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Outline

We will outline in this talk the design and analysis of error-correcting

codes that can be encoded and decoded efficiently and protect against

a fraction of errors that is almost as large as given by theoretical upper

bounds.

Existence of such bounds and codes that asymptotically meet these

bounds was proved in the landmark paper of C.E. Shannon in 1948.

Several codes can be proved to meet the asymptotic bounds. Almost

none of them are equipped with efficient encoders and decoders.
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Gallager 1963

Zyablov 1971
Zyablov-Pinsker 1976

Tanner 1981

Turbo Codes 1993
Berroux-Glavieux-Thitimajshima
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Sipser-Spielman, Spielman 1995
MacKay-Neal, MacKay 1995

Luby-Mitzenmacher-S-Spielman-Stemann 1997
Luby-Mitzenmacher-S-Spielman 1998

Richardson-Urbanke 1999
Richardson-Shokrollahi-Urbanke 1999
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Code Construction

Codes are constructed from sparse bipartite graphs.

5



Code Construction

Any binary linear code has a graphical representation.
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Not any code can be represented by a sparse graph.
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Parameters

Rate n-r
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average left degree
average right degree
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Dual Construction
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Encoding time is proportional to number of edges.

8



Algorithmic Issues

• Encoding?

– Is linear time for the dual construction

– Is quadratic time (after preprocessing) for the Gallager construc-

tion. More later!

• Decoding?

– Depends on the channel,

– Depends on the fraction of errors.
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Decoding on a BSC: Flipping

1

1

unsatisfied check

satisfied check

0

1

1

1

0

10



Decoding on a BSC:
Gallager Algorithm A
(Message passing)
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Decoding on a BSC:
Belief Propagation

x+y+z+u+bm = m=x * y z u* *

a,b( )*(c,d):=(a+c, b+d mod 2)
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Messages in log-likelihood ratios.
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Optimality of Belief Propagation

Belief propagation is bit-optimal if graph has no loops.

Maximizes the probability

P(cm = b | y) =
∑

c∈C

P(c | y).
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Performance on a (3,6)-graph

Shannon limit: 11%

Flipping algorithm: 1%?

Gallager A: 4%

Gallager B: 4% (6.27%)

Erasure decoder: 7%

Belief propagation: 8.7% (10.8%)
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The Binary Erasure Channel (BEC)
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Decoding on a BEC:
Luby-Mitzenmacher-Shokrollahi-Spielman-Stemann
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Decoding on a BEC

Phase 1: Direct recovery
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Decoding on a BEC

Phase 2: Substitution
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Example

(a) (b) (c)

(d) (e) (f)

Complete Recovery
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The (inverse) problem

Have: fast decoding algorithms.

Want: design codes that can correct many errors using these algorithms.

Focus on the BEC in the following.
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Experiments

Choose regular graphs.

An (d, k)-regular graph has rate at least 1− d/k. Can correct at most an

d/k-fraction of erasures.

Choose a random (d, k)-graph.

p0 := maximum fraction of erasures the algorithm can correct.

d k d/k p0
3 6 0.5 0.429
4 8 0.5 0.383
5 10 0.5 0.341
3 9 0.33 0.282
4 12 0.33 0.2572

What are these numbers?
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A Theorem

Luby, Mitzenmacher, Shokrollahi, Spielman, Stemann, 1997:

A randomly chosen (d, k)-graph can correct a p0-fraction of erasures with

high probability if and only if

p0 · (1− (1− x)k−1)d−1 < x for x ∈ (0, p0).
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Analysis: (3,6)-graphs

Expand neighborhoods of message nodes.
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Analysis: (3,6)-graphs

pi probability that message node is still erased after ith iteration.
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Successful Decoding

Condition:

p0(1− (1− pi)
5)2<pi
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Analysis: (3,6)-graphs

Making arguments exact:

• Neighborhood is tree-like: high probability, standard argument.

• Above argument works for expected fraction of erasures at ℓth round.

Real value is sharply concentrated around expected value pℓ: Edge

exposure martingale, Azuma’s inequality.
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The General Case

Let λi and ρi be the fraction of edges of degree i on the left and the

right hand side, respectively.

Let λ(x) :=
∑

i λix
i−1 and ρ(x) :=

∑

i ρix
i−1.

Condition for successful decoding for erasure probability p0 is then

p0λ (1− ρ(1− x)) < x

for all x ∈ (0, p0).
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Belief propagation

Richardson-Urbanke, 1999:

fℓ: density of the probability distribution of the messages passed from

the check nodes to the message nodes at round ℓ of the algorithm.

P0: density of the error distribution (in log-likelihood representation).

Consider (d, k) regular graph.

Γ
(

fℓ+1

)

=
(

Γ
(

P0 ⊗ fℓ
⊗(k−1)

))⊗(d−1)
,

where Γ is a hyperbolic change of measure function,

Γ(f)(y) := f(ln coth y/2)/sinh(y),

and ⊗ denotes convolution.

We want fℓ to converge to a Delta function at ∞.

Gives rise to high-dimensional optimization algorithms.

28



Achieving capacity

Want to design codes that can recover from a fraction of 1−R of erasures

(asymptotically).

Want to have λ and ρ so that

p0λ(1− ρ(1− x)) < x

for all x ∈ (0, p0), and p0 arbitrarily close to

1−R =

∫ 1

0
ρ(x)dx

∫ 1

0
λ(x)dx

.
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Tornado codes

Extremely irregular graphs provide for any rate R sequences of codes

which come arbitrarily close to the capacity of the erasure channel!

Degree structure?

Choose design parameter D.

λ(x) :=
1

H(D)

(

x+
x2

2
+ · · ·+

xD

D

)

ρ(x) := exp (µ(x− 1)),

where H(D) = 1+ 1/2+ · · ·+1/D and µ = H(D)/ (1− 1/(D +1)).
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Tornado Codes: Degree Distribution
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Right regular codes

Shokrollahi, 1999:

Graphs that are regular on the right.

Degrees on the left are related to the Taylor expansion of

(1− x)1/m.

Methodology for constructing capacity-achieving sequences by Oswald-

Shokrollahi, 2000.

Also show that the right regular sequence is the best in a certain sense.
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Right Regular Codes: Degree Distribution
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Other channels?

f density function.

λ(f) :=
∑

i λif
⊗(i−1).

ρ(f) :=
∑

i ρif
⊗(i−1).

Γ
(

fℓ+1

)

= ρ (Γ (P0 ⊗ λ(fℓ))).

Want P0 such that fℓ → ∆∞.
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Conditions on the density functions

Richardson-Shokrollahi-Urbanke, 1999:

• Consistency: if the channel is ”symmetric”, then the density functions

fℓ satisfy f(x) = f(−x)ex.

• Fixed point theorem: If Perr(fi) = Perr(fj) for i < j, then fi = fj is a

fixed point of the iteration.
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Conditions on the density functions

• Stability: let

r := − lim
n→∞

1

n
logPerr(P

⊗n
0 ).

Then for λ2ρ
′(1) > er we have Perr(fℓ) > ǫ for some fixed ǫ and all ℓ.

If λ2ρ
′(1) < er, then the fixed point ∆∞ is stable.

Perr(f) :=
∫ 0

−∞
f(x)dx

is the error probability.
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Stability

• Erasure channel with erasure probability p0:

λ2ρ
′(1) ≤

1

p0
.

• BSC channel: with probability p:

λ2ρ
′(1) ≤

1

2
√

p(1− p)
.

• AWGN channel: with variance σ2:

λ2ρ
′(1) ≤ e

− 1
2σ2 .
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Stability for the Erasure Channel

Shokrollahi, 1999:

λ(1−ρ(1−  ))p
0 x - x

λ(1−ρ(1−  ))p
0

x - x

not stablestable
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Flatness: Higher Stability Conditions

Shokrollahi, 2000:

(λm(x), ρm(x)) capacity achieving sequence of degree distributions.

Then:

(1−R)λm(1− ρm(1− x))− x

converges uniformly to the zero-function on the interval [0,1−R].

No equivalent known for other channels.
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Flatness: Higher Stability Conditions

λ(1−ρ(1−  )) − p
0

x x
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Capacity achieving

No sequences of c.a. degree distributions for channels other than the

erasure channel known.

Conjecture: They exist!
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Open problems

Asymptotic theory

1. Classification of capacity achieving sequences for the erasure channel.

2. Capacity achieving sequences for other channels.

3. Exponentially small error probabilities for the decoder (instead of

polynomially small).

Explicit constructions

1. Constructions using finite geometries.

2. Construction using Reed-Solomon-Codes.

3. Algebraic constructions.

Short codes

Graphs with loops.
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Algorithmic issues

1. Design and analysis of new decoding algorithms.

2. Design of new encoders.

Randomness

Use of randomness in other areas: random convolutional codes?.
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