ripple and
 elements in the cloud, when there are undecoded input symbols
left.

Probability that decoder is in state

Degree
reduces
to zero

Enters
ripple

At each point, at least one ripple element disappears, and
0 or more cloud elements enter the ripple.

What is the distribution of these numbers?

What is ?

Probability that a randomly chosen input symbol reduces its
degree to one exactly when the input symbol is decoded.

Event that a random input symbol is in the cloud when
input symbols undecoded.

Event that a random input symbol is of reduced degree
one after the decoding step.

Allowing Multiple Edges

If we allow multiple edges, the expression for becomes simpler:

The Recursion

State generating function:

Formula gives recursion

Error probability is equal to

Error probability at every step can be calculated precisely.
In practice, it is sufficient to find a good approximation.

Computational Cost

Upate the coefficients of in time

update steps, so in total operations.

Normal calculation:

Operations.

Fast interpolation:

Approximate techniques?

Approximation Algorithms

Concentrate only on hot zones)

Expected Cloud and Ripple Size

Recursions:

Drift terms

» 0

» 1

Approximate Solutions

Translate into difference equation, and then differential equation:

The approximations are due to finite length (with an O(1/k)
error), and due to the approximation of the drift terms.

These are the same solutions as obtained by the tree analysis
(density evolution).

The drift terms explain why the tree analysis is not exact.

Second Moment Recursions

Second Moment Recursions

Second Moment Recursions

Using the second moment recursions an approximate
evolution of the variance can be calculated.

The real values of the cloud and the ripple size are within a
tube of the expected values, and the size of the tube can be
calculated from the second (and higher moment) recursions.

Progressive Giant Component Analysis

A different method for the analysis of the decoder:

Want enough nodes of degree 2 so there exists a giant
component in the induced (random) graph on input symbols.

Analysis yields Soliton distribution in the limit where average
degree of induced graph is 1.

Progressive Giant Component Analysis

Analysis can be used to obtain error bounds for the
decoding algorithm.

It can also be used to obtain capacity-achieving
distributions on the erasure channel.

A modified version can be used to obtain for capacity-
achieving distributions for other symmetric channels.

