
Threshold Phenomena and Fountain Codes

Amin Shokrollahi

EPFL

Parts are joint work with M. Luby, R. Karp, O. Etesami

BEC(p1)

BEC(p2)

BEC(p3)

BEC(p4)

BEC(p5)

BEC(p6)

Communication on Multiple Unknown Channels

Example: Popular Download

Example: Peer-to-Peer

Example: Satellite

The erasure probabilities are unknown.

Want to come arbitrarily close to capacity on each of the
erasure channels, with minimum amount of feedback.

Traditional codes don’t work in this setting since their
rate is fixed.

Need codes that can adapt automatically to the erasure
rate of the channel.

Original
content

Encoded packets
Users reconstruct
Original content as
soon as they receive
enough packets

E
nc
od
in
g

E
ng
in
e

Tr
an
sm
is
si
on

Reconstruction time should depend only on size of content

What we Really Want

Content

Enc

Digital buckets

Applications: Multi-site downloads

Server 1 Server 2

Content

Reception from
multiple servers

Applications: Path Diversity

Sender 1 Sender 2 Sender 3

Rec 1 Rec2 Rec 3

Applications: Peer-2-Peer

Fountain Codes

Sender sends a potentially limitless stream of encoded bits.

Receivers collect bits until they are reasonably sure that they
can recover the content from the received bits, and send
STOP feedback to sender.

Automatic adaptation: Receivers with larger loss rate need
longer to receive the required information.

Want that each receiver is able to recover from the minimum
possible amount of received data, and do this efficiently.

Fountain Codes

Fix distribution on , where is number of input
symbols.

For every output symbol sample independently from
and add input symbols corresponding to sampled subset.

Distribution
on

Fountain Codes

Universality and Efficiency

[Universality]
Want sequences of Fountain Codes for which the
overhead is arbitrarily small

[Efficiency]
Want per-symbol-encoding to run in close to constant
time, and decoding to run in time linear in number of
output symbols.

LT-Codes

• Invented by Michael Luby in 1998.

• First class of universal and almost efficient
Fountain Codes

• Output distribution has a very simple form

• Encoding and decoding are very simple

LT-Codes

LT-codes use a restricted distribution on :

Fix distribution on

Distribution is given by

where is the Hamming weight of

Parameters of the code are

2

Insert header, and send

XOR Choose weight

Choose 2
Random original
symbols

Input symbols

Weight Prob

1 0.055

0.0004

0.32

0.13

0.084

100000

Weight table

The LT Coding Process

Decoding

Decoding

Decoding

Decoding

Decoding

Decoding

Decoding

Decoding

Decoding

Average Degree of Distribution should be

Average Degree of Distribution should be

Not covered

Prob. Non-coverageProb. Decoding error

Average Degree of Distribution should be

Not covered

Luby has designed universal LT-codes with average
degree around and overhead

So:

Average degree constant means error probability constant

How can we achieve constant workload per output
symbol, and still guarantee vanishing error probability?

Raptor codes achieve this!

LT-light

Traditional pre-code
Input symbols

d – fraction erasures

Raptor Codes

Output symbols

Redundant

Checks

Not covered

Raptor Codes

If pre-code is chosen properly, then the LT-distribution can
have constant average degree, leading to linear time
encoding.

Raptor Code is specified by the input length , precode
and output distribution .

How do we choose and ?

X

Special Raptor Codes: LT-Codes

LT-Codes are Raptor Codes with trivial pre-code: Need
average degree

LT-Codes compensate for the lack of the pre-code with a
rather intricate output distribution.

Progressive Giant Component Analysis

A different method for the analysis of the decoder:

Want enough nodes of degree 2 so there exists a giant
component in the induced (random) graph on input symbols.

Progressive Giant Component Analysis

First giant component removes -fraction of input
symbols.

Residual distribution:

Fraction of residual nodes of degree 2:

Average degree of new induced graph:

Condition:

“Ideal distribution:”

Progressive Giant Component Analysis

Analysis does not use “tree-assumption”, but only
properties of induced graph.

Analysis can be used to obtain error bounds for the
decoding algorithm.

It can also be used to obtain capacity-achieving
distributions on the erasure channel.

A modified version can be used to obtain for capacity-
achieving distributions for other symmetric channels.

Nodes of Degree 2

New output
node of
degree 2

Information Loss!

Nodes of Degree 2

Fraction of Nodes of Degree 2

If there exists component of linear size (i.e., a giant
component), then next output node of degree 2 has constant
probability of being useless.

Therefore, graph should not have giant component.

This means that for capacity achieving degree distributions
we must have:

On the other hand, if then algorithm cannot start
successfully.

So, for capacity-achieving codes:

The -ary symmetric channel (large)

Double verification decoding (Luby-Mitzenmacher):

If and are correct, then they
verify . Remove all of them from
graph and continue.

Can be shown that number of correct output symbols
needs to be at least

Times number of input symbols.

The -ary symmetric channel (large)

More sophisticated algorithms: induced graph!

If two input symbols are connected by a correct output
symbol, and each of them is connected to a correct output
symbol of degree one, then the input symbols are verified.
Remove from them from graph.

The -ary symmetric channel (large)

More sophisticated algorithms: induced graph!

More generally: if there is a path consisting of correct
edges, and the two terminal nodes are connected to
correct output symbols of degree one, then the input
symbols get verified. (More complex algorithms.)

The -ary symmetric channel (large)

Limiting case: Giant component consisting of
correct edges, two correct output symbols of
degree one “poke” the component. So, ideal
distribution “achieves” capacity.

Binary Memoryless Symmetric Channels

What is the fraction of nodes of degree 2 for capacity-
achieving Raptor Codes?

where, in general

and is the LLR of the channel.

General Symmetric Channels: Mimic Proof

Proof is information theoretic: if fraction of nodes of
degree 2 is larger by a constant, then :

• Expectation of the hyperbolic tangent of messages
passed from input to output symbols at given round
of BP is larger than a constant.

• This shows that

• So code cannot achieve capacity.

General Symmetric Channels: Mimic Proof

Fraction of nodes of degree one for capacity-achieving
Raptor Codes:

Therefore, if , and if denote output nodes
of degree one, then

Noisy
observations
of

So

Very Good Degree Distribution

In the case of the BEC this distribution is equal to the
ideal distribution (hence generalization).

Uses certain threshold phenomena in random graphs.

Sequences Designed for the BEC

0.067 0.135 0.194 0.267 0.331 0.391 0.459 0.522 0.584 0.6500.000
Normalized SNR
Eb/N0

Be
st

 d
es

ig
ns

(s

o
fa

r)

Conclusions

• For LT- and Raptor codes, some decoding algorithms
can be phrased directly in terms of subgraphs of graphs
induced by output symbols of degree 2.

• This leads to a simpler analysis without the use the tree
assumption.

• For the BEC, and for the q-ary symmetric channel (large
q) we obtain essentially the same limiting capacity-
achieving degree distribution, using the giant
component analysis.

• An information theoretic analysis gives the optimal
fraction of output nodes of degree 2 for general
memoryless symmetric channels.

• A graph analysis reveals very good degree distributions,
which perform very well experimentally.

