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1 Introduction

In the past week, I also worked with Raj on the phase transition problem
where I tried to derive the fraction of check nodes with degree 2, i.e. Ω2. In
section III, you will find the details of our approach on finding Ω2.

2 In Search of Ω2

In this section, we are going to calculate the fraction of check nodes with
degree 2, i.e. Ω2, in a code whose generator matrix is composed of random
k-tuples with weight d. In other words, the k × n generator matrix G is a
random binary matrix whose columns have weight d.

Therefore, one can build G by picking n vectors uniformly at random
from the pool of binary vectors with weight d. Note that this is a little bit
different from the Kolchin’s ensemble.

We will compute Ω2 as n goes to infinity using two different approaches.
Both approaches, however, leads us to the fact that as n grows to infinity,
Ω2 tends to zero.
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2.1 Approach 1

To find out Ω2, we first build the parity check matrix by choosing n − k
binary vectors from the set of 2n−k vectors v that lie into left null space of
GT , i.e. satisfy v.GT = 0. Then, we calculate the expected fraction of rows
with weight 2 in H which gives us Ω2. Let ¶ denote the probability of having
a full rank (n − k) × n matrix, given that we sample from a reduced set of
2n−k vectors, with replacement. Then, by multiplying ¶ and the probability
of having i rows in H with weight two, we approximately get E(Ω2) over all
possible and valid choices of H.

Let’s denote the probability of having exactly i rows with weight 2 in H
by Pi. Moreover, let N is the number of vectors h with weight 2 that lie in
the left null space of GT , i.e. {h.GT = 0, |h| = 2}. N could be approximated
to be

(
n
2

)
.p where p is the probability of having a vector h with weight 2 to

lie in the left null space of GT . Obviously, p is a function of d, the weight of
each column of G. Now, the probability of having exactly i rows with weight
2 in a valid parity check matrix, H, is given by equation (1).

Pi =
N i(2n−k −N)n−k−i

2(n−k)2
(1)

The above equation is derived as follows: the total number of ways in which
one can build a binary random (n − k) × n matrix out of a pool of 2n−k

n-tuples is 2(n−k)2 . Because for each row, we have 2n−k possibilities and we
have n− k rows. Likewise, the total number of ways according to which one
can choose i vectors out of a pool of N vectors with weight 2 is N i. The
rest of n− k − i vectors can be selected from a pool of 2n−k −N vectors in
(2n−k −N)n−k−i ways.

As a result of equation (1), E(Ω2) is computed as follows:

(n− k)E(Ω2) =
n−k∑
i=0

iPi¶ =
n−k∑
i=0

i¶N i(2n−k −N)n−k−i

2(n−k)2

6
n−k∑
i=0

i
N i(2n−k −N)n−k−i

2(n−k)2

6
n−k∑
i=0

i
N i(2n−k)n−k−i

2(n−k)2
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=
n−k∑
i=0

i
N i

2i(n−k)

=
n−k∑
i=0

i(
N

2(n−k)
)i

(2)

By denoting N
2(n−k) with x, the last summation in equation (2) simplifies

to
∑n−k

i=0 ixi which is equal to x
(x−1)2

(nxn+1 − (n + 1)xn + 1). Therefore, we

obtain the following upper bound for E(Ω2):

E(Ω2) 6
x

(n− k)(x− 1)2
(nxn+1 − (n + 1)xn + 1) (3)

As n goes to infinity, N = O(n2) and grows much slower than the expo-
nential factor in denominator of x. Hence, x tends to zero which means that

limn→∞E(Ω2) = 0

2.2 Approach 2

In another attempt to calculate Ω2, we focus on the generator matrix, G.
Having a row with weight 2 in H is equivalent to having two similar rows in
GT . Therefore, if we have two similar rows in GT , we can have at most one
row with weight 2 in H. Hence, by calculating the number of equal rows in
GT , we can drive an upper bound for Ω2. For instance, if we have four equal
rows in GT , we can have either two or three independent rows with weight
2 in H. Therefore, we can have at most three rows with weight 2 in H and,
as a result, Ω2 6 3/(n− k) in this case.

Now let’s calculate the probability of having at most i independent rows
with weight 2, denoted by Ni. For i = 1, this is equivalent to having exactly
two equal rows in GT . Therefore, we need to compute the probability of
having exactly two equal rows in GT . To find out this number, we fix the first
row and note that we have

(
k
d

)
possibilities for this row (recall the ensemble

we are using as explained in the introduction). Then, we can choose any
one of the n − 1 remaining rows to be equal to this row. Suppose we have
selected the second row to be equal to the first one. Thus, we have

(
k
d

)
− 1

possibilities for the third row,
(

k
d

)
− 2 possibilities for the fourth row and so
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on. Hence, the probability of having exactly two equal rows in GT is1

P 1
2 =

(n− 1)(
(

k
d

)
)(

(
k
d

)
− 1) . . . (

(
k
d

)
− (n− 2))(

k
d

)n (4)

Now, what is the probability of having at most two rows with weight two
in H? To find out, we must calculate the probability of having either three
equal rows or two pairs of equal rows in GT . The first probability accounts
for rows of H of the form (11000); (10100) -meaning that the first, second
and third rows in GT are equal, and the second one accounts for the vectors
of the form (11000); (00110), which means that the first and second rows
are equal as well as the third and the fourth rows while these two pairs are
different from each other.

The number of ways in which we can have three equal rows in GT is
calculated as follows: we fix the first row as usual for which we have

(
k
d

)
possibilities. Then we choose the other two rows in

(
n−1

2

)
ways and make

them equal to the first row. For the rest of the rows we have (
(

k
d

)
− 1)(

(
k
d

)
−

2) . . . (
(

k
d

)
− (n−3)) possibilities. Hence the probability of having three equal

rows, P 1
3 , is:

P 1
3 =

(
n−1

2

)
(
(

k
d

)
)(

(
k
d

)
− 1) . . . (

(
k
d

)
− (n− 3))(

k
d

)n (5)

All remains to do now is to find out the probability of having two pairs of
equal rows in GT , P 2

2 . As usual, we fix the first row for which we have(
k
d

)
options. We also fix the second row to be unequal to the first one, with

(
(

k
d

)
−1) possible choices. Now, we select another row with (n−2) possibilities

and equate it to the first row. We do the same for the second row with (n−3)
options. Hence, the probability P 2

2 is given by the following equation:

P 2
2 =

(n− 2)(n− 3)(
(

k
d

)
)(

(
k
d

)
− 1) . . . (

(
k
d

)
− (n− 3))(

k
d

)n (6)

Based on equations (5) and (6), the probability of having at most two rows
with weight two in H is

P2 = P 1
3 + P 2

2 =
(
(

n−1
2

)
+ 2

(
n−2

2

)
)(

(
k
d

)
)(

(
k
d

)
− 1) . . . (

(
k
d

)
− (n− 3))(

k
d

)n (7)

1Notation: P j
i indicates the probability of having j pairs of i equal rows. For example,

P 1
2 is the probability of having two equal rows and P 1

3 is the probability of having three
equal rows. On the other hand, P 2

2 is the probability of having two pairs of equal rows.
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Note that as n goes to infinity, the P1 is of the form of O(n)Πn−2
j=0 (

(
k
d

)
−j)/

(
k
d

)n

and P2 is in the form of O(n2)Πn−3
j=0 (

(
k
d

)
− j)/

(
k
d

)n
.

We can continue this way to calculate P3, P4, . . . , Pn. We can show that
Pi have the form of O(ni)Πn−i−1

j=0 (
(

k
d

)
− j)/

(
k
d

)n
. We can replace O(ni) with

αin
i where αi is a constant. Having done that, we can calculate the upper

bound on the expected number of rows with 2 in H as follows:

(n− k).Ω2 6
n∑

i=0

iPi '
n∑

i=0

i
αin

iΠn−i−1
j=0 (

(
k
d

)
− j)(

k
d

)n

6 α
n∑

i=0

i
niΠn−i−1

j=0 (
(

k
d

)
− j)(

k
d

)n (8)

where α = maxi αi. Now we have:

(n− k).Ω2 6 α
n∑

i=0

i
niΠn−i−1

j=0 (
(

k
d

)
)(

k
d

)n

= α
n∑

i=0

i
ni

(
k
d

)n−i(
k
d

)n =
n∑

i=0

i(
n(
k
d

))i (9)

Denoting n

(k
d)

with x, the above sum simplifies to:

(n− k).Ω2 6 α
x

(x− 1)2
(nxn+1 − (n + 1)xn + 1) (10)

Therefore, we get the following upper bound for Ω2:

Ω2 6
α

n− k

x

(x− 1)2
(nxn+1 − (n + 1)xn + 1) (11)

As n goes to infinity, and by assuming k = rn, where r is the code rate,
then x goes to zero for d > 1. Therefore, the upper bound in equation (11)

also vanishes. This means that: limn→∞Ω2 = 0
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