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An Approximation Problem

Given a real number o« between 0 and 1 and an integer
M, approximate a by a -+ b/2 for integers a and b such
that |al, |b] < M.

The problem arises in connection with symbolic com-
putation.

Instead of performing operations on floating points, we
want to perform them on vectors of integers. (Exact

arithmetic.)

An example will be given later.



Best approximation error

Given a, |a| < M, there is at most one b with |b| < M
and 0 <a+4+b/2<1.

Consequence: there are o's that cannot be approxi-
mated with an error less than 1/2//.




Related Complex Problem

Given a complex number z inside the unit circle, and an
integer M, approximate z by an expression of the form
a4+ b¢ + €2 + d¢*, where ¢ = exp(27i/8) and a,b,c,d
are integers of absolute value < M.




Games’ Algorithm — 1986

Games proposed in 1986 the following algorithm for
approximation.

Running time: O(M).
Approximation error: O(1/M).

disadvantage: Complicated search structures, not suited
for real time applications.



A Simple Algorithm
Suppose we want to approximate 0.1, with M = 64.
Let £ := {—41 + 292,17 — 122} =: {e1,¢0}.

Start with the approximation a1 := O:

a> =ai1 4o =17 — 122 ~ 0.0293

a3 ’=ao+c1 =24+ 17v/2 ~ 0.0416
as ‘=a3+eco=—-7+5V/2~0.0711
as ‘= aq +c>=10—7v/2 ~ 0.1005
ag ‘= as +c1 = —31+22v/2 ~ 0.1126.

Hence, we stop with the approximation ag = 10 — 7v/2.
The approximation error is 0.005...

Where does E come from?



Continued Fractions

We need to construct a set £ consisting of two small
positive M-bounded elements of different signature.

We use the continued fraction expansion of v/2:

Va=14

2+

1
24+ —
This gives the sequence of convergents

1,2,5,...,Q£,...
where Pg = 2P£_1 —|—Pg_2 and Qg = 2@6—1 —|—Qg_2.



Continued Fractions

One has (—1)(P) — Qp/2) = (=1 4+ /2)! > 0. Hence
we can set

E = {(-1)"(P; - Qu2), (- 1)'T (Prg1 — Qu41V2) ]

for suitable 2.

The final result is an approximation algorithm with
worst case error of 1.71/M which compares very well
with the lower bound 2(1/M).

The algorithm can be modified to run in time O(log(M)).



Approximation

For ¢ := 2™/2" |et 7[(]); be the set of integral linear
combinations of powers of ¢ with coefficients bounded
by M in absolute value.

Design an algorithm that approximates a given complex
number inside the unit circle by an element of the set

Z[Clas-

e Cozzens and Finkelstein'85: general algorithm, op-
timal error, infeasible since exhaustive search.

e Games'86:. special case n = 3, optimal approxi-
mation error ~ 1/M, running time O(M ), however:
complicated search structures, not suited for real
time applications.

Our algorithm: general, close to optimal error, suited
for real time applications.



Example: n = 3 — approximation error ~ 1/M, running
time O(log(M)).

Practical setting: n = 4, approximation error ~ 1 /M3,
running time O(log(M)).



What can we expect?

For fixed n any approximation algorithm has a worst
case error of Q(1/M2""1).
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It is sufficient to approximate real numbers between O
and 1 by real elements of Z[(]ys, i.e., by elements of
the form

2.(2" 2 _ 1)rx
27?,

27
ag + a12 CoS o0 + ...+ asn-2_,2CO0S

where |agl,... |as, 2 | < M.



16th Roots of Unity

Example: Approximation of 0.1 in Z[(]10

et 90 =1, 91 L= '\/2—|—\/§, 92 L= \/5, 93 L= \/2—\/5.

We use a set E whose elements have the following
representation with respect to the above basis:

E = {(_371737_4>7(67_37_375>7(_5757_472>7
(107 _97 77 _4>7 (_57 _27 47 4)7 (87 27 _57 _6>}
=. {81,...,86}.

We start with a1 := O:

ar:=a1+e1 =(=3,1,3,—4) ~ 0.0289
a3z =as+e>=(3,-2,0,1) ~ 0.0698
ag ' =asz+e1 =(0,—-1,3,-3) ~ 0.0988
as ;= aq+e3=(-5,4,—-1,1) ~ 1.7422

Hence, we stop with the approximation ag = —601 +
360> — 303.

The error of this approximation is 0.00121....
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Galois Spectrum
Let ( = exp(2ni/16).

Then 61 = ¢+ ¢ 1, 0o =¢24+¢2 =2, and 63 =
SR

Q(081) is a Galois extension of Q.

Its Galois group is cyclic and is generated by 7: ¢+¢~1 —
¢>+¢7°.
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Galois-Spectrum: Fundamental Equation

For a = ag + a1601 + a0, + 04393 we have

aQ 2 2 2 2 a

ar | _ 1160, —03 —01 03 7(a)
ao 8| 0o —0> 6> —0> 72(a)
as 03 01 —03 —01 73(a)

— Loo(a) < maxconj(a)

— a has signature (+,—,—,4) if 7(a) is positive and

r(a) > 2 (al + [72(@)] + [P @)
3

— similar assertions hold for other signatures.
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Cyclotomic Units

Elements of E: power products of small elements with
Signatures (_I_a R +)) (+7 ) +7 _)) (_I_a +) ) _)

We use cyclotomic units: let

1-¢

e ; —
77] '_<1_<2j_|_17 3_17273

n; is real and is a unit of Z[(], i.e., the product of its
Galois-conjugates is plus or minus one.
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Linear Programming

Find k1, ko>, k3 such that ¢ = HJ3-:1 n;-cj satisfies |r(e)| >
2%|Tj(€)| for j = 2,3, and (1 + g—i’)|7'(a)| < 4AM — 1.

Then Loo(e) < M and e has signature (+,—,—,+) or
(—,+,+,—), according to whether 7(¢) is positive or

Not.

Take logarithmes:
3
Y ki(log |77 (m)| —log |r(m)|) < —log(2) — log(61) + log(63)
=1
and

3
Y kilog |r(m)| < log(4M — 1) + log(61) — log(61 + 63).
=1

Minimize Y331 k;log |n;| subject to these inequalities. (3
constraints and 3 variables.)

The resulting algorithm has worst case approximation
error O(1/13) which is optimal according to the lower
bound mentioned before.

It runs in time O(log(M)).
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General Algorithm
For n > 5 there is no signature technique.
However, one can replace the signature by a more com-
plicated attribute based on the magnitude of the Galois-

conjugates.

In an analogous way one can construct a set E consist-
ing of power products of cyclotomic units.

The corresponding exponents can be found by solving
linear equations of size 27 2.

The resulting algorithm has optimal worst case error
O(1/M2" =1y for fixed n .
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Experimental results

n =3, M~ 54 x 10% 5000 complex approximations
take 0.6 seconds on a SPARC-5.

n=4, M ~ 2 x 10°: 13000 real approximations take
0.7 seconds on an ULTRASPARC-1.

n=>5 M~ 3x 103 22000 real approximations take
17 seconds on an ULTRASPARC-1.

In this case we machine-generated the approximation
program and ran it without fine tuning.

For practical purposes the approximation algorithm for
n = 4 gives a good tradeoff between accuracy and
running time.
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Application: The Fast Fourier Transform

Let N := 2" and ¢ := e2™/N. The Discrete Fourier

Transform of a complex vector (ag,...,an_1) is the
vector (ag,...,ay_1) defined by
N-1 .
Vi=0,...,N—-1: a;= Y ap’"
k=0

Straight-forward computation needs O(N?2) arithmetic
operations.
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Example: FFT of Length 8
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Precision

At each level of the FFT the inevitable scaling leads
to the loss of 1/2 bits on average when working on a
fixed point basis.

An FFT- accompanied by an inverse FFT of a vector
of length 1024 l|leads to a loss of 10 bits. This can be
fatal on a 16-bit fixed point processor.
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Fixed point FFT processor chart

The following algorithm was proposed by Cozzens and
Finkelstein'85:

° — °
: FFTunitl |—= :
° — § °
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= IS A& FFTunit2 |——z| & 3
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S V| FFTunit3 | —= .
° — °

Main focus: Approximation unit.
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Chinese Remaindering

When multiplying Gaussian integers, the results be-
come large. To avoid an overflow, one can use an an-

cient mathematical parallel processing technique known
as Chinese remaindering.

For polynomials Chinese remaindering is nothing but
the well-known evaluation and interpolation.
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x 4+ 1y

Example

= (2+34)(5+ 20)
= 4mod7 Y
= 4 mod11

4+ 5 mod7
4 4+ 8: mod 11

5mod7
8 mod 11

r=4mod77 y =19 mod 77.

19
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New Algorithm

We will present an algorithm that yields b-bit accurate
FFT's in time

O(blog(b)N log(NV)).

Note that the floating point algorithm vyields b-bit ac-
curate FFT's in time

O(b°N log(N)).
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