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Elements of Coding Theory

Message Channel Received

oioroorco [
001001 00100

How do we correct the errors?

By cleverly appending redundant information
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Elements of Coding Theory

By cleverly appending redundant information

001001 1001001001 100101

Q01101100000 100110100

Use the knowledge of how the redundancy was formed to
correct the errors
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What is Coding Theory About?

e How do we design the redundancy so that
- we use as little redundancy as possible
- We can correct as many errors as possible

e What are the fundamental limits?
e How do we “encode” efficiently?
e How de we “decode” efficiently?

More than 50 years of coding theory have been about
answering these questions. Research has revealed many
solutions using algebra, combinatorics, probability theory,
algebraic geometry, graph theory, algorithm design, .....
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Algebraic Theory

e How do we design the redundancy so that
- we use as little redundancy as possible
- We can correct as many errors as possible

o Attempt: use structure of a vector space.

e A linear code of dimension k£ and length » over an
alphabet of size g 1s a k-dimensional subspace of GF(g)”

e The “redundancy” is added by embedding GF(g)* into
this vector space.
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Algebraic Theory

e How do we design the redundancy so that
- we use as little redundancy as possible
- We can correct as many errors as possible

e Error-correction: minimum weight of a nonzero
codeword (“weight” of a vector = number of nonzero
coordinates -- note dependency on chosen basis).

e [f the mmimum weight 1s d then we can (theoretically)
correct up to (d-1)/2 errors
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Algebraic Theory

e How do we “encode” efficiently? Linear Algebra

* How de we “decode” efficiently? Question of the agens....
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What is this Talk about?

Can we use Computer Algebra for Practical Decoding
of algebraic codes?

Pro: asymptotically faster algorithms.

Con: Slow and costly in commodity hardware.

Example where methods from CA lead to better design.
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Reed-Solomon Codes

g(z) = (- D(z—0)--- (z — o’
C={felF,;zr]l<q—1| f=0mod g}

dm(C)=n—-d+1=:k

minimum distance = d



Encoding

CRERC R e E |
gl d |
Cox S Gl e A G B

c(x) mod g(z) = r(x)

_/"‘O o o o —’r'd_2

el )z —0) - (z—a"%)
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Example

B O =y

0Gj+1  YGj+1 Baj+1

LFSR(g)
Ag—-5 W5 Wg—3z Ay—3 A2
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LFSR

Output of the LFSR(g) 1s the remainder of the
division of input by g.
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Decoding Chain

g(z) = (z = L)z = o) SHEEsaia

Received
RO - Up ] Syndromes

Error locator

Chien Search

&  Error values
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Finding the Error Locations

Error locator polynomial

h(z) =ho+hiz+- +h12"

Error locations

{i | h(a™") =0}
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Finding the Error Locations

Find zeros of a polynomial

(Ohee st it wssee medthodds them Campputtr Al

Well, no. Way too expensive in hardware.
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The Reality: Chien Search

Try all nonzero elements of the field!
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Hard Disks
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Hard Disks

Boom Head Sector Spindle  Track  Platter

Cylinder
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Hard Disks

Fraek




Chien Search

Old sector size: 512 bytes

New sector size: 4 kilobytes

RS-code is defined over F 496

Chien search becomes bottleneck
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Chien Search

Martin Hassner, Hitachi Global Storage
Solutions:

Can we reduce the running time of the
Chien Search?

Shahyad/0-December 2012



Enter Computer Algebra
1

p (o)
@.5 6 '0




Enter Computer Algebra




Enter Computer Algebra
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Chien Search
hot+hix+hoz’+hsz® + hyz*+ hsx®

e AR AR T

| —
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Multiple Evaluation

ho + hgﬂgi
ha3% + hs 3>t —

hiB* + h3B* —

DFT(3)

||

o
— (0

—— h(8'p?)

3 values 1n every cycle
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ircuits

C

=

6—4
§ 2
ho

YL
=

6—3
=%
s

i

30
T

ho

DFT(3)

e )

e =)
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ircuits

C

SR SE
e T

¥/, nﬂt,.

Ja =" e BT &

|

lly same area as before

Essentia
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Circuits

Three times the speed
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Decoding Chain

Syndromes (7

Chien Search

Error values
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Syndromes

Hlen G o ,ozd_Q} Not closed under P

g+ U1+ -+ Uy

u(1), u(a), ..., u(a®?)
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Enter Coding Theory

d—2
Change the code. g(x) = H(w — o)

Theorem: Resulting code 1s generalized RS.
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New Syndrome Calculation

1
p-{1,a, e oﬂf&zwa} Not closed under p
,02

Uy 2 a5 s e = o T

u(1) o (d—2)/3
<13 5 3» -v(%i%/é)))
e

E - u(pa
u(p

u(p?ali=2)/3)

n—1



Decoding Chain

Syndromes )

Chien Search

Error values
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BM Unit

Still not really bottleneck.

Speed-up using DFT’s probably possible.
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Final Remarks

Method works for every divisor of g-1 (not just 3).

For a divisor s of g-1, we get speed-up by factor s at the
expense of DFT unuits.

Surprise: method also works for the standardized [255,239,17]
code, even though the set of roots 1s not closed!

Method can be used 1n legacy systems for speed-up.
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Theorem

Code as described above 1s generalized RS.

Shahyad/0-December 2012



Proof

Show that check matrix 1s of the form

1 1 1
1 2 Un—1
2 2 2
y o A1
r—1 r—1 r—1
Yq (o & |
Qp,...,0n C IEFq distinct

A, ... A, 4D
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Proof

Check matrix 1s of the form

Vol O ] O
0 Vi ]| O
0| 0 |V

Vo, V1, Vo Vandermonde matrices
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Proof

Check matrix 1s of the form

1 1 1 1
q o O —1 7%
2 2 2 2
al 042 an—l an
r—1 r—1 r—1 r—1
vy g Cn_1 Gy

2
i o) = | P da. e
§=0
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Future Work?

Try to come up with method for the case where g-1 1s 2 times a
prime.

Speedup of the BM unit?

FPGA implementation?
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