An Authentication Scheme based on Roots of Sparse Polynomials

Amin Shokrollahi FPFL

Joint work with J. von zur Gathen and I. Shparlinski

What We Will Do

 Introduce a new authentication and signature scheme based on roots of sparse polynomials

Show that original scheme is not secure

 Give a revised scheme that does not have the clear disadvantages of the original scheme

What We Will Not Do

- Give a detailed cryptoanalysis of our scheme
- Specify parameters for which the scheme could be used

Discuss practical applications

Message Authentication

Signature Schemes

Some Known Public Key Schemes

- RSA based schemes
 - SSH
- Discrete log based schemes
 - DSA
- Elliptic curve based schemes
 - ECDSA

Security is based on hardness of factoring, or hardness of discrete logs.

Our Scheme – Part I

Use sparse system of equations in variables $X_1, X_2, ..., X_n$ which has many integer roots $(a_{11},...,a_{1n}), ..., (a_{m1},...,a_{mn})$.

Publish the system of equations (public key).

Challenge by Bob is a prime number p.

Response is a solution of the system modulo p.

Is based on hardness of solving systems of equations modulo primes.

Private Key

Representation of the system that facilitates finding the roots!

Example: Want roots (0,3) and (2,-3).

Find a, b, c, d such that

a
$$x^3y + b xy^2 - x^4 + xy - 6 = 0$$

c $xy^4 + d x^5 + x^3y^2 + 5x^4y^3 - 13xy + 3 = 0$

for (x,y) in $\{(0,3), (2,-3)\}$.

Four equations in four unknowns.

In General

Choose the roots

 Choose the exponents and part of the equations (sparsity!)

 Solve for the other part of the equations using Gaussian elimination (for example), or lattice reduction.

Is the Scheme Secure?

- Attacker can challenge Alice many times, each time receiving some (a_{i1},...,a_{in}) mod p_i.
- Attacker wants to collect enough information to recover some root of the system. Then attacker can impersonate Alice.

Is the System Secure?

- If Alice uses only one root, then attacker can use Chinese remaindering techniques to calculate the root.
- Alice has to change the roots often.
- After N challenges attacker has gathered n vectors of length N for each of the coordinates.
- Within each such vector N/m values correspond to the same root.

Is the Scheme Secure?

Chinese Remaindering with Errors

Fix a hypothetical root.

Each vector has at least N/m correct values, and N-N/m incorrect ones.

Use list-decoding of Chinese Remainder Codes (Goldreich et al., Boneh, Guruswami et al.) to correct the errors and find the correct values.

For large N these algorithms succeed provided that N is at least cm², where c is small compared to m.

So, scheme is NOT secure!

Our Scheme – Part II

- Choose the roots in a hidden number field K.
- Create the equations over the integers.
- Allow only challenge primes that are completely split in K.
- For each challenge prime p take some prime ideal p of degree one dividing p in K, and output (a_{i1},...,a_{in}) mod p.

Does the Hidden Number Field Help?

Shparlinski and Steinfeld have devised an algorithm which can calculate the minimal polynomial of the element a from the vector

(a mod p_1 , a mod p_2 ,, a mod p_N).

Such an algorithm would break the scheme if we could efficiently identify which of the responses correspond to the same root of the system of equations.

A modification of list-decoding could provide such a method. So, Approach II may not be secure.

Our Scheme – Part III

- Use a hidden rational surface to obtain infinitely many solutions.
- Obscure the rational surface using random linear transformations.

Approach has the problem that the bit-complexity of the authentication increases (mildly) with number of challenges, since roots with ever larger coefficients need be used to avoid list-decoding attack.

Conclusion

- Authentication schemes based on sparse polynomials provide interesting alternatives to RSA, discrete-log, or Elliptic Curve methods.
- Several flavors of one such method was presented in this talk, and some of the flavors were proved insecure using list-decoding of Chinese Remainder Codes.
- Other flavors need more rigorous study to prove (or disprove) themselves.