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Low-Complexity Codes

We will outline in this talk the design and analysis of

error-correcting codes that can be encoded and de-

coded efficiently and protect against a fraction of er-

rors that is almost as large as given by theoretical upper

bounds.

Existence of such bounds and codes that asymptotically

meet these bounds was proved in the landmark paper

of C.E. Shannon in 1948.

Several codes can be proved to meet the asymptotic

bounds. Almost none of them are equipped with effi-

cient encoders and decoders.
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(Brief) History

Gallager 1963

Zyablov 1971
Zyablov-Pinsker 1976

Tanner 1981

Turbo Codes 1993
Berroux-Glavieux-Thitimajshima

Sipser-Spielman, Spielman 1995
MacKay-Neal, MacKay 1995

Luby-Mitzenmacher-S-Spielman-Stemann 1997
Luby-Mitzenmacher-S-Spielman 1998

Richardson-S-Urbanke 1999
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Codes

Codes are used when messages are to be transmitted

over noisy channels.
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Encoding and Decoding
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Low Density Parity Check Codes

Were first introduced by R. Gallager in the early 1960’s.

Codes are built from sparse bipartite graphs.

Encoding and Decoding are simple.
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Encoding with Bipartite Graphs

Take a bipartite graph between k nodes on the left and

n − k nodes on the right. Label left nodes with the

k packets to be encoded. Label right nodes with the

redundant packets. Compute value of each right node

as XOR of values of adjacent left nodes.
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Original Gallager Codes
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Decoding

We will adopt the model of an erasure channel.
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Decoding

Stage 1: Direct Recovery
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Decoding

Stage 2: Substitution Recovery
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graph.
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Example

(a) (b) (c)

(d) (e) (f)

Complete Recovery
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The (Inverse) Problem

We now have a fast encoding and decoding algorithm.

Want to design codes that perform good with respect

to these algorithms.

How do we design the graphs?
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Experiments

Choose regular graphs.

Experiments show that a (3,6)-graph recovers from

42.9% erasures.

A (4,8)-graph recovers from 38.3% erasures.

A (5,10)-graph recovers from 34.1% erasures.

What are these numbers?
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Revelation

Theorem. A random (k, d)-graph recovers from a p-

fraction of erasures with high probability iff

p · (1− (1− x)d−1)k−1 < x for x ∈ (0, p).

(Luby, Mitzenmacher, S, Spielman, Stemann)

Proof: uses martingales, tail inequalities, large devia-

tion results.
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General Case

Let λi and ρi be the fraction of edges of degree i on

the left and the right hand side, respectively.

Let λ(x) :=
∑

i λix
i−1 and ρ(x) :=

∑

i ρix
i−1.

Condition for successful decoding for erasure probabil-

ity is then

p0λ (1− ρ(1− x)) < x

for all x ∈ (0, p0).
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Design of Graphs: Linear Programming

Fix right hand side ρ(x), and find best left hand side

λ(x) using the condition

p0λ (1− ρ(1− x)) < x

on (0,1) using linear programming.

Once best left hand side found, fix left hand side and

use dual condition

ρ (1− p0λ(1− x)) > x

on (0,1) with linear programming to find best right

hand side.

Iterate!
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Asymptotically Optimal Codes

Using highly irregular graphs, one obtains, for any rate

R sequences of codes that can get arbitrarily close to

the capacity of the erasure channel.

Degree structure? Fix design parameter D.

λ(x) :=
1

H(D)

(

x+
x2

2
+ · · ·+

xD

D

)

ρ(x) := exp (µ(x− 1))

where H(D) is harmonic sum 1+ 1/2 + · · ·+ 1/D and

µ = H(D)/ (1− 1/(D +1)).
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Asymptotically Optimal Codes II

Another sequence (S):

Right regular graphs, distribution of nodes on left hand

side is connected with the power series expansion of

(1− x)1/m.

hese are the only known examples of sequences of LDPC-

codes that reach the channel capacity for any nontrivial

channel.
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Other Channels

Erasure channel:
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20



Other Channels

Additive White Gaussian Noise Channel:
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Gaussian noise with variance σ2.

Capacity=

−

∫ ∞

−∞
φσ(x) log2 φσ(x)dx−

1

2
log2(2πeσ

2),

where

σ
φ



Other Channels

Decoder? Belief propagation.
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Other Channels

• Certain embodiments of the belief propagation can

be rigorously analysed using the same methods as

the ones used for erasure channels.

• Experiments show that some codes that are good

for the erasure channel are also good for the binary

symmetric or the AWGN-channel. But: can we

prove it?

(Luby, Mitzenmacher, Shokrollahi, Spielman, 1998).
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Analysis

Richardson and Urbanke (both Bell Labs) observed that

the work of Luby, Mitzenmacher, S, Spielman can be

generalized to analyse the full belief propagation algo-

rithm (1998).

Based on this analysis, Richardson-S-Urbanke construct

low-density codes that are closer to the Shannon ca-

pacity than other types of codes, such as Turbo codes.
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Belief Propagation: Analysis

fℓ: density of the probability distribution of the mes-

sages passed from the check nodes to the message

nodes at round ℓ of the algorithm.

P0: density of the error distribution (in log-likelihood

representation).

Consider (k, d) regular graph.

Γ
(

fℓ+1

)

=
(

Γ
(

P0 ⊗ fℓ
⊗(r−1)

))⊗(t−1)
,

where Γ is a hyperbolic change of measure function,

Γ(f)(y) := f(ln coth y/2)/sinh(y),

and ⊗ denotes convolution.

We want fℓ to converge to a Delta function at ∞.

Gives rise to high-dimensional optimization algorithms.

25



Some Results
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Race for Capacity

Explicit sequences of low-density codes which approach

the Shannon-capacity when decoded with belief prop-

agation!

Conjecture: They exist!!

Known only for the erasure channel (Luby et al., S).
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