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Elements of Coding Theory

Message Channel Received

001001100100 001101000101
001001100100001001100100

How do we correct the errors?
By cleverly appending redundant information
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Elements of Coding Theory

By cleverly appending redundant information

0010011001001001100101

0011011000001001110100

Use the knowledge of how the redundancy was formed to 
correct the errors
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What is Coding Theory About?

• How do we design the redundancy so that 
- we use as little redundancy as possible 
- we can correct as many errors as possible 

• What are the fundamental limits? 

• How do we “encode” efficiently?  

• How de we “decode” efficiently? 

More than 50 years of coding theory have been about 
answering these questions. Research has revealed many 
solutions using algebra, combinatorics, probability theory, 
algebraic geometry, graph theory, algorithm design, .....
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Algebraic Theory

• How do we design the redundancy so that 
- we use as little redundancy as possible 
- we can correct as many errors as possible 

• Attempt: use structure of a vector space. 

• A linear code of dimension k and length n over an 
alphabet of size q is a k-dimensional subspace of GF(q)n 

• The “redundancy” is added by embedding GF(q)k into 
this vector space.
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Algebraic Theory

• How do we design the redundancy so that 
- we use as little redundancy as possible 
- we can correct as many errors as possible 

• Error-correction: minimum weight of a nonzero 
codeword (“weight” of a vector = number of nonzero 
coordinates -- note dependency on chosen basis). 

• If the minimum weight is d then we can (theoretically) 
correct up to (d-1)/2 errors
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• How do we “encode” efficiently? Linear Algebra 

• How de we “decode” efficiently? Question of the agens....

Algebraic Theory
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What is this Talk about?

Can we use Computer Algebra for Practical Decoding 
of algebraic codes?

Pro: asymptotically faster algorithms.

Con: Slow and costly in commodity hardware.

Example where methods from CA lead to better design.
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Fqh↵i = ⇥

g(x) = (x� 1)(x� ↵) · · · (x� ↵

d�2)

C = {f 2 Fq[x]<q�1 | f ⌘ 0 mod g}

dim(C) = n� d + 1

minimum distance = d

Reed-Solomon Codes

=: k
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Encoding

c0 c1 · · · ck�1

c(x) mod g(x) = r(x)

c0x
d�1 + c1x

d + · · · + ck�1x
k�1

�r0 · · · � rd�2

g(x) = (x� 1)(x� ↵) · · · (x� ↵

d�2)



Shahyad70-December 2012

g(x) = x

3 � �x

2 � �x� �

Example

�
���

�� LFSR(g)
aj aj+1aj�1

aj+1��aj+1�aj+1

ak�5 ak�4 ak�3 ak�2 ak�1aj�5 aj�4 aj�3 aj�2
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LFSR(g)

Output of the LFSR(g) is the remainder of the  
division of input by g. 

LFSR
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c0 c1 · · · cn�1

{i | h(↵�i) = 0}

h(x) v(x)

u(1), . . . , u(↵d�2)Syndromes

BM unit

Chien Search

Error values

Decoding Chain

Received
u0 u1 · · · un�1u0 u1 · · · un�1

Error locator

g(x) = (x� 1)(x� ↵) · · · (x� ↵

d�2)
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Finding the Error Locations

h(x) = h0 + h1x + · · · + ht�1x
t�1

Error locations

{i | h(↵�i) = 0}

Error locator polynomial
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Finding the Error Locations

Find zeros of a polynomial

One could use methods from Computer Algebra

Well, no. Way too expensive in hardware.

One should use methods from Computer Algebra
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The Reality: Chien Search

Try all nonzero elements of the field!

↵�0

h0

↵�1

h1

↵�2

h2

↵�3

h3

↵�4

h4
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Hard Disks
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Hard Disks
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Track

Sector

Hard Disks
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Chien Search

Old sector size:  512 bytes

New sector size:  4 kilobytes

Chien search becomes bottleneck

RS-code is defined over F4096
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Chien Search

Martin Hassner, Hitachi Global Storage  
Solutions: 

Can we reduce the running time of the 
Chien Search?
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↵0
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↵7

↵8
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↵11 ↵12

↵13

↵14

�0

�1

�2

�3

�4

⇢0

⇢1

⇢2

⇢

�0⇢

�1⇢
⇢�3

�2⇢

�4⇢

�1⇢2

�0⇢2

�2⇢2

�3
⇢2

�4⇢2

Enter Computer Algebra
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Enter Computer Algebra
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h0+h1x+
h2x

2+h3x
3

h4x
4

h5x
5+ +

Chien Search

h0 + h1�
i⇢j + h2�

2i⇢2j + h3�
3i + h4�

4i⇢j + h5�
5i⇢2j
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h0 + h3�
3i

h2�
2i + h5�

5i

h1�
i + h3�

4i

1 1 1

1 ⇢ ⇢2

1 ⇢2 ⇢

h(�i)

h(�i⇢)

h(�i⇢2)

3 values in every cycle

Multiple Evaluation

DFT(3)
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Circuits

��0

h0

��3

h3

��1

h1

��4

h4

��2

h2

��5

h5

h(��i) h(��i⇢�1) h(��i⇢�2)

DFT(3)

↵�0

h0

↵�1

h1

↵�2

h2

↵�3

h3

↵�4

h4

↵�5

h5
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Essentially same area as before

Circuits
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Three times the speed

Circuits
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Syndromes

BM 

Chien Search

Error values

Decoding Chain

?
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Syndromes

u0 + u1x + · · · + un�1x
n�1

{1, ↵, ↵2, · · · , ↵d�2}

u(1), u(↵), . . . , u(↵d�2)

Not closed under ⇢
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Enter Coding Theory

Change the code.

LFSR(g)LFSR(g0)

LFSR(g1)

LFSR(g2)

D
FT

(3
)

ID
FT

(3
)

g(x) =
d�2Y

i=0

(x� ↵

i)

g

0

(x) =
Y

i⌘0 mod 3

(x� ↵

i)

g

1

(x) =
Y

i⌘1 mod 3

(x� ↵

i)

g

2

(x) =
Y

i⌘2 mod 3

(x� ↵

i)

Theorem: Resulting code is generalized RS. 
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New Syndrome Calculation

u0 + u1x + · · · + un�1x
n�1

{1, ↵, ↵2, · · · , ↵d�2}

u(1), u(↵), . . . , u(↵d�2)

       closed under ⇢Not{1, ↵, · · · , ↵(d�2)/3}
1
⇢
⇢2

·

u(⇢), . . . , u(⇢↵(d�2)/3)
u(1), . . . , u(↵(d�2)/3)

u(⇢2), . . . , u(⇢2↵(d�2)/3)
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Syndromes

BM 

Chien Search

Error values

?

?

Decoding Chain
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BM Unit

Still not really bottleneck.

Speed-up using DFT’s probably possible.
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Final Remarks

Method works for every divisor of q-1 (not just 3).

For a divisor s of q-1, we get speed-up by factor s at the  
expense of DFT units.

Surprise: method also works for the standardized [255,239,17] 
code, even though the set of roots is not closed!

Method can be used in legacy systems for speed-up.
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Theorem

Code as described above is generalized RS.
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Proof

Show that check matrix is of the form

↵1, . . . ,↵n 2 Fq distinct

�1 · �2 · · · �n 6= 0

0

BBBBB@

1 1 · · · 1 1
↵1 ↵2 · · · ↵n�1 ↵n

↵2
1 ↵2

2 · · · a2
n�1 a2

n
...

...
. . .

...
...

↵r�1
1 ↵r�1

2 · · · ↵r�1
n�1 ↵r�1

n

1

CCCCCA
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Proof

0

@
V0 0 0
0 V1 0
0 0 V2

1

A ·

0

@

0

@
1 1 1
1 ⇢ ⇢2

1 ⇢2 ⇢

1

A⌦ Im

1

A

Check matrix is of the form

V0, V1, V2 Vandermonde matrices
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Proof

Check matrix is of the form

0

BBBBB@

1 1 · · · 1 1
↵1 ↵2 · · · ↵n�1 ↵n

↵2
1 ↵2

2 · · · a2
n�1 a2

n
...

...
. . .

...
...

↵r�1
1 ↵r�1

2 · · · ↵r�1
n�1 ↵r�1

n

1

CCCCCA

{↵1, . . . ,↵n} =
2[

j=0

{⇢j , ⇢j↵, . . . , ⇢j↵m�1}
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Publication
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Future Work?

Try to come up with method for the case where q-1 is 2 times a 
prime.

Speedup of the BM unit?

FPGA implementation?


