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at random j distinct input bits. The value of the output bit
is the exclusive-or of these j input bits.
The performance of LT codes with respect to a given

decoding algorithm is measured in terms of the error rate as

a function of the reception overhead. The reception overhead

is the number of output bits that the decoder needs to collect

in excess of the absolute minimum in order to recover the

input bits with high probability. The decoder collects output

bits and estimates for each received output bit the amount

of information in that bit. This measure of information can

be obtained from the Log-Likelihood Ratio (LLR) of the

received bit. The receiver stops collecting output bits as

soon as the accumulated information carried by the observed

channel outputs exceeds (1 + ϵ)k, where ϵ is the overhead
associated with the LT codes, and k is the number of input
symbols.

The decoding graph of length n of an LT code with

parameters (k, Ω) is a bipartite graph with k nodes on one
side (called input nodes which correspond to the input bits)

and n nodes on the other side (called output nodes which

correspond to output bits). The decoder uses the Belief

Propagation (BP) algorithm (see [11]) to recover the input

bits from the information contained in the output bits.

On the other hand, fountain codes are very suitable can-

didates for the problem of joint source-channel coding of

correlated sources. In the following, we propose an approach

in a purely lossless source coding setting based on fountain

codes for the Slepian-Wolf problem.

III. FOUNTAIN-SLEPIAN-WOLF CODING

In this correspondence, we consider the symmetric dis-

tributed source coding using Fountain codes (Fig. 2).The

objective being to recover the sources X, and the source Y
based on the knowledge of X. In this section, we discuss two
schemes that use LT-Codes in the setting of source coding

of correlated sources.

         Decoder

    Correlation Y
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     Encoder1

Fig. 2. The symmetric distributed source coding scenario

A. Problem set-up

As we mentioned in Section I, we concentrate on LT

codes in this work. We assume that both encoders and the

joint decoder know in advance the LT probability distribution

Ω during the transmission steps. Assumptions for the the

sources (X, Y) = (x1, y1), (x2, y2), · · · , (xn, yn) are given
as follows.

• The sources X = x1, · · · , xn and Y = y1, · · · , yn

represent binary sources observed at different Slepian-

Wolf encoders, where the xi’s and yi’s are independent

and not necessarily identically distributed, with P(xi) =
1−P(yi), for all xi, yi, where i = 1, · · · , n and where

xi, yi ∈ {0, 1}.
For the pure Slepian-Wolf problem, sources X and Y
are separately encoded (with joint decoding) with rates

RX (for source X) and RY (for source Y) such that

RX ≥ H(X|Y), RY ≥ H(Y|X), RX + RY ≥ H(Y, X) (1)

where H denotes the entropy.

If the source X is encoded on an ideal channel Ich and
the source Y is source-channel encoded on a non ideal

channel Nch with capacity C (in bits per channel use),

the relation (1) can be written

RX ≥ H(X|Y), C ≥ H(Y|X)RZ, RX + RY ≥ H(Y, X) (2)

where Z = z1, · · · , zm is the source-channel encoder

output, the input being Y, and RZ = n
m
is the corre-

sponding source-channel rate.

• Let (x1, y1), (x2, y2), · · · , (xn, yn) be a sequence of
jointly distributed i.i.d. variables. Correlation between

sources are not known to the two encoders. The two

sources X and Y are encoded independently from

each other. For our experiments, we assume correlation

between sources is generated by considering the BSC
channel correlation with

P(xi = yi) = 1 − p, p < 0.5 (3)

where p is usually referred to as the crossover proba-
bility. We assume that the parameter p is unknown by
encoders 1 and the joint decoder.

B. LDPC-Raptor approach

This approach (see Fig. 3) is an extension of the scheme

introduced in [3] to the joint source-channel encoding-

decoding of correlated sources setting. In this scheme,two

codes are used. A Raptor code in conjunction with an LDPC

code (in a syndrome form). LDPC code insures the lossless

input symbols recovery, and the goal of the Raptor code is to

protect the inputs symbols. The difficulty in this approach is

to find a realistic way to optimize simultaneously appropriate

LDPC code and Raptor codes depending of the correlation

between sources X and Y and the channel used to protect

Y.
The next method is more simple and can also be applica-

ble to the setting of source-channel encoding-decoding of

correlated sources setting.
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Input symbols Pre−coded symbols

Fig. 3. Tanner graph for the LDPC-Raptor approach

1This is only for our experiments. In general, one can assume that P(yi =
1|xi) is unknown by encoders and the joint decoder
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Fountain Codes

Fountain codes are a class of codes designed for solving various data transmission 
problems, at the same time.

Fountain codes with fast encoding and decoding algorithms, and (arbitrarily) small 
overhead are particularly interesting for solving these problems.

Fountain  codes  were  stipulated  by  Byers  et  al  in  1998,  and  their  applications 
discussed. A construction was, however, not given.

First construction of efficient Fountain codes was given by Luby (1998, published 
2002).
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(Binary) Fountain Codes

Fix distribution      on          ,  where k is the number of input symbols.(Fk
2)∗D

A fountain code with parameters             is a vector in                  sampled from           (D, k)
(

(Fk
2)∗

)N
D

N
.

Distribution     can be identified with a distribution      on D F
k
2 .D

For  each  output  symbol  sample  independently  from     and  add  symbols 
corresponding to the sampled output.

D

Operation:

Symbols are understood to be binary vectors, and additions are understood to be over F2.
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Example: LT Codes

Invented by Michael Luby in 1998.

First class of universal and almost efficient Fountain Codes.

Output distribution has a very simple form.

Encoding and decoding are very simple.
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LT Codes

Fix distribution (Ω1,Ω2, . . . ,Ωk)on {1, . . . , k}

Distribution     is given byD

PrD(x) =
Ωw
(

k

w

)

where w is the Hamming weight of x.

Parameters of the code are (k,Ω(x))

Ω(x) =
k∑

w=1

Ωwx
w
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LT Coding Process
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Example: Raptor Codes

Invented by A. S. in late 2000.

First class of universal fountain codes with linear time encoding/decoding.

Extends LT-codes by using a pre-code.

Encoding and decoding are very simple.
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 Raptor Codes

Parameters: (k,C,Ω(x))

C
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3

Pre-coder

Raptor codes are fountain codes
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 Fountain Codes and Compression

Fountain codes were first used for lossless compression in a series of two papers by 
Caire, Shamai, S, and Verdu.

The  procedure  was  modeled  after  the  LDPC  compression  algorithms  of  Caire, 
Shamai, and Verdu, with a twist. 

But what makes them interesting? 

The “rateless” feature allows for two interesting applications:

1. It can be used when the source statistics is a-priori unknown, and

2. It  can  be  used  as  a  joint  source-channel  coding  scheme  (without  the  use  of 
puncturing). 
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How Does it Work?

Invertible Trafo

Source

Intermediate bits
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How Does it Work?

Invertible Trafo

Compressed bits

LT-code
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How Does it Work?

LT-code
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Combination with Channel Coding

LT-code

LLR’s from src statistics LLR’s from observ’s

BP-decoding with doping

channel
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Slepian-Wolf Problem
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Problem Definition

at random j distinct input bits. The value of the output bit
is the exclusive-or of these j input bits.
The performance of LT codes with respect to a given

decoding algorithm is measured in terms of the error rate as

a function of the reception overhead. The reception overhead

is the number of output bits that the decoder needs to collect

in excess of the absolute minimum in order to recover the

input bits with high probability. The decoder collects output

bits and estimates for each received output bit the amount

of information in that bit. This measure of information can

be obtained from the Log-Likelihood Ratio (LLR) of the

received bit. The receiver stops collecting output bits as

soon as the accumulated information carried by the observed

channel outputs exceeds (1 + ϵ)k, where ϵ is the overhead
associated with the LT codes, and k is the number of input
symbols.

The decoding graph of length n of an LT code with

parameters (k, Ω) is a bipartite graph with k nodes on one
side (called input nodes which correspond to the input bits)

and n nodes on the other side (called output nodes which

correspond to output bits). The decoder uses the Belief

Propagation (BP) algorithm (see [11]) to recover the input

bits from the information contained in the output bits.

On the other hand, fountain codes are very suitable can-

didates for the problem of joint source-channel coding of

correlated sources. In the following, we propose an approach

in a purely lossless source coding setting based on fountain

codes for the Slepian-Wolf problem.

III. FOUNTAIN-SLEPIAN-WOLF CODING

In this correspondence, we consider the symmetric dis-

tributed source coding using Fountain codes (Fig. 2).The

objective being to recover the sources X, and the source Y
based on the knowledge of X. In this section, we discuss two
schemes that use LT-Codes in the setting of source coding

of correlated sources.

         Decoder

    Correlation Y

X

  Channel     Encoder2

     Encoder1

Fig. 2. The symmetric distributed source coding scenario

A. Problem set-up

As we mentioned in Section I, we concentrate on LT

codes in this work. We assume that both encoders and the

joint decoder know in advance the LT probability distribution

Ω during the transmission steps. Assumptions for the the

sources (X, Y) = (x1, y1), (x2, y2), · · · , (xn, yn) are given
as follows.

• The sources X = x1, · · · , xn and Y = y1, · · · , yn

represent binary sources observed at different Slepian-

Wolf encoders, where the xi’s and yi’s are independent

and not necessarily identically distributed, with P(xi) =
1−P(yi), for all xi, yi, where i = 1, · · · , n and where

xi, yi ∈ {0, 1}.
For the pure Slepian-Wolf problem, sources X and Y
are separately encoded (with joint decoding) with rates

RX (for source X) and RY (for source Y) such that

RX ≥ H(X|Y), RY ≥ H(Y|X), RX + RY ≥ H(Y, X) (1)

where H denotes the entropy.

If the source X is encoded on an ideal channel Ich and
the source Y is source-channel encoded on a non ideal

channel Nch with capacity C (in bits per channel use),

the relation (1) can be written

RX ≥ H(X|Y), C ≥ H(Y|X)RZ, RX + RY ≥ H(Y, X) (2)

where Z = z1, · · · , zm is the source-channel encoder

output, the input being Y, and RZ = n
m
is the corre-

sponding source-channel rate.

• Let (x1, y1), (x2, y2), · · · , (xn, yn) be a sequence of
jointly distributed i.i.d. variables. Correlation between

sources are not known to the two encoders. The two

sources X and Y are encoded independently from

each other. For our experiments, we assume correlation

between sources is generated by considering the BSC
channel correlation with

P(xi = yi) = 1 − p, p < 0.5 (3)

where p is usually referred to as the crossover proba-
bility. We assume that the parameter p is unknown by
encoders 1 and the joint decoder.

B. LDPC-Raptor approach

This approach (see Fig. 3) is an extension of the scheme

introduced in [3] to the joint source-channel encoding-

decoding of correlated sources setting. In this scheme,two

codes are used. A Raptor code in conjunction with an LDPC

code (in a syndrome form). LDPC code insures the lossless

input symbols recovery, and the goal of the Raptor code is to

protect the inputs symbols. The difficulty in this approach is

to find a realistic way to optimize simultaneously appropriate

LDPC code and Raptor codes depending of the correlation

between sources X and Y and the channel used to protect

Y.
The next method is more simple and can also be applica-

ble to the setting of source-channel encoding-decoding of

correlated sources setting.
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Fig. 3. Tanner graph for the LDPC-Raptor approach

1This is only for our experiments. In general, one can assume that P(yi =
1|xi) is unknown by encoders and the joint decoder

1. Want to communicate with X and Y with H(X,Y) bits.

2. Sources X and Y do not communicate with one another.
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Achievable Region
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Abstract—In this paper, we describe one solution to the two-
user Slepian-Wolf problem in a certain part of the achievable
region using fountain codes. Symmetric case of memoryless
compression of two correlated sources is considered and mod-
eled by a BSC channel. The compression is done by two separate
compressors without any exchange of information between
them. The decompressor uses a Belief propagation algorithm in
conjunction with the Blind Iterative Doping strategy. Simulation
results indicate performance close to the Slepian-Wolf limit.

I. INTRODUCTION

It is well known that a rate R = H(X, Y) suffices to
encode the sources X and Y when the encoder compress

these sources together. J. Wolf and D. Slepian have demon-

strated [1] that by even separately compressing X and Y, the
rate R is still sufficient to ensure lossless recovery of sources

X and Y at the decoder side (see Fig. 1 for the complete

Slepian-Wolf region). The Slepian-Wolf theorem has been

proved using the random binning strategy [2], which is not

useful for practical applications such as video or text source

coding.

A. Liveris et al. [3] considered the compression of a mem-

oryless source with side information using the syndrome-

LDPC based approach. The problem of designing good prac-

tical source codes for correlated sources using rateless codes

has been investigated in [4], [5]. In [4], the authors optimized

a rate-adaptive source coding-they called Matrioshka codes-

with side information, which sends additional syndromes in

layers in order to force the convergence of the decoding,

extending the approach considered in [3]. In [5], the authors

introduced another rate-adaptive scheme unifying LDPC and

accumulate codes.

Much of the research effort in universal coding has gone

into minimization of the redundancy. Many times a com-

pressed source needs to be transmitted over an unreliable

channel thereby making an interplay between source and

channel coding essential. The advantage of the proposed

scheme over [3], [4], [5] is its ability to use a single code for

both compression and protection. Very recently an explicit

scheme [6] for a variable-length data compression for binary

sources based on the BWT and fountain codes was proposed.

This scheme extended for non binary Markov sources [7]

with memory and for texts [8].

In this work, we focus on the problem of distributed

data compression of two correlated sources. The scheme

proposed here is very related to the Fountain-code-based

single-source coding introduced in [6]. However, contrary

to [6], the encoder could not necessarily verify before

transmitting whether the decoder could successfully decode.

The proposed scheme follows a simple strategy called the

Blind Iterative Doping (BID) together with the well-known

Belief Propagation (BP) algorithm.

The remainder of the paper is organized as follows.

Section II introduces the background material for fountain

codes. Section III describes how the fountain codes can be

used to solve the Slepian-Wolf problem. Finally, we present

simulation results in Section IV.

H(X)H(X/(Y)

H(Y)

H(Y/X)

Slepian−Wolf region

Fig. 1. Graphical Slepian-Wolf region

II. FOUNTAIN CODES FOR CHANNEL CODING

Fountain codes are used to transmit information over

channels for which the noise level is not known in advance.

For example, these codes can be used over the Binary Erasure

Channels (BEC(p)) when the parameter p is unknown. LT
codes are one of the first classes of Fountain codes [9].

Raptor codes [10] are an extension of this family of codes

and achieve linear time encoding and decoding.

In this work, we concentrate on LT codes. An LT code

is a Fountain code with parameters (k, Ω), where k is the
length of input sequence and Ω = (Ω1, . . . , Ωk) denotes a
probability distribution on the set {1, . . . , k} which we will
describe later. Without loss of generality, we assume that the

input sequence for the LT process is binary.

Each coded bit is the exclusive-or of a subset of the input

bits. The number of input bits in this set is called the degree

of the output bit. To generate an output bit, the encoder works

as follows. First, randomly choose the degree j of the output
bit using the degree distribution Ω. Second, choose uniformly
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The Scheme - Part I
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The Scheme - Part II

BP-decoding on the entire graph

Slepian-Wolf with side information

LT-code

LLR’s from knowledge of X LLR’s from observ’s
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The Scheme - Part III

To make the scheme work, we need to add a few features.

Blind iterative doping (BLID): Y sends bits, and if decoding is not possible, a 
small fraction of the intermediate bits need to be sent as well.

Use of a repeat-accumulate mechanism: Y  does not send the compressed bits 
directly, but uses an accumulator to do so (details in the paper). Leads to better 
performance.

Incremental transmission of the compressed bits, since encoder is unaware of 
the correlation.

1.

2.

3.
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Simulations
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Simulations

1. Correlation between the sources is a BSC(p) with p unknown to the encoders.

2. Pr[xi=yi] = 1 - p

3. H(Y | X) is between 0.2 and 0.7

4. Source X is completely available at the decoder (side information)

5. Length n of the sequences is 396
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Simulations

C. Two-layer LT-BLID approach

In this part, we describe how encoders and the joint de-

coding work for the second Fountain-Slepian-Wolf approach,

called LT-BLID.

Encoding: Given Ω an LT code distribution[11] , com-

press X using the algorithm described in [3]. We use the

following strategy to compress Y (without the knowledge of

X):

• Calculate from the binary symbols (y1, · · · , yn) a vector
of binary intermediate symbols I = (i1, · · · , in) through
a linear invertible n × n matrix G [6], [7]:

(i1, . . . in) = G(y1, . . . , yn)

• Generate incrementally (c1, · · · , cm) such that ci is the

accumulate sum of two symbols s2i−1, s2i obtained

through encoding from symbols (z1, · · · , zn), with LT-
code with parameters (n, Ω).

• A bipartite graph (see Fig. 4) is set up between the nodes

corresponding to (i1, · · · , in) and on the other side
the nodes corresponding to (y1, · · · , yn) and the nodes
corresponding to (c1, · · · , cm) obtained previously. The
sequence (c1, · · · , cm) constitutes the payload of the
compressed data, which is sent to the decoder.

 

      

        

       

Input symbols

Intermediate symbols

Compressed symbols

Fig. 4. Tanner graph for the Two-layer LT approach

Decoding: The goal of the decoder is to recover losslessly

the n-length sequences X and Y. To decompress X, use the
decoding strategy described in [3]. To estimate the sequence

Y, the decoder proceeds as follows:

• Using the matrix G and the permutation P, the previ-
ously bipartite constructed graph at the encoder is set

up between nodes corresponding to (i1, · · · , in) and on
the other side the nodes corresponding to (y1, · · · , yn)
and the nodes corresponding to (c1, · · · , cm).

• The Belief Propagation (BP) algorithm is applied to

the graph created in the previous step. The objective of

the BP algorithm is to decode the symbols (i1, · · · , in)
using the full knowledge of the symbols (c1, · · · , cm)
and the values of Log Likelihood Ratios (LLRs) of

(y1, · · · , yn) based on the knowledge of (x1, · · · , xn).
The initial reliabilities of (y1, · · · , yn), (c1, · · · , cm),
and (i1, · · · , in) are as follows, where j = 1, · · · , n

and k = 1, · · · , m.
LLR of yj is

log(
Pr(xi = 0|yi)

Pr(xi = 1|yi)
= (1 − 2yj) log(

1 − pest

pest
))

where pest is the estimated cross-over probability,

LLR of ij is 0 and LLR of ck is +∞ (if ck = 0)
or−∞(if ck = 1)

• During the BP-algorithm, the Blind Iterative Doping

(BID) algorithm is applied. First, the encoder applies

a random permutation P on the sequence I, obtaining
a sequence Z = (z1, · · · , zn). Every f -th round of the
iteration, g symbols of Z are sent to the decoder, where

f and g are non-negative integers strictly greater than
zero. The g randomly chosen Z-sequence bits sent to
the decoder are called pseudo-doped bits.

Recall that the parameter p is unknown by encoders and
the joint decoder. The encoder transmits nH(pe1

) sym-
bols c1, · · · , cnH(pe1

) (including the pseudo-symbols)

until the decoder has enough information to decode, at

which time an ACK message is sent to the encoder,

where pe1
is a first estimated value of p, with pe1

< p.
As far as the decoder has enough information, the

encoder moves from pej
to pej+1

, where pej+1
> pej

,

sending n(H(pej+1
)−H(pej

)) symbols in addition to the
nH(pej

) symbols previously sent to the decoder. This
process is repeated v times, where pev

> · · · > pe1
and

pev
≈ p. It is assumed that encoder Encoder2 sends

a seed to the decoder allowing reconstructions of the

permutation P (for which the number of pseudo-doped

symbols are chosen) and the matrix G at the decoder

side.

IV. RESULTS

Simulations results of the LT-BLID approach are evaluated

and compared with those of [5]. The codeword length is

n = 396 for BSC(p) statistics between X and Y, where X
is Bernoulli(0.5)2 source and 0.2 < H(Y|X) < 0.7.
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Fig. 5. Performance of LT-BLID codes of length 396 bits over BSC

2X is Bernoulli(0.5), which means that the source X is available at the
decoder and acts as a side information for the decoding of Y
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Conclusions
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1. Presented a fountain code scheme for the Slepian-Wolf.

2. Method can be used in conjunction with transmission over a noisy channel

3. Method can be used when the correlations are more complicated than the BSC

4. Question: how about the non-corner cases of the Slepian-Wolf region?

5. How about having more than two users?

6. Code design for the general case?

Conclusions and Open Questions


