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Communication on Multiple Unknown Channels



Example: Popular Download



Example: Peer-to-Peer



Example: Satellite



The erasure probabilities are unknown.

Want to come arbitrarily close to capacity on each of the 
erasure channels, with minimum amount of feedback.

Traditional codes don’t work in this setting since their 
rate is fixed.

Need codes that can adapt automatically to the erasure 
rate of the channel.
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Reconstruction time should depend only on size of content

What we Really Want
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Applications: Multi-site downloads 

Server 1 Server 2

Content

Reception from 
multiple servers



Applications: Path Diversity 



Sender 1 Sender 2 Sender 3

Rec 1 Rec2 Rec 3

Applications: Peer-2-Peer 



Fountain Codes

Sender sends a potentially limitless stream of encoded bits. 

Receivers collect bits until they are reasonably sure that they 
can recover the content from the received bits, and send 
STOP feedback to sender.

Automatic adaptation: Receivers with larger loss rate need 
longer to receive the required information.

Want that each receiver is able to recover from the minimum
possible amount of received data, and do this efficiently. 



Fountain Codes

Fix distribution      on      , where    is number of input 
symbols.

For every output symbol sample independently from         
and add input symbols corresponding to sampled subset.
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Universality and Efficiency

[Universality] 
Want sequences of Fountain Codes for which the 
overhead is arbitrarily small

[Efficiency] 
Want per-symbol-encoding to run in close to constant 
time, and decoding to run in time linear in number of 
output symbols.



LT-Codes

• Invented by Michael Luby in 1998.

• First class of universal and almost efficient 
Fountain Codes

• Output distribution has a very simple form

• Encoding and decoding are very simple



LT-Codes

LT-codes use a restricted distribution on       :

Fix distribution                              on

Distribution      is given by

where     is the Hamming weight of 

Parameters of the code are
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100000

Weight table

The LT Coding Process



Decoding



Decoding



Decoding



Decoding



Decoding



Decoding



Decoding



Decoding



Decoding



Average Degree of Distribution should be 



Average Degree of Distribution should be 

Not covered

Prob. Non-coverageProb. Decoding error



Average Degree of Distribution should be 

Not covered

Luby has designed universal LT-codes with average 
degree around                    and overhead 



So:

Average degree constant means error probability constant

How can we achieve constant workload per output 
symbol, and still guarantee vanishing error probability?

Raptor codes achieve this!



LT-light

Traditional pre-code
Input symbols

d – fraction erasures

Raptor Codes

Output symbols



Redundant

Checks

Not covered

Raptor Codes

If pre-code is chosen properly, then the LT-distribution can
have constant average degree, leading to linear time 
encoding.

Raptor Code is specified by the input length   , precode     
and output distribution           .

How do we choose           and    ?

X



Special Raptor Codes: LT-Codes

LT-Codes are Raptor Codes with trivial pre-code: Need 
average degree

LT-Codes compensate for the lack of the pre-code with a 
rather intricate output distribution.



Progressive Giant Component Analysis

A different method for the analysis of the decoder:

Want enough nodes of degree 2 so there exists a giant 
component in the induced (random) graph on input symbols.



Progressive Giant Component Analysis

First giant component removes    -fraction of input 
symbols.

Residual distribution:

Fraction of residual nodes of degree 2:

Average degree of new induced graph:

Condition:

“Ideal distribution:” 



Progressive Giant Component Analysis

Analysis does not use “tree-assumption”, but only 
properties of induced graph.

Analysis can be used to obtain error bounds for the 
decoding algorithm.

It can also be used to obtain capacity-achieving 
distributions on the erasure channel.

A modified version can be used to obtain       for capacity-
achieving distributions for other symmetric channels.



Nodes of Degree 2



New output 
node of 
degree 2

Information Loss!

Nodes of Degree 2



Fraction of Nodes of Degree 2

If there exists component of linear size (i.e., a giant 
component), then next output node of degree 2 has constant 
probability of being useless.

Therefore, graph should not have giant component.

This means that for capacity achieving degree distributions 
we must have: 

On the other hand, if                  then algorithm cannot start 
successfully.

So,                  for capacity-achieving codes: 



The   -ary symmetric channel (large  )

Double verification decoding (Luby-Mitzenmacher):

If     and    are correct, then they 
verify   . Remove all of them from 
graph and continue.

Can be shown that number of correct output symbols 
needs to be at least

Times number of input symbols.



The   -ary symmetric channel (large  )

More sophisticated algorithms: induced graph!

If two input symbols are connected by a correct output 
symbol, and each of them is connected to a correct output 
symbol of degree one, then the input symbols are verified. 
Remove from them from graph.



The   -ary symmetric channel (large  )

More sophisticated algorithms: induced graph!

More generally: if there is a path consisting of correct 
edges, and the two terminal nodes are connected to 
correct output symbols of degree one, then the input 
symbols get verified. (More complex algorithms.)



The   -ary symmetric channel (large  )

Limiting case: Giant component consisting of 
correct edges, two correct output symbols of 
degree one “poke” the component. So, ideal 
distribution “achieves” capacity.



Binary Memoryless Symmetric Channels 

What is the fraction of nodes of degree 2 for capacity-
achieving Raptor Codes?

where, in general

and    is the LLR of the channel.





General Symmetric Channels: Mimic Proof

Proof is information theoretic: if fraction of nodes of 
degree 2 is larger by a constant, then :

• Expectation of the hyperbolic tangent of messages 
passed from input to output symbols at given round 
of BP is larger than a constant.

• This shows that

• So code cannot achieve capacity.  



General Symmetric Channels: Mimic Proof

Fraction of nodes of degree one for capacity-achieving 
Raptor Codes:

Therefore, if               , and if                     denote output nodes 
of degree one, then   

Noisy  
observations 
of

So



Very Good Degree Distribution

In the case of the BEC this distribution is equal to the 
ideal distribution (hence generalization).

Uses certain threshold phenomena in random graphs. 
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Conclusions

• For LT- and Raptor codes, some decoding algorithms 
can be phrased directly in terms of subgraphs of graphs 
induced by output symbols of degree 2. 

• This leads to a simpler analysis without the use the tree 
assumption.

• For the BEC, and for the q-ary symmetric channel (large 
q) we obtain essentially the same limiting capacity-
achieving degree distribution, using the giant 
component analysis.

• An information theoretic analysis gives the optimal 
fraction of output nodes of degree 2 for general 
memoryless symmetric channels.

• A graph analysis reveals very good degree distributions, 
which perform very well experimentally.


