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Motivation

The decoding of various classes of algebraic codes leads
to the computation of a nonzero element in the kernel
of a structured matrix.

Can we use the displacement method to perform this
task more efficiently?

Yes, but with some restrictions.



Codes

Codes are used when messages are to be transmitted
over noisy channels.
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Linear codes
A k-dimensional subspace of Fy is called an [n, k],-code.

n IS called the block-length, and k is called the dimen-
sion of the code.

The Hamming weight of a word x is the number of its
nonzero entries.

The minimum distance of a linear code is the minimum
welight of a nonzero codeword, or the minimum distance
between two distinct codewords.




Error correction

An [n, k,d],~code is an [n, k],-code of minimum distance
d .

It is capable of correcting up to e:= (d—1)/2 errors.

Hamming balls of
radius e




Beyond Error-correction Bound

An [n,k,e,bl,-code is [n,k]s,-code such that any Ham-
ming ball of radius e contains at most b codewords.

e [n,k,d]-code is [n, k, n,q¢"],~code.

e [n,k,d]q-code is [n,k, (d—1)/2, 1],~-code.

Interested in: large e, small b, and efficient reconstruc-
tion algorithms.

[n,k,e12]-Code




Reed-Solomon Codes

x1,...,2n distinct elements of Fq, and k < n.

’Y:FQ[X]</€_>FZ]L7 f'_>(f(x1>77f(xn>>

Image of ~ is a linear code of block-length n over Fq.
It is called a Reed-Solomon code or RS-code.




Parameters of Reed-Solomon Codes

Theorem. Nonzero polynomial of degree m over a
field can have at most m roots in the field.

Implication:

above code has dimension k and minimum distance n —

k+ 1.

Encoding is “easy:" multiplication of a Vandermonde
matrix with a vector.

Decoding?



Decoding
Decoding problem (after Welch-Berlekamp):
Let (y1,---,yn) € Fy. Want polynomial f €

Fqlz].; such that at least (n + k)/2 of the values
f(x1),..., f(xy) coincide with those of v;.

(1) Compute g € Fq[x]<(n_|_k)/2 and h € Fq[x]g(n_k)/z,
not both zero, such that

Vi=1,...,n: g(xz;) + y;h(x;) = 0.

(2) Then f = —g/h.

Let H .= g9+ fh.
Then deg(H) < (n+k)/2.

But: H has at least (n+ k)/2 zeros!
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n =6 and k = 4:
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List-Decoding of Reed-Solomon Codes

What if the number of errors is larger than (n — k) /27
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List-decoding (after M. Sudan):

Compute polynomials hg, ..., hy with deg(h;) < b — ik
for an appropriate b, such that

Vi=1,...,n: ho(z;) + hi(x)y; + -+ he(z)y; = 0.
The polynomials f with

ho(z) + hi(z) f(z) + - - + he(x) f (),

correspond to the possible codewords.
How to compute the h;?

How to compute f7
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Bivariate Interpolation

Given: Points (z1,v1),...,(xn,yn) over a field K, and
integers 0 < dg < dy <--- <dp.

Want: Nontrivial Polynomial H(z,y) = >t hi(x)y
with deg(h;) < d;, such that H(z;,y;) =0 for i =
1,...,n.

Existence? f exists, if Y2¢_(d; + 1) > n.

H := hgg + ho1x + hoz? + higy + hi1zy + hooy?.
We have

(1 x wi Y1 Y121 yi\ (ZOO\
1 zo ib‘% Y2 Yoo y% hgi
1 z3 w% Y3 Y3x3 yg h1o = 0.
1 x4 11312; Y4 Yara 9421 hi1

\ 1 =5 72 y5 ysTs5 y5) \hzo)
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Algebraic Geometric Codes

Interpolation is done on algebraic curves rather than on
the projective line.

List-decoding algorithms can be extended to this case
(Shokrollahi-Wasserman).

For plane curves and certain low-dimensional projective
models of curves, a part of the decoding process can be

reduced to finding elements in the kernel of a structured
matrix.

Arbitrary algebraic curve
= = —~ — — = = =

Projective line
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Example

Elliptic curve over Fg:
Y2 =Xx3_X.
Has points

P].:(O7O) PQZ(]-)O) P3:(47O) P4:<271)
Ps =(2,4) Ps=(3,2) Pr=(3,3).

Let Q have projective coordinates (0:1:0).

Then L(3Q) = (1,X,Y) and C has generator matrix
1 1 11111
0142233
O 001 4 2 3

Dimension of the code is 3 and minimum distance is
4 =7 — 3 .
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The Displacement Method

We can use the method of displacement to find non-
trivial elements in the kernels of the above structured
matrices.

The displacement method is not new: Morf, Kailath-
Kung-Morf, Friedlander-Morf-Kailath-Ljung, Bitmead-
Anderson, Heinig-Rost, Lev-Ari, Chun, Bruckstein,
Sayed, Koltracht, Gohberg, Bin-Pan, Sahnovich, Dym,

It has been used in many areas Control theory, inter-
polation, Numerical Mathematics, Signal Processing,...

Its use in Coding Theory seems to be novel.
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The Displacement Method
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Example: Bivariate Interpolation
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Bivariate Interpolation

The Displacement method gives an algorithm for the
LU-decomposition with running time

O(n?/)

instead of O(n3) witht Gaussian elimination.

From the LU-decomposition one can determine H in
time O(n?).
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Extensions

Hermite interpolation and list decoding.

Algebraic geometric codes

space efficient algorithms

Parallel algorithms
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Parallel Algorithms

LEEY I=

(1) Compute I L through the generators I B n

parallel.

Let

(2) Fill the first column of L and the first row of U.

(3) Compute generators of the Schur-complement and
go back to (1). (Parallelizable.)
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Parallel Algorithms

= -

to be able to perform first step in constant time on
O(n) processors.

Need

This gives a parallel algorithm with running time
O(4n)

on
O(n)

Processors.
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Applications

e Soft decision decoding

e Biometric authentication

e Breaking block ciphers
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