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Abstract

This work is concerned with codes, graphs and their links. Graph based codes have recently become very
prominent in both information theory literature and practical applications. While most research has centered
around their performance under iterative decoding, another line of study has focused on more combinato-
rial aspects such as their weight distribution. This is the angle we explore in the first part of this thesis,
investigating the trade-off between rate and relative distance. More precisely, we show, using a probabilistic
argument, that there exist graph-based codes approaching the asymptotic Gilbert-Varshamov bound, and that
are encodable in timeO(n1+ǫ) for anyǫ > 0, wheren is the block length.

The second part is concerned with more practical issues, more specifically the erasure channel. Although
the codes mentioned above have been shown to perform very well in this setting, this nonetheless requires
their lengths to be quite large. When short blocks are required, certain algebraic constructions become viable
solutions. In particular Reed-Solomon (RS-) codes are usedin a wide range of applications. However, there do
not appear to be any practical uses of the more general Algebraic-Geometric (AG-) codes, despite numerous
advantages. We explore in this work the use of very short AG-codes for transmissions over the erasure channel.
We present their advantages over RS-codes in terms of the encoder/decoder running times, and evaluate the
drawbacks by designing an efficient algorithm for computingthe error probabilities of AG-codes. The work
was done as part of an industrial collaboration with specifictransmission problems in mind, and we include
some practical data to illustrate the theoretical improvements.

Graphs and codes can be related in different ways, and a graphbeing a goodexpanderoften yields a code
with certain desirable properties. In the third part we dealwith graph products and their expansion properties.
Just as thederandomized squaringoperation essentially takes the square of a graph and removes some edges
according to a second graph, we introduce thederandomized tensoringoperation which removes edges from
the tensor product of two graphs according to a third graph. We obtain a bound on the expansion of the
product in terms of the expansions of the constituent graphs. We also apply the same ideas to a code product,
leading to thederandomized code concatenationoperation and its analysis.

Keywords: Repeat-Accumulate code, Gilbert-Varshamov bound, Reed-Solomon code, Algebraic-Geometric
code, erasure channel, expander graph, derandomized squaring, derandomized tensoring, code concatenation.
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Résuḿe

Ce travail concerne les codes, les graphes et leurs liens. Les constructions de codes à partir de graphes ont
récemment pris beaucoup d’importance, tant dans les publications de théorie de l’information que dans les
applications pratiques. Alors que la recherche s’est majoritairement centrée sur leur performance dans le
décodage itératif, une autre direction s’est plutôt focalisée sur des aspects plus combinatoires, tels que leur
distribution de poids. C’est cette approche que nous explorons dans la première partie de cette thèse, en
étudiant le compromis entre rendement et distance minimale. Plus précisément, nous montrons, suite à un
argument probabiliste, qu’il existe de tels codes approchant la borne asymptotique de Gilbert-Varshamov, et
pour lesquels il existe un algorithme d’encodage avec tempsde parcoursO(n1+ǫ) pour toutǫ > 0, où n
représente la longueur de bloc.

La seconde partie concerne des problèmes plus pratiques, plus spécifiquement le canal à effacement. Bien
que les codes mentionnés ci-dessus aient de très bonnes performances dans ce cadre, leur longueur doit
néanmoins être assez grande. Lorsque des blocs courts sont nécessaires, certaines constructions algébriques
deviennent des solutions viables. En particulier, les codes de Reed-Solomon (RS) sont utilisés dans une grande
panoplie d’applications. Il n’y a cependant apparemment aucune utilisation pratique des codes Algébriques-
Géométriques (AG) pourtant plus généraux, et ceci en d´epit de nombreux avantages. Nous explorons dans ce
travail l’utilisation de codes AG très courts pour la transmission sur le canal à effacement. Nous présentons
leurs avantages sur les codes RS, en termes des temps de parcours de l’encodeur et du décodeur, puis évaluons
leurs inconvénients en concevant un algorithme efficace pour calculer les probabilités d’erreur des codes AG.
Ce travail a été réalisé dans le cadre d’une collaboration industrielle, motivé par des problèmes de transmission
spécifiques, et nous incluons également des données pratiques pour illustrer les gains théoriques.

Il existe plusieurs façons d’établir la relation entre les codes et les graphes, et un graphe qui est un bon
expanseurmène souvent à un code avec certaines propriétés souhaitables. Dans la troisième partie nous
nous intéressons aux produits de graphes et leurs propriétés d’expansion. Tout comme l’opération ducarré
dérandomiśeprend le carré d’un graphe et lui retire des arêtes selon undeuxième graphe, nous introduisons le
produit tensoriel d́erandomiśe, qui enlève des arêtes du produit tensoriel de deux graphes selon un troisième
graphe. Nous obtenons une borne sur l’expansion du produit en fonction de l’expansion des graphes utilisés.
Nous adaptons également ces idées à un produit de codes, menant ainsi à laconcat́enation de codes dérandomiśee
et son analyse.

Mots-clés:Code Repeat-Accumulate, borne de Gilbert-Varshamov, codede Reed-Solomon, code Algébrique-
Géométrique, canal à effacement, graphe expanseur, carré dérandomisé, produit tensoriel dérandomisé, con-
caténation de code.
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Chapter 1

Introduction

The aim of coding theory is to provide methods of transmitting information in a reliable way over unreliable
communication channels. Data sent through these channels may getcorrupted, and the role of coding theory
is to pre-process the sent data in such a way that it can be recovered from the corrupted data received. The
pre-processing is referred to asencoding, while the recovery is referred to asdecoding.

Encoding involves adding redundant information to the message before it is sent. This means that more
information must be transmitted than would be on a reliable channel. How much redundancy is needed
depends on how “bad” the channel is, i.e., how much corruption it adds. This leads to the natural question
of what is the smallest amount of redundancy we can get away with for a given channel. The answer was
given in Shannon’s 1948 paper “A mathematical theory of communication”, which laid down the basis for all
digital communication. However, although his proof guarantees the existence of coding schemes that achieve
the limits given in the paper, it gives no clue as to how such codes can be constructed.

It has henceforth been a major aim of coding theory to construct codes whose structural properties ensure
reliable transmission, using as little redundancy as possible. We will consider onlyblock codes, in which
data is divided into pieces which are processed independently. The length of a code describes how much
data is sent in each block. Theminimum distanceof a code can be important in assessing its error correction
ability, in the sense that it being large guarantees a minimum adeptness to correct errors. Therate measures
how much real information a block contains. These last two parameters pull against each other (improving
one tends to worsen the other), and it is a fundamental problem in coding theory to find the best trade-off
between the two. Another important issue to consider is thecomplexityof the code, referring to the running
times of the encoding and decoding algorithms. Even when codes are studied only as combinatorial objects
it is an interesting property to possess efficient algorithms, and it becomes essential in the context of data
transmission.

Different tools have been developed to construct such codes. One major tool isalgebraic, whereby known
results from often rather abstract fields have been applied to obtain codes that can be proved to meet certain
requirements. Although mathematically pleasing, there are aspects of these more traditional codes that can
be improved upon. Graph theory is another such tool, wherebygraphs with certain desirable properties can
lead to codes with very effective decoding algorithms that work particularly well on common transmission
channels.

Low Density Parity Check(LDPC-) codes are graph-based constructions that have attracted a lot of attention
in recent years, due to their impressive performance under iterative decoding. Although first invented in 1963
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by Gallager, they were later independently rediscovered indifferent flavors by Tanner [83], MacKay [48],
Luby et al. [47]. They were shown to contain sequences that approach the capacity of a given symmetric
channel, with very fast encoding and decoding algorithms. Adifferent research direction has been the study
of more combinatorial properties such as the weight distribution of these codes, mostly to obtain bounds on
their performance under Maximum Likelihood decoding. Thisis the aspect we will consider in the first part of
this work. More precisely we will construct inChapter 3 ensembles of graph-based codes that approach the
Gilbert-Varshamov (GV-) bound with high probability, and that can be encoded in near linear time (essentially
O(n1+ǫ) for anyǫ > 0).

The second part of our work involves more practical applications. While the graph-based codes like those
mentioned above do indeed have excellent performance, thisis conditioned on their lengths being reasonably
large. There are however applications requiring very shortblocks for whichalgebraiccodes have distinct ad-
vantages. The most ubiquitous are Reed-Solomon (RS-) codes, which are widely used in diverse applications.
On the other hand, practical uses of the more general Algebraic-Geometric (AG-) codes are almost non-
existent. This is despite the fact that AG-codes have remarkable properties in that they enable the construc-
tion of codes with excellent rate/distance trade-off (in some cases beating the asymptotic Gilbert-Varshamov
bound).

RS-codes have the drawback that their length is bounded by the size of the field on which they are constructed.
This means first of all RS-codes cannot be studied asymptotically, but even for finite lengths, long codes
require large fields. AG-codes do not have this restriction,an advantage that can be interpreted in two different
ways. The most straightforward is that for a given field size one can construct longer codes, so that bigger
pieces of data can be protected in each block. On the other hand, for a givenn, an AG-code of lengthn will
require a smaller field than an RS-code, which in turn means that the encoding and decoding algorithms can
be made to run faster. This second interpretation becomes very relevant for applications that require short
blocks (i.e., anything that needs to be decoded in real time). Furthermore, this is exactly the situation in which
these algebraic codes can still outperform graph-based codes.

We explore inChapter 4 the use of very short AG-codes for transmissions over the erasure channel. We
present their advantages over RS-codes in terms of encoder/decoder running time, and also quantify their
drawbacks by developing an efficient algorithm to compute the error probabilities of the short AG-codes we
consider. The contents of this chapter were motivated by existing practical needs, and we use a specific
transmission problem to obtain some data illustrating the theoretical speed-ups. The work was done in collab-
oration with the company Digital Fountain and the codes presented are being used in some of their commercial
products. It is interesting that although AG-codes are bestknown for their asymptotic properties, it is for these
very short lengths that they appear to offer the best prospects for practical exploitation.

The third part of our work deals with the topic of expander graphs. Graphs and codes can be related in
different ways. With the LDPC codes mentioned above the linkwas provided by theTanner graphof the
code. A different relationship can be established by takingan [n, k]-code with generator matrixG, and
looking at the Cayley graph ofFk

2 with respect to the columns ofG. In both cases, the graph being a good
expanderguarantees that the corresponding code will be good.

We will be concerned in the last two chapters with graph products and their expansion properties. Rozenman
and Vadhan introduced a modified version of the graph squaring product calledderandomized squaring[65].
This led to a graph of smaller degree, at the cost of slightly worse expansion. We extend these ideas to another
graph product (the tensor product) and a code product (code concatenation). After introducing expander
graphs and some useful tools inChapter 5, we describe and analyze our products inChapter 6. More
precisely we obtain a bound on the expansion of the derandomized tensor product (measured by the second

2



eigenvalue), as a function of the second eigenvalues of the constituent graphs.
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Chapter 2

Coding Theory Background

2.1 Introduction

In this chapter we review the basic notions of coding theory that will be used in subsequent chapters. We give
the standard definitions from the area of block codes before presenting the Gilbert-Varshamov bound which
features prominently in Chapter 3.

2.2 Error Correcting Codes

All the following material can be found in standard textbooks (for example [89][51][41]), and will therefore
not be expanded upon.

Definition 2.1. We have:

• An (n,M) block codeC over an alphabetΣ is a subset ofΣn of sizeM . n is referred to as thelengthof the
code. All our codes will be block-codes, and we refer to them simply ascodes.

• An [n, k] linear codeC over a finite fieldFq is a subspace ofFn
q of dimensionk. n andk are respectively

referred to as thelengthanddimensionof the linear code.

In this work we will deal exclusively with linear codes, so weassume from now on that all codes are linear.
An [n, k]-code overFq can also be referred to as an[n, k]q-code.

Definition 2.2. Let C be an[n, k]q-code.

• Therate of C is defined asR(C) = k
n .

• A matrix G ∈ Fk×n
q whose rows form a basis ofC is called agenerator matrixfor C.

• A matrix H ∈ F
(n−k)×n
q for which C = rker(H) is called aparity check matrixfor C (rker(H) denotes the

right kernel ofH).

Notice that ifG is a generator matrix andH a parity check matrix forC then

C =
{
Gu

∣
∣ u ∈ Fk

q

}
=

{
c ∈ Fn

q

∣
∣ Hc = 0

}
.
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Definition 2.3. Let C be an[n, k]q-code.

• Thehamming weightof a vectorx ∈ Fn
q is the number of non-zero components inx:

wgt(x) =
∣
∣
∣

{
i | xi 6= 0

}
∣
∣
∣.

The hamming weight of a vector will simply be referred to as itsweight.

• Thehamming distancebetween two vectorsx, y ∈ Fn
q is the number of components in which they differ:

d(x, y) = wgt(x− y).

• Thezero codewordis the zero vector inFn
q . It is always an element of the code.

• Theball aroundx ∈ Fn
q of radiusr is defined as

Br(x) =
{
y ∈ Fn

q

∣
∣ d(x, y) ≤ r

}
.

• Theminimum distanceof C is defined as

dmin(C) = min
{
d(x, y) | x, y ∈ C, x 6= y)

}
.

Since we are assumingC to be linear,dmin(C) is also equal to the smallest hamming weight of a non-zero
codeword.

• Therelative distanceof C is defined as

δ(C) =
dmin(C)

n
.

• Theweight distributionof C is the histogram of the weights of all the codewords. More formally it consists
of the integersA0, . . . , An whereAi is the number of codewords of weighti.

An [n, k]q-code of minimum distanced can also be referred to as an[n, k, d]q-code.

Although codes are interesting combinatorial objects in themselves, to study them in the context of reliable
data transmission it is important to consider theencodinganddecodingprocedures.

Definition 2.4. Let C be an[n, k]q-code. Anencoding functionis an injective map

E : Fk
q →֒ Fn

q

with Im(E) = C.

A Family of codes is a sequence of codes of increasing length. Becausewe often do not know beforehand
the length of the code we will need, it will be convenient and elegant to construct families in which all codes
have a set of desired properties. Furthermore, we will be interested inasymptoticproperties of codes, which
require us to work with families.

Definition 2.5. A family of codesoverFq is a sequence{Ci}i∈N∗ , whereCi is an[ni, ki, di]q code, and

lim
i→∞

ni =∞.

TherateR andrelative distanceδ of the family are defined as

R = lim
i→∞

ki

ni
and δ = lim

i→∞
di

ni
,

if these limits exist (and are said to be undefined otherwise).
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2.3 The Gilbert-Varshamov Bound

The rate and minimum distance are fundamental parameters ofa code. In the context of data transmission it is
desirable to have both large minimum distance and large rate. A big minimum distance often means that more
corruption in the transmission can be overcome, whereas a code of larger rate will require less redundant bits
and therefore less bandwidth in the transmission. However these two parameters pull against each other, in
the sense that increasing one of them tends to decrease the other one. This leads to the natural question of
finding the best possible trade-off between the two.

One of the fundamental problems of coding theory is to compute the following function:

Aq(n, d) = max
{
k

∣
∣ there exists an[n, k, d]q-code

}
. (2.1)

This is a difficult problem, and for each field sizeq, the values ofAq(n, d) are known only for smalln andd.
There are however many upper and lower bounds onAq(n, d) (see for example chapter 5 of [89]).

Another major question in coding theory concerns theasymptoticversion of this problem, namely determining
for which pairsR, δ ∈ [0, 1] there exist families of codes of rateR and relative distanceδ. Formally we define
an asymptotic version of (2.1)

αq(δ) = lim sup
n→∞

Aq(n, ⌊nδ⌋)
n

, (2.2)

and are concerned with evaluating this function.αq(δ) is not known for any values ofδ other than 0 and 1, but
again there are many upper and lower bounds. In particular, the Gilbert-Varshamov bounddescribed below
will be important to us.

We will need the following function:

Definition 2.6. Theq-ary entropy functionhq : [0, q−1
q ]→ [0, 1] defined as

hq(x) =

{
0 if x = 0

−x logq

(
x

q−1

)

−
(
1− x

)
logq

(
1− x

)
if 0 < x ≤ q−1

q .

Theorem 2.7. The asymptotic Gilbert-Varshamov bound.
For anyδ < q−1

q , we have
αq(δ) ≥ 1− hq(δ). (2.3)

Proof: This is a standard result. See for example [89], Theorem 5.1.9.

Notice that this is equivalent to saying that given a fieldFq, for anyδ < q−1
q andR < 1− h(δ) there exists a

family of codes with rateR and relative distance≥ δ.

In the next chapter we will be interested in the bound (2.3) ofTheorem 2.7 for the binary case (q = 2). Al-
though its proof is very simple, it has been conjectured thatthis bound is tight forq = 2. Perhaps surprisingly,
almost all families of binary codes approach this bound asymptotically. It is however an open problem to find
explicit constructions that do so.
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Chapter 3

Repeat-Accumulate Codes that Approach
the Gilbert-Varshamov Bound

3.1 Introduction

Graph based codes have attracted a lot of attention in recentyears. For the most part, their renaissance has
been due to the fact that they allow for fast encoding and decoding algorithms with which suitably designed
codes approach the capacity of a given memoryless symmetricchannel [48] [75] [35] [58] [21] [46] [62].

A different line of research has concentrated on the weight distribution of graph based codes (see, e.g., [42]).
Mostly, these results are used to obtain bounds on the performance of the Maximum-Likelihood decoder for
the codes in question. In this chapter, we study a special class of graph based codes and show that they contain
sequences which approach the Gilbert-Varshamov (GV) bound. This bound says that for anyδ < 1/2 and
anyR < 1 − h(δ), there is a family of codes with relative distance≥ δ and rateR (whereh is the binary
entropy function).

The codes that we concentrate on are the Repeat-Accumulate Codes [22]. These have generator matrices of
the formG = M · A, whereM is a matrix in which the columns are constructed independently at random
to have approximately the same weightW , andA is theaccumulatormatrix, i.e., the upper triangular matrix
having ones on and above the main diagonal. We will show, using a probabilistic argument, that there exist
codes from this class that approach the Gilbert-Varshamov bound, ifW is not too small. More precisely, ifn
andk denote the block length and the dimension of the code respectively, then we show that for anyy > 0,
if W = θ

(
ky

)
then for anyδ < nh−1(1 − R) the probability that a code chosen from this ensemble has

minimum distance≤ nδ converges to zero asn tends to infinity.

One of the applications of this result is that there are codesthat approach the Gilbert-Varshamov bound and
have fast encoding algorithms. This result in itself is not new, (see, e.g., Section 11.1 of [89]) but the derivation
is interesting and the fact that the codes are Repeat-Accumulate codes with a simple combinatorial structure
may suggest that there are asymptotically very good explicit Repeat-Accumulate codes.

After establishing some background we describe the construction and show that the corresponding codes
approach the GV-bound with high probability. This is essentially done in two parts. We first obtain an
expression for the probability thatδ < nh−1(1−R), and then show that this expression converges to zero as
n tends to infinity. The second part is unfortunately rather technical, but can be broken up into different cases
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which we treat separately.

3.2 Background

3.2.1 Ensembles of Codes

This chapter deals with codes constructed using arandom component, so we start by formalizing this concept.
An ensembleE of codes is a finite set of codes with a probability distribution assigning non-zero probabilities
to the codes. Choosing a code fromE is equivalent to sampling from this distribution. We also suppose that
all codes in a given ensemble have the same length (called thelength of the ensemble). When we refer to the
probability that an ensembleE has a certain property, we mean the probability that a code sampled fromE

has this property. So, for example,
Pr

[
E has rate≥ R

]

refers to the probability that a code sampled fromE has rate at leastR. Likewise if we say that the ensemble
E has a certain property we mean that all codes inE have this property.

Recall that afamily of codesis a sequenceC1,C2, . . ., whereCi is an[ni, ki, di]q code, and

lim
i→∞

ni =∞.

TherateR andrelative distanceδ of the family are defined as

R = lim
i→∞

ki

ni
, and δ = lim

i→∞
di

ni
,

if these limits exist (and are undefined otherwise).

We can also havefamilies of ensemblesE1, E2, . . ., whereEi has lengthni and

lim
i→∞

ni =∞.

The family is said to have a certain propertyP with high probabilityif

lim
i→∞

Pr

[

Ei has propertyP

]

= 1.

3.2.2 Standard Bounds for the Binomial Function

We start by recalling the definition of the binary entropy function:

Definition 3.1. Thebinary entropy functionh : [0, 1
2 ]→ [0, 1] is defined as

h(x) =

{
0 if x = 0
−x · log2(x)− (1− x) · log2(1− x) otherwise.
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Unless specified otherwise, all logarithms in this chapter will have base2, solog(x) = log2(x). The following
standard results will be used throughout the chapter:

Theorem 3.2. Leth denote the binary entropy function. For anyn ∈ N andλ ∈ R with 0 ≤ λ ≤ 1
2 , we have:

⌊λn⌋
∑

i=0

(
n

i

)

≤ 2nh(λ), (3.1)

and

lim
n→∞

log
(∑λn

i=0

(n
i

))

n
= h(λ). (3.2)

Proof: See [89], Theorem 1.4.5.

Whena, b ∈ R≥0, we will use the following notational convention:

b∑

i=a

f(i) =

⌊b⌋
∑

i=⌈a⌉
f(i).

3.3 Random Codes and the Gilbert-Varshamov Bound

Uniformly random binary linear codes are produced by picking the entries of ak × n generator matrix uni-
formly at random. More formally, for anyn ∈ N∗ and0 < R < 1, we callCrand(n,R) the ensemble of
uniformly random binary linear codes of lengthn and of design rateR. The procedure of sampling from this
ensemble can be described by the following algorithm:

Algorithm: UNIFORM-RANDOM-L INEAR(n,R)
1: Setk ← ⌈nR⌉
2: Choose a matrixG uniformly at random fromFk×n

2 .
3: Let C← {u ·G | u ∈ Fk

2} be the code whose generator matrix isG.
4: return C.

Notice that this is equivalent to picking each entry ofG independently and uniformly fromF2. A code in
Crand(n,R) will have lengthn, but its rate will not necessarily beR (for exampleG could be the zero matrix
with probability2−kn). R is referred to as thedesign rateof the ensemble.

When we speak of “random codes” without further specification we actually mean “uniformly random codes”.
We will sometimes abuse notation by referring to the family of ensembles

{
Crand(n,R)

}

n∈N∗

simply asCrand(n,R).

We recall the asymptotic Gilbert-Varshamov bound for binary codes:
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Theorem 3.3. The asymptotic Gilbert-Varshamov (GV) bound.
For anyδ < 1

2 andR < 1− h(δ), there exists a family of binary codes with rateR and relative distance≥ δ.

Notice that this is not saying we can find families with(δ,R) on theR = 1−h(δ) curve, butarbitrarily close
to it. It turns out that random binary codes (the family of ensembles{Crand(n,R)}n∈N∗ ) approach this bound
with high probability:

Theorem 3.4. For anyδ < 1
2 andR < 1 − h(δ), if k = ⌈nR⌉ thenCrand(n,R) is an [n, k,≥ nδ]-code with

high probability.

Proof: Let C be a code sampled fromCrand(n,R), and letdmin be the minimum distance ofC. We will show
that the probability that there is a non-zero codeword in theclosed ball B(0, nδ) converges to zero asn gets
large. This will imply first of all thatdmin ≥ nδ (with high probability), and secondly that the kernel of the
generator matrixG of C consists only of the zero vector, and therefore thatG has full rank, which means that
C has dimensionk (with high probability). Let

ǫ1 = 1− h(δ) −R.

SinceR < 1− h(δ), we haveǫ1 > 0. Now the volume of B(0, nδ) is

Vol(nδ, n) =

⌊nδ⌋
∑

i=0

(
n

i

)

.

From (3.1) of Theorem 3.2, we have

Vol(nδ, n) ≤ 2n·h
(

⌊nδ⌋
n

)

≤ 2n·h(δ).

For a fixed non-zero message vectoru ∈ Fk
2, the corresponding codewordc = uG is uniformly distributed

overFn
2 . So the probability thatc is in B(0, nδ) is

P = Pr

[

c ∈ B(0, nδ)

]

=
Vol(nδ, n)

2n
≤ 2n·(h(δ)−1).

Recall thatk was defined ask = ⌈nR⌉. Now let ǫ2 = k − nR, so that0 ≤ ǫ2 < 1. We havek = nR + ǫ2.
By makingn large enough we can ensure thatǫ2

n is as small as we like. In particular there is anN for which

n ≥ N =⇒ ǫ2

n
≤ ǫ1

2
. (3.3)
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Since there are2k message vectors, by the union bound we can deduce that ifn ≥ N then

Pr

[

∃c ∈ C : c 6= 0 andc ∈ B(0, nδ)

]

≤ 2k · P

≤ 2k · 2n·(h(δ)−1)

= 2nR+ǫ2 · 2n·(h(δ)−1)

= 2n·(R+h(δ)+ǫ2/n−1)

≤ 2n·(R+h(δ)+ǫ1/2−1) (using (3.3))

= 2−
ǫ1
2
·n (sinceǫ1 = 1− h(δ) −R).

We can therefore deduce that with high probability,B(0, nδ) does not contain a non-zero codeword.

We see in this proof of Theorem 3.4 thatCrand(n,R) approaches the GV bound with a probability that con-
verges to1 exponentiallyfast asn tends to infinity.

3.4 RA Codes that Approach the GV Bound

3.4.1 Code Construction

Our idea is to construct a code in which the distances betweensuccessive columns of thek×n generator matrix
G are approximately the same. We construct each column ofG by taking the previous column, pickingW
components uniformly at randomwith repetitionfrom {1, . . . , k}, and each time flipping the corresponding
bit. Notice that the distance between successive columns could be less thanW if a component got picked
more than once (though this happens with very low probability). Ensuring that the distance is exactlyW
would require the flipped components to be pickedwithout repetition, which makes the analysis substantially
more complicated.

We will show instead that picking them with repetition suffices to obtain families that approach the GV-bound.
Indeed, asymptotically the probability of getting any repetitions converges to zero. We start by expressing this
construction as a Repeat-Accumulate (RA) code.

Theaccumulator matrixis a square matrix with ones on and above the diagonal, and zeros everywhere else:

Definition 3.5. Then× n accumulator matrixAn is defined as

(
An

)

ij
=

{
1 if i ≤ j
0 otherwise

(3.4)

When the dimensions are clear from the context we will writeA instead ofAn.

Definition 3.6. For anyn ∈ N∗, 0 < y < 1 and0 < R < 1, we callCRA(n,R, y) the ensemble whose
sampling procedure is the following:
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Algorithm: GOOD-RA(n,R, y)
1: Initialize ak × n matrix M to the all zero matrix
2: Setk ← ⌈nR⌉
3: for j = 1, . . . , n do
4: for a = 1, . . . , ⌊ky⌋ do
5: pick i ∈ {1, . . . , k} uniformly at random
6: SetMij ←Mij XOR 1
7: end for
8: end for
9: Let G←M ·An

10: Let C← {u ·G | u ∈ Fk
2} be the code whose generator matrix isG.

11: return C.

Informally, we construct a random matrixM as follows: each column is constructed independently by picking
⌊ky⌋ entries from{1, . . . , k} uniformly at random with repetition (andk = ⌈nR⌉). Each component picked
an even number of times is set to0, each component picked an odd number of times is set to1. This matrix
M is then multiplied by the accumulator matrix to obtain the generator matrix of our code.

Note that fori = 2, . . . , n, columni of M is the difference between columnsi − 1 andi of G, and so the
weights of the columns ofM represent the distances between successive columns ofG.

The expected number of ones inM is at mostn · ky = O(n1+y) (assuming the ratek/n is constant). So
multiplication byM can be done in sub-quadratic time. Ifu ∈ Fk

2 is a message vector, the encoding process
(i.e., computing the codewordc = u ·G) can be decomposed into two stages:

1. Computev = u ·M . This requiresO(n1+y) operations.

2. Computec = v · A. This requiresO(n) operations.

So the whole encoding process is sub-quadraticO(n1+y).

As above, we will abuse notation by referring to the family ofensembles
{
CRA(n,R, y)

}

n∈N∗

simply asCRA(n,R, y).

Our aim is to show thatCRA(n,R, y) approaches the asymptotic Gilbert-Varshamov bound. More formally
we want to show that for anyδ < 1

2 and R < 1 − h(δ), a code chosen fromCRA(n,R, y) will be an
[n, nR,≥ nδ]-code with high probability (with a probability that converges to1 asn tends to infinity).

3.4.2 Input/Output Weight Distribution

Our goal in this section is to get an expression upper bounding the probability

Pr

[

dmin
(
CRA(n,R, y)

)
≤ nδ

]

(3.5)
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as a function ofn,R, y andδ (see Theorem 3.14). We will then use this in the next section to show that when
R < 1 − h(δ) this probability will converge to zero asn tends to infinity. Our approach to obtaining this
upper bound is to compute theInput/Output weight distributionof the generator matrix ofCRA(n,R, y).

Suppose we have valuesn ∈ N∗, 0 < R < 1 and0 < y < 1. Setk = ⌈nR⌉. We consider the following
experiment:

1. Sample a code (along with itsk × n generator matrixG = MA) from CRA(n,R, y).

2. Sample a message vectoru uniformly at random fromFk
2 .

3. Computev = uM .

4. Computec = vA (soc = uMA = uG is the encoding ofu).

To eachu ∈ Fk
2 there corresponds a distributionDv on v. We now make two observations. Firstly, the

distribution is the same for allu’s of a given weight, i.e., if wgt(u) = wgt(u′) thenDu = Du′ . Secondly,
for a fixedu ∈ Fk

2 the probabilities are the same for twov’s of a given weight (since each component ofv is
independent of the others), so if wgt(v) = wgt(v′) thenPrDu(v) = PrDu(v′).

Definition 3.7. We define thek × n matrix M as follows:

Mwℓ = Pr

[

wgt(uM) = ℓ

∣
∣
∣
∣

wgt(u) = w

]

. (3.6)

Notice that the probability in (3.6) involves two differentsources of randomness: On the one hand the random
construction ofM (described in Definition 3.6), and on the other hand the choice of the message vectoru
(picked uniformly at random).

Definition 3.8. We define then× n matrixA as follows:

Aℓd = Pr

[

wgt(vA) = d

∣
∣
∣
∣

wgt(v) = ℓ

]

. (3.7)

Because the matrixA is not random, the probability in (3.7) has a single source ofrandomness, namely the
choice ofv. We callM andA the input/output weight distributions(IOWD) of the matricesM andA.

Lemma 3.9. LetC be a code sampled fromCRA(n,R, y), and letk = ⌈nR⌉. Then

Pr

[

dmin(C) ≤ nδ

]

≤
nδ∑

d=1

k∑

w=1

(
k

w

)

·
n∑

ℓ=1

Mwℓ ·Aℓd. (3.8)

Proof: If we let G be the generator matrix ofC, thenG is a random matrix whose IOWD is thek × n matrix
B defined as

Bwd = Pr

[

wgt(uG) = d

∣
∣
∣
∣

wgt(u) = w

]

.

As in (3.6), there are two sources of randomness for this probability: the construction ofG (sampling from
the ensemble), and the uniform choice ofu. For the rest of this proof we suppose that we have a vectoru
chosen uniformly at random fromFk

2, and we let

v = uM, and c = vA, (3.9)
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so thatc = uG is the codeword obtained fromu. We have:

Bwd =

n∑

ℓ=0

Pr

[

wgt(v) = ℓ

∣
∣
∣
∣

wgt(u) = w

]

· Pr

[

wgt(c) = d

∣
∣
∣
∣

wgt(v) = ℓ

]

,

which using Definitions 3.7 and 3.8 leads to

Bwd =
n∑

ℓ=0

Mwℓ ·Aℓd.

Let Wd be the probability that a codeword picked uniformly at random has weightd. This is equal to the
probability that a message vectoru picked uniformly fromFk

2 gets encoded to a codeword of weightd, which
gives us

Wd =

k∑

w=0

(k
w

)

2k
· Bwd =

1

2k

k∑

w=0

(
k

w

) n∑

ℓ=0

Mwℓ · Aℓd. (3.10)

So since there are at most2k codewords inC, by the union bound the probability that there exists a codeword
of weightd is at most2k ·Wd:

Pr

[

∃c ∈ C : wgt(c) = d

]

≤
k∑

w=0

(
k

w

) n∑

ℓ=0

Mwℓ · Aℓd. (3.11)

Since

Pr

[

dmin(C) ≤ nδ

]

≤
nδ∑

d=1

P

[

∃c ∈ C : wgt(c) = d

]

, (3.12)

we obtain

Pr

[

dmin(C) ≤ nδ

]

≤
nδ∑

d=1

k∑

w=0

(
k

w

)

·
n∑

ℓ=0

Mwℓ ·Aℓd. (3.13)

Because all the terms are non-negative, this inequality still holds if we start the sums atw = 1 andℓ = 1:

Pr

[

dmin(C) ≤ nδ

]

≤
nδ∑

d=1

k∑

w=1

(
k

w

)

·
n∑

ℓ=1

Mwℓ ·Aℓd, (3.14)

which is the required result.

So to get the bound on (3.5) we are looking for, we need expressions forMwℓ andAℓd. The IOWD of the
accumulator matrix is given in [22] without proof, so we include a proof below.

Theorem 3.10.

Aℓd =

( n−d
⌊ℓ/2⌋

)( d−1
⌈ℓ/2⌉−1

)

(n
ℓ

) . (3.15)

Proof: We would like to count how many vectorsv ∈ Fn
2 of weight ℓ have the property thatc = v · A has

weightd. Let s1 < . . . < sℓ ∈ {1, . . . , n} be theℓ indices such thatvsi = 1. For convenience we also define
s0 = 1. For allj = 0, . . . , ℓ− 1 we defineSj = {sj , . . . , sj+1 − 1}, andSℓ = {sℓ, . . . , n}. Notice thatS0 is
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the only set that may be empty, all other sets will contain at least one element.S0, . . . , Sℓ form a partition of
{1, . . . , n}. We callSj aneven setwhenj is even (includingj = 0), and anodd setotherwise.

If ℓ is even then there areℓ/2 + 1 even sets, andℓ/2 odd sets. Ifℓ is odd, there are(ℓ + 1)/2 even sets, and
(ℓ + 1)/2 odd sets. So in both cases there are⌊ℓ/2⌋+ 1 even sets, and⌈ℓ/2⌉ odd sets.

By looking closely at the accumulator matrix, we can see that:

ci =

{
0 if i ∈ Sj whereSj is an even set
1 if i ∈ Sj whereSj is an odd set.

Observe that by deciding on the size of each setSj we are uniquely determining the valuess1, . . . , sℓ, and
therefore the vectorv. So to count how many vectorsv lead toc having weightd we need to count how many
ways we can constructS0, . . . , Sℓ such that the odd sets contain a total ofd elements, and the even sets a total
of (n − d) elements.

Our problem is now reduced to one of balls and bins: we need to placed ones (balls) into⌈ℓ/2⌉ odd sets
(bins), and(n− d) zeros into⌊ℓ/2⌋+ 1 even sets. We recall that in general fora ≥ b there are

(a−1
b−1

)
ways of

placinga balls intob bins in such a way that no bin is empty (we write out thea elements one after the other
and pick(b− 1) dividing lines in between two elements).

The number of ways of putting the(n − d) zeros into the⌊ℓ/2⌋ + 1 even sets is
( n−d
⌊ℓ/2⌋

)
(we have(n − d)

instead of(n− d− 1) because we also allowS0 to be empty). Likewise, the number of ways of putting thed
ones into the⌈ℓ/2⌉ odd sets is

(
d−1

⌈ℓ/2⌉−1

)
.

So the total number of ways of placing the ones and zeros into these sets is
(

n− d

⌊ℓ/2⌋

)

·
(

d− 1

⌈ℓ/2⌉ − 1

)

, (3.16)

and this is therefore the number of vectorsv of weightℓ that lead to a codewordc of weightd. Since the total
number of vectorsv of weightℓ is

(n
ℓ

)
, the result follows.

Theorem 3.11.

Mwℓ =

(
n

ℓ

)

·
(
Pw

)ℓ ·
(

1− Pw

)n−ℓ

, (3.17)

wherePw denotes the probability that a fixed entry ofv is equal to1, given that the weight ofu is w:

Pw =
1

2
− 1

2
·
(

1− 2w

k

)⌊ky⌋
, where k = ⌈nR⌉ . (3.18)

Proof: Let u ∈ Fk
2 be a message vector of weightw. First note that a fixed entryvi of v depends only on

u and columni of M , which is generated independently of all other columns.vi = 0 if and only if among
the⌊ky⌋ components chosen from{1, . . . , k} to construct columni, an even number are in supp(u). So the
distribution on the possible values ofv depends on wgt(u), but not onu itself (all u’s of weightw lead to the
same distribution).

Each time a component is chosen, it will hit supp(u) with probability w
k . So
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Pr

[

vi = 0

]

=
∑⌊ky⌋/2

i=0

(⌊ky⌋
2i

)
·
(

w
k

)2i ·
(
1− w

k

)⌊ky⌋−2i

= 1
2

[
(
(1− w

k ) + w
k

)⌊ky⌋
+

(
(1− w

k )− w
k

)⌊ky⌋
]

= 1
2 + 1

2

(

1− 2w
k

)⌊ky⌋
.

We therefore see from the definition ofPw in (3.18) that

Pw = 1− Pr

[

vi = 0

]

= Pr

[

vi = 1

]

. (3.19)

Since the componentsvi are independent, constructingv = (v1, . . . , vn) consists ofn Bernoulli trials, where
vi = 1 with probabilityPw, so (3.17) follows.

Now the binomial function
(
a
b

)
is a map

(·
·

)

: N× N→ N.

We extend it to be defined over all non negative real numbers:
(·
·

)

: R≥0 × R≥0 → R≥0.

This is done using the gamma function (which is an extension of the factorial function to real numbers), the
details are given in Appendix A. This extension has all the expected properties, in particular the following
bound on

(a
b

)
still holds:

Proposition 3.12. For anya, b ∈ R with 1 ≤ b ≤ a we have
(

a

b

)

≤ 2a·h(b/a).

Proof: See Appendix A.

We also have the following proposition:

Proposition 3.13. For anyn, ℓ ∈ N∗, 0 < δ < 1
2 with 1 ≤ ℓ ≤ 2nδ, lettingδ = 1− δ we have

nδ∑

d=1

(
n− d

⌊ℓ/2⌋

)(
d− 1

⌈ℓ/2⌉ − 1

)

≤ nδ ·
(

nδ

ℓ/2

)(
nδ

ℓ/2

)

. (3.20)

Proof: See Appendix A.

Throughout we will setδ = 1− δ. We are now ready to compute the bound we set out to find at the beginning
of this section:
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Theorem 3.14. If C is a code sampled from the ensembleCRA(n,R, y), then

Pr

[

dmin(C) ≤ nδ

]

≤ nδ ·
nR∑

w=1

2nδ∑

ℓ=1

s(n,w)
︷ ︸︸ ︷(

nR

w

)

·

f(n,ℓ,w)
︷ ︸︸ ︷

P ℓ
w ·

(
1− Pw

)n−ℓ ·

g(n,ℓ)
︷ ︸︸ ︷
(

nδ

ℓ/2

)(
nδ

ℓ/2

)

, (3.21)

where

Pw =
1

2
− 1

2
·
(

1− 2w

nR

)⌊(nR)y⌋
. (3.22)

Proof: Let dmin = dmin(C). We saw in Lemma 3.9 that

Pr

[

dmin ≤ nδ

]

≤
nδ∑

d=1

nR∑

w=1

(
nR

w

)

·
n∑

ℓ=1

Mwℓ · Aℓd.

Now plugging in the expressions we computed in Theorems 3.10and 3.11 forAℓd andMwℓ (and moving the
sums around), we obtain

Pr

[

dmin ≤ nδ

]

≤ nδ ·
nR∑

w=1

n∑

ℓ=1

(
nR

w

)

· P ℓ
w ·

(
1− Pw

)n−ℓ ·
nδ∑

d=1

(
n− d

⌊ℓ/2⌋

)(
d− 1

⌈ℓ/2⌉ − 1

)

, (3.23)

wherePw is defined in (3.18). Therefore applying Proposition 3.13 leads to:

Pr

[

dmin ≤ nδ

]

≤ nδ ·
nR∑

w=1

n∑

ℓ=1

(
nR

w

)

· P ℓ
w ·

(
1− Pw

)n−ℓ ·
(

nδ

ℓ/2

)(
nδ

ℓ/2

)

.

Finally notice that since
ℓ

2
> nδ =⇒

(
nδ

ℓ/2

)

= 0,

in our sum we only need to consider values ofℓ up to2nδ, and therefore the required result (3.21) follows.

3.4.3 Proof Outline

Our aim is to show thatCRA(n,R, y) approaches the Gilbert-Varshamov bound asn tends to infinity. So if
we leth denote the binary entropy function, then we want to show thatwhenR < 1 − h(δ), the probability
in (3.21) tends to0 asn tends to infinity. Indeed, in this case (3.21) is an upper bound on the probability that
the GV-bound isnot achieved.

Let

m(n, ℓ, w) =

s(n,w)
︷ ︸︸ ︷(

nR

w

)

·

f(n,ℓ,w)
︷ ︸︸ ︷

P ℓ
w ·

(
1− Pw

)n−ℓ ·

g(n,ℓ)
︷ ︸︸ ︷
(

nδ

ℓ/2

)(
nδ

ℓ/2

)

be the term inside the double sum in (3.21). Our goal is to prove the following theorem:
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Theorem 3.15.Suppose we are given0 < R, 0 < y < 1 and0 < δ < 1
2 with R < 1− h(δ). Then there are

N, τ > 0 (depending only onR, δ andy) for which

n ≥ N =⇒ ∀ℓ = 1, . . . , ⌊2nδ⌋ ,∀w = 1, . . . , ⌊nR⌋ : m(n, ℓ, w) ≤ exp
(
− τ · ny

)
. (3.24)

From this theorem we deduce that each termm(n, ℓ, w) in the double sum (3.21) is superpolynomially small
in n, and since there is only a polynomial number of terms, the whole sum will converge to0 asn tends to
infinity.

Outline of the Proof: The proof of Theorem 3.15 below is very long and technical.m(n, ℓ, w) is a compli-
cated expression, and which ones of its terms dominate for largen depends on the sizes ofℓ andw relative to
n. To measure these we define

α =
ℓ

n
, γ =

w

n1−y
. (3.25)

Notice that for the values ofℓ andw that interest us we haveα ∈ [ 1
n , 2δ] andγ ∈ [ 1

n1−y , R · ny]. We will

show that there are constantŝA, Γ̂ℓ andΓ̂u (depending only onR, δ andy) that enable us to divide the proof
into four cases:

• Case 1:γ ≥ Γ̂u, and anyα. For eachn large enough this will cover all pairs(ℓ, w) with ℓ = 1, . . . , ⌊2δn⌋
andw =

⌈

Γ̂u · n1−y
⌉

, . . . , ⌊nR⌋.

• Case 2:γ ≤ Γ̂ℓ, α ≤ Â. For eachn large enough this will cover all pairs(ℓ, w) with ℓ = 1, . . . ,
⌊

Ân
⌋

andw = 1, . . . ,
⌊

Γ̂ℓ · n1−y
⌋

.

• Case 3:γ ≤ Γ̂ℓ, α ≥ Â. For eachn large enough this will cover all pairs(ℓ, w) with ℓ =
⌈

Ân
⌉

, . . . , ⌊2δn⌋

andw = 1, . . . ,
⌊

Γ̂ℓ · n1−y
⌋

.

• Case 4: Γ̂ℓ ≤ γ ≤ Γ̂u, and anyα. For eachn large enough this will cover all pairs(ℓ, w) with

ℓ = 1, . . . , ⌊2δn⌋ andw =
⌈

Γ̂u · n1−y
⌉

, . . . ,
⌊

Γ̂ℓ · n1−y
⌋

.

The following diagram illustrates the splitting of the problem into our four cases:

0

case 1case 4

case 2

case 3

γRnyΓ̂uΓ̂ℓ

α

2δ

Â

0
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3.4.4 Case 1: Largeγ, Any α.

Outline: Recall that we view the encoding as a two stage process. Givena codewordu ∈ Fk
2 we first

computev = u ·M , and then the codewordc = v · A. The idea in Case 1 is that asγ gets large,Pw =
1
2 − 1

2 ·
(
1 − 2w

nR

)(nR)y

will get close to1
2 . Recall thatPw represents the probability that a fixed entryvi of

v is equal to1, see (3.19). SoPw being close to12 means thatv is close to being a (uniform) random vector.
Since the codeword can be expressed asc = v ·A andA is bijective, this means thatc is also close to being a
(uniform) random vector. So asγ gets large our code resembles a uniform random code, we therefore proceed
in a similar way to the proof of Theorem 3.4.

The next lemma formalizes the idea thatPw gets close to12 whenγ gets large.

Lemma 3.16. For anyǫ1 > 0, there areN1,Γ1 with

N ≥ N1, γ ≥ Γ1 =⇒
∣
∣
∣
∣
Pw −

1

2

∣
∣
∣
∣
≤ ǫ1. (3.26)

Proof: See Appendix C.

Lemma 3.17. For anyǫ5 > 0, there areN5,Γ5 with

n ≥ N5, γ ≥ Γ5 =⇒
(
Pw

)ℓ ·
(
1− Pw

)n−ℓ ≤ 2−n(1−ǫ5).

Proof: From Lemma 3.16 we see that for anyǫ1, if n andγ are large enough then

(
Pw

)ℓ ·
(
1− Pw

)n−ℓ ≤
(

1

2
+ ǫ1

)n

. (3.27)

So givenǫ5, by choosingǫ1 so that12 + ǫ1 = 2ǫ5−1, the right hand side of (3.27) becomes2−n(1−ǫ5) and so
the result follows.

Recall thatδ is defined asδ = 1− δ.

Lemma 3.18. ∀n ∈ N∗, δ < 1
2 , ℓ = 0, . . . , ⌊2nδ⌋ :

δ · h
(

ℓ

2nδ

)

+ δ · h
(

ℓ

2nδ

)

≤ h(δ). (3.28)

Proof: First note that the derivative of the binary entropy function h is

d

dx
h(x) = log2

(1

x
− 1

)

. (3.29)

Let
q(x) = δ · h

(x

δ

)

+ δ · h
(x

δ

)

. (3.30)
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We want to upper bound the functionq(x) over the range0 ≤ x ≤ δ (identifying x with ℓ
2n ). We have

d

dx
q(x) = log2

( δ

x
− 1

)

+ log2

( δ

x
− 1

)

= log2

(δδ

x2
− δ + δ

x
+ 1

)

, (3.31)

so that
d

dx
q(x) = 0 ⇐⇒ δδ

x2
− 1

x
+ 1 = 1 ⇐⇒ x = δδ. (3.32)

It can then easily be checked thatx = δδ is a maximum forq(x). Therefore

q(x) ≤ q(δδ) = δ · h(δ) + δ · h(δ) = h(δ), (3.33)

where the last equality follows from the fact thath(δ) = h(δ).

Let us summarize the situation so far. We want to show that forany R andδ < 1 − h(R), the following
expression (see (3.21))

nδ ·
nR∑

w=1

n∑

ℓ=1

s(n,w)
︷ ︸︸ ︷(

nR

w

)

·

f(n,ℓ,w)
︷ ︸︸ ︷

P ℓ
w ·

(
1− Pw

)n−ℓ ·

g(n,ℓ)
︷ ︸︸ ︷
(

nδ

ℓ/2

)(
nδ

ℓ/2

)

,

tends to zero asn tends to infinity. Our approach is to show that each term inside the double sum is super-
polynomially small inn, and so since there are only a polynomial number of terms, thewhole sum will go to
zero asn tends to infinity. We defined

m(n, ℓ, w) = s(n,w) · f(n, ℓ, w) · g(n, ℓ), (3.34)

to be the expression inside the double sum.

Proposition 3.19. There areN6,Γ6, τ6 > 0 with

n ≥ N6, γ ≥ Γ6 =⇒ m(n, ℓ, w) ≤ exp(−τ6 · ny). (3.35)

Proof: Using the inequality
(a

b

)
≤ 2a·h(b/a) (see Proposition 3.12), we obtain:

s(n,w) =

(
nR

w

)

≤ 2nR·h( w
nR

), (3.36)

and by Lemma 3.18

g(n, ℓ) =

(
nδ

ℓ/2

)(
nδ

ℓ/2

)

≤ 2
n
(
δ·h( ℓ

2nδ
)+δ·h( ℓ

2nδ
)
)

≤ 2n·h(δ). (3.37)

We also know from Lemma 3.17 that for anyǫ5 > 0, there areN5,Γ5 with

n ≥ N5, γ ≥ Γ5 =⇒ f(n, ℓ, w) ≤ 2−n(1−ǫ5). (3.38)

Sincem(n, ℓ, w) is the product ofs(n,w), f(n, ℓ, w) andg(n, ℓ) (see (3.34)), combining (3.36), (3.37) and
(3.38), we see that for anyǫ5 > 0, there areN5,Γ5 with

n ≥ N5, γ ≥ Γ5 =⇒ m(n, ℓ, w) ≤ 2nR·h( w
nR

)−n(1−ǫ5)+n·h(δ) ≤ 2−n
[
1−h(δ)−R−ǫ5

]

. (3.39)
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Settingǫ5 = 1
2 ·

(
1− h(δ) −R

)
, we see that

m(n, ℓ, w) ≤ exp
(
− τ6 · n

)
,

whereτ6 = 1
2 ·

(
1− h(δ) −R

)
· ln(2). Furthermore sinceR < 1− h(δ), we haveτ6 > 0.

It is clear that−τ6 · n ≤ −τ6 · ny (sinceτ6 > 0 and0 < y < 1). So we have actually shown a stronger
statement than the required result. We setN6 = N5 andΓ6 = Γ5 to complete the proof.

The value ofΓ6 is what we will use for our constant̂Γu:

Definition 3.20. We setΓ̂u to be some arbitrary value ofΓ6 that satisfies (3.35) (such a value exists by
Proposition 3.19).

It is important to note that̂Γu is aconstant, in the sense that it depends only onR, δ andy (which we have
fixed throughout). In particular it doesnot depend onn. Throughout, a valuex written asx̂ indicates that it
depends only onR, δ andy. All variables written this way depend only onR, δ andy, but the converse will
not be true.

This result of Case 1 is summarized in the following theorem:

Theorem 3.21.Suppose we are given0 < R < 1 and0 < δ < 1
2 with R < 1− h(δ). Let Γ̂u be defined as in

Definition 3.20. Then there areN6, τ6 > 0 (depending only onR, δ andy) for which

n ≥ N6 =⇒ ∀ℓ = 1, . . . , ⌊2nδ⌋ , ∀w =
⌈

Γ̂u · n1−y
⌉

, . . . , ⌊nR⌋ : m(n, ℓ, w) ≤ exp
(
− τ6 · ny

)
.

3.4.5 Case 2: Smallα, Small γ.

We recall once more the definitions ofα andγ:

α =
ℓ

n
, γ =

w

n1−y
. (3.40)

Outline: For this case we will show that there exist constantsA,Γ, τ > 0 (depending only onR, δ andy) for
which for alln large enough the statement

m(n, ℓ, w) ≤ exp
(
− τ · ny

)

holds for allℓ = 1, . . . , ⌊A · n⌋ andw = 1, . . . ,
⌊
Γ · n1−y

⌋
(i.e. for all ℓ, w with α ≤ A andγ ≤ Γ).

We will make use of the following theorem:

Theorem 3.22.For anyb, x with b ≥ 1 and0 ≤ x ≤ 1 we have

1− x ≤
(

1− x

b

)b
. (3.41)
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Proof: See Appendix C.

We start with the following lemma:

Lemma 3.23. For all 0 < R < 1, n ∈ N∗, w = 0, . . . , nR, if nR ≥ 1 then

Pw ≤
w

(nR)1−y
. (3.42)

Proof: We start by recalling the definition ofPw (see (3.18)):

Pw =
1

2
− 1

2
·
(

1− 2w

nR

)(nR)y

=
1

2
·
(

1−
(

1− 2w/(nR)1−y

(nR)y

)(nR)y
)

.

Now setting

x =
2w

(nR)1−y
, b = (nR)y, (3.43)

from Theorem 3.22 we obtain

Pw =
1

2
·
(

1−
(

1− x

b

)b
)

≤ 1

2
·
(

1− (1− x)
)

=
w

(nR)1−y
, (3.44)

as required.

Lemma 3.24. For anya > 1, there isX > 0 with

0 < x ≤ X =⇒ e−x ≤ 1− x

a
.

Proof: The curve ofe−x is convex and goes through the point(0, 1), where its derivative is−1. The line
1 − x

a also goes through(0, 1), and its derivative is− 1
a > −1. So it will intersect the curve ofe−x at some

other point(x0, y0), with x0 > 0. We letX = x0.

Lemma 3.25. For anya > 1, there isΓa with

γ ≤ Γa =⇒ n ln(1− Pw) ≤ −1

a
· wny

R1−y
.

Proof: We first recall thatγ is defined as

γ =
w

n1−y
, (3.45)

and

Pw =
1

2
− 1

2
·
(

1− 2w

nR

)(nR)y

≥ 1

2
− 1

2
· exp

( −2w

(nR)1−y

)

, (3.46)

since for anyx ∈ R we have1 + x ≤ exp(x). Suppose we have a fixeda > 1. Using Lemma 3.24 with
x = 2γ

R1−y (and recalling thatR andy are fixed), we deduce that there isΓ > 0 for which

γ ≤ Γ =⇒ exp

(

− 2γ

R1−y

)

≤ 1− 1

a
· 2γ

R1−y
(3.47)
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We also know that∀x ≤ 1 we haveln(1− x) ≤ −x, and so

γ ≤ Γ =⇒ n ln
(
1− Pw

)
≤ −nPw

≤ n
2

(

− 1 + exp
(

−2γ
R1−y

))

(using (3.46))

≤ n
2

(

− 1 + 1− 1
a ·

2γ
R1−y

)

(using (3.47), sinceγ ≤ Γ)

= − 1
a · nyw

R1−y (using (3.45)).

SettingΓa = Γ then gives us the required result.

Definition 3.26. We define

â =

[

2
√

δδ +
3

4

(
1− 2

√

δδ
)
]−1

. (3.48)

This choice for̂a will become clear later in the section. Notice thatâ depends only onδ. A straightforward
inspection shows that̂a > 1. Therefore applying Lemma 3.25 we obtain:

Corollary 3.27. Let â be defined as in (3.48). Then there isΓ̂a > 0 with

γ ≤ Γ̂a =⇒ n ln(1− Pw) ≤ −1

â
· wny

R1−y
. (3.49)

Definition 3.28. Let Γ̂a be a fixed value that satisfies (3.49).

Recall that we are trying to show that the expression

m(n, ℓ, w) = s(n,w) · f(n, ℓ, w) · g(n, ℓ)

from (3.21) is superpolynomially small inn. Settingm1(n, ℓ, w) = ln
(
m(n, ℓ, w)

)
, we will show that there

are constantsN andτ > 0 for whichn ≥ N implies that for all appropriate values ofℓ andw we have:

m1(n, ℓ, w) ≤ −τ · ny. (3.50)

Definition 3.29. We define
s1(n,w) = ln

(
s(n,w)

)
.

f1(n, ℓ, w) = ln
(
f(n, ℓ, w)

)
.

g1(n, ℓ) = ln
(
g(n, ℓ)

)
.

Note that
m1(n, ℓ, w) = s1(n,w) + f1(n, ℓ, w) + g1(n, ℓ).

Propositions 3.30, 3.31 and 3.32, will provide upper boundson s1(n,w), f1(n, ℓ, w) andg1(n, ℓ). We will
then use these to prove (3.50).
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Proposition 3.30. We can upper bounds1(n,w) in the following ways:

s1(n,w) ≤ −w ln

(
w

nR

)

− nR ln

(

1− w

nR

)

. (3.51)

s1(n,w) ≤ −w ·
ln

(
w
nR

)

− 1

ln(2)
. (3.52)

Proof:
• Using the inequality

(a
b

)
≤ 2a·h(b/a) we obtain:

s(n,w) =

(
nR

w

)

≤ 2nR·h
(

w
nR

)

= e−w ln
(

w
nR

)
+(w−nR) ln

(
1− w

nR

)

.

Note that1− w
nR < 1, sow ln

(
1− w

nR

)
< 0. Sinces1(n,w) = ln

(
s(n,w)

)
, (3.51) then follows.

•We have the following general bound on the binomial coefficients:
(

a

b

)

≤
(a · e

b

)b
,

which directly leads to (3.52).

Proposition 3.31. Let â andΓ̂a be taken from Definitions 3.26 and 3.28. Ifγ ≤ Γ̂a andnR > 1 then

f1(n, ℓ, w) ≤ ℓ ln

(
w

(nR)1−y

)

− wny

R1−y
· 1
â
− ℓ ln

(

1− w

(nR)1−y

)

.

Proof: Recall from (3.14) thatf(n, ℓ, w) is defined as

f(n, ℓ, w) =
(
Pw

)ℓ ·
(
1− Pw

)n−ℓ
.

This means that
f1(n, ℓ, w) = ℓ ln(Pw) + n ln(1− Pw)− ℓ ln(1− Pw). (3.53)

Now Lemma 3.23 (which applies, since we are assuming thatnR > 1) tells us that

Pw ≤
w

(nR)1−y
,

and Corollary 3.27 (which applies, since we are assuming that γ ≤ Γ̂a) tells us that

n ln(1− Pw) ≤ −1

â
· wny

R1−y
.

Combining these with (3.53) we deduce:

f1(n, ℓ, w) ≤ ℓ ln

(
w

(nR)1−y

)

− wny

R1−y
· 1
â
− ℓ ln

(

1− w

(nR)1−y

)

, (3.54)

as required.
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Proposition 3.32. We can upper boundg1(n, ℓ) in the following ways:

g1(n, ℓ) ≤ − ℓ
2 ln

(

ℓ
2nδ

)

− ℓ
2 ln

(

ℓ
2nδ

)

− nδ · ln
(
1− ℓ

2nδ

)
− nδ · ln

(
1− ℓ

2nδ

)
.

(3.55)

g1(n, ℓ) ≤ ℓ
2 ln

(

2nδ
ℓ − 1

)

+ ℓ
2 ln

(

2nδ
ℓ − 1

)

− nδ · ln
(
1− ℓ

2nδ

)
− nδ · ln

(
1− ℓ

2nδ

)
.

(3.56)

Proof: Recall the definition ofg(n, ℓ) (see (3.14)):

g(n, ℓ) =

(
nδ

ℓ/2

)

·
(

nδ

ℓ/2

)

.

Again using the inequality
(a

b

)
≤ 2a·h(b/a) we obtain:

(nδ
ℓ/2

)
≤ 2nδ·h

(
ℓ

2nδ

)

≤ 2−
ℓ
2

log2

(
ℓ

2nδ

)
−( ℓ

2
−nδ) log2

(
1− ℓ

2nδ

)

,

and a similar bound for
(nδ
ℓ/2

)
. Sinceg1(n, ℓ) = ln

(
g(n, ℓ)

)
, we obtain

g1(n, ℓ) ≤ − ℓ
2 · ln

(

ℓ
2nδ

)

−
(
nδ − ℓ

2

)
· ln

(

1− ℓ
2nδ

)

− ℓ
2 · ln

(

ℓ
2nδ

)

−
(
nδ − ℓ

2

)
· ln

(

1− ℓ
2nδ

)

.

(3.57)

• 1) Becauseln
(
1− ℓ

2nδ

)
< 0 andln

(
1− ℓ

2nδ

)
< 0, we can remove terms to obtain (3.55):

g1(n, ℓ) ≤ − ℓ

2
ln

(
ℓ

2nδ

)

− nδ ln

(

1− ℓ

2nδ

)

− ℓ

2
ln

(
ℓ

2nδ

)

− nδ ln

(

1− ℓ

2nδ

)

.

• 2) In general, for anyx > 0 we have

− ℓ

2
· ln(x) +

ℓ

2
· ln(1− x) =

ℓ

2
· ln

(1− x

x

)

=
ℓ

2
· ln

( 1

x
− 1

)

,

so applying this withx = ℓ
2nδ and thenx = ℓ

2nδ
, (3.57) can be rewritten as (3.56).

We summarize the bounds obtained by the last three theorems in (3.58) below: Let̂a andΓ̂a be taken from
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Definitions 3.26 and 3.28. Ifγ ≤ Γ̂a andn > 1
R then

s1(n,w) ≤

t1
︷ ︸︸ ︷

−w ·
ln

(
w
nR

)

− 1

ln(2)
.

f1(n, ℓ, w) ≤

t2
︷ ︸︸ ︷

ℓ ln

(
w

(nR)1−y

)
t3

︷ ︸︸ ︷

− wny

R1−y
· 1
â

t4
︷ ︸︸ ︷

− ℓ ln

(

1− w

(nR)1−y

)

.

g1(n, ℓ) ≤

t5
︷ ︸︸ ︷

− ℓ

2
ln

(
ℓ

2nδ

)

t6
︷ ︸︸ ︷

− ℓ

2
ln

(
ℓ

2nδ

)

t7
︷ ︸︸ ︷

− nδ · ln
(
1− ℓ

2nδ

)

t8
︷ ︸︸ ︷

− nδ · ln
(
1− ℓ

2nδ

)
.

(3.58)

Recall that
m1(n, ℓ, w) = s1(n,w) + f1(n, ℓ, w) + g1(n, ℓ).

So using these we obtain a bound onm1(n, ℓ, w) consisting in a sum of eight termst1, . . . , t8. Letm2(n, ℓ, w)
be obtained by removing termst1 andt4 from m1(n, ℓ, w):

m2(n, ℓ, w) = ℓ · ln
(

w
(nR)1−y

)

− wny

R1−y · 1
â − ℓ

2 · ln
(

ℓ
2nδ

)

− ℓ
2 · ln

(

ℓ
2nδ

)

− nδ · ln
(
1− ℓ

2nδ

)
− nδ · ln

(
1− ℓ

2nδ

)
.

(3.59)

Outline for the rest of Case 2: We will first show (Lemma 3.34) that forα, γ small enough, we have
m2(n, ℓ, w) = θ

(
− wny

)
. We will then show (Lemma 3.35) that the remaining termst1 andt4 areo(ny).

We then can deduce thatm1(n, ℓ, w) = θ
(
− wny

)
.

The following lemma will be useful:

Lemma 3.33. For all x, b ∈ R>0 we have

−x ln(bx) ≤ 1

be
.

Proof: See Appendix C.
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Lemma 3.34. Let â andΓ̂a be taken from Definitions 3.26 and 3.28. Then there areA7, τ7 > 0 with

α ≤ A7 =⇒ m2(n, ℓ, w) ≤ −τ7 · w · ny.

Proof: m2(m, ℓ,w) was defined in (3.59) as

m2(n, ℓ, w) = ℓ ln

(

w
(nR)1−y

)

− wny

R1−y · 1
â − ℓ

2 ln

(

ℓ
2nδ

)

− ℓ
2 ln

(

ℓ
2nδ

)

− nδ ln

(

1− ℓ
2nδ

)

− nδ ln

(

1− ℓ
2nδ

)

.

(3.60)

First note that the third and fourth terms can be expressed as

− ℓ

2
· ln

(
ℓ

2nδ

)

− ℓ

2
· ln

(
ℓ

2nδ

)

= − ℓ

2
· ln

(
ℓ2

4n2δδ

)

= −ℓ · ln
(

ℓ

c1 · n

)

,

where we letc1 = 2
√

δδ. Since0 < δ < 1
2 andδ = 1− δ (by definition), we have0 < δδ < 1

4 , and therefore

0 < c1 < 1. (3.61)

Next, recalling thatα = ℓ
n , we can express the last two terms of (3.60) as

−nδ ln

(

1− ℓ
2nδ

)

− nδ ln

(

1− ℓ
2nδ

)

= − ℓδ
α ln

(

1− α
2δ

)

− ℓδ
α ln

(

1− α
2δ

)

= −ℓ ln

(
β

︷ ︸︸ ︷
(
1− α

2δ

)δ/α ·
(
1− α

2δ

)δ/α
)

.

(3.62)

Now, if we letβ be defined as in (3.62) then

m2(m, ℓ,w) = ℓ ln

(

w
(nR)1−y

)

− wny

R1−y · 1
â − ℓ · ln

(

ℓ
c1·n

)

− ℓ ln
(
β
)

= −ℓ ln

(

(nR)1−y

w · ℓ
c1·n · β

)

− wny

R1−y · 1
â

= ny ·
[

− ℓ
ny ln

(

ℓ
ny ·

b
︷ ︸︸ ︷

R1−y

wc1
· β

)

− w
R1−y · 1

â

]

.

From Lemma 3.33 we know that for anyx, b ∈ R>0 we have

−x ln(xb) ≤ 1

be
.
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Applying this withx = ℓ
ny andb = R1−y

wc1
· β we obtain

m2(m, ℓ,w) = ny ·
[

− x ln(xb) − w
R1−y · 1

â

]

≤ ny ·
[

wc1
e·R1−y · 1

β − w
R1−y · 1

â

]

= ny ·
[

w
R1−y ·

(
c1
e · 1

β − 1
â

)
]

.

(3.63)

Recall thatβ was defined as

β =

(

1− α

2δ

)δ/α

·
(

1− α

2δ

)δ/α

=

[ (

1− α

2δ

)2δ/α

·
(

1− α

2δ

)2δ/α ]1/2

.

In general we have

lim
x→0

(
1− x

)1/x
=

1

e
,

and so applying this to our case withx = α
2δ and thenx = α

2δ
, we can deduce

lim
α→0

[ (

1− α

2δ

)2δ/α

·
(

1− α

2δ

)2δ/α ]1/2

=

[
1

e
· 1
e

]1/2

=
1

e
,

and so

lim
α→0

1

β
= e.

We can write this formally by saying that for anyǫ8 > 0 there isA8 > 0 for which

α ≤ A8 =⇒
∣
∣
∣
∣

1

β
− e

∣
∣
∣
∣
≤ ǫ8 =⇒ 1

β
≤ e + ǫ8. (3.64)

Going back to (3.63), we have

ny · w

R1−y
· c1

e
> 0, (3.65)

and therefore combining (3.65) and (3.64) we obtain

α ≤ A8 =⇒ ny · w

R1−y
· c1

e
· 1

β
≤ ny · w

R1−y
· c1

e
·
(
e + ǫ8

)
.

So using this with (3.63), we now have

α ≤ A8 =⇒ m2(n, ℓ, w) ≤ ny · w

R1−y
·
[
c1

e
· (e + ǫ8)−

1

â

]

. (3.66)

We now show that ifǫ8 is close enough to0 andâ close enough to1, then the following term from (3.66)

c1

e
· (e + ǫ8)−

1

â
(3.67)
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is negative. Set

ǫ8 =
1

2
· e

c1
· (1− c1). (3.68)

Sincec1 < 1 (see (3.61)), we haveǫ8 > 0. Next, recall (see Definition 3.26) that we had set the value of â to

â =

[

2
√

δδ +
3

4

(
1− 2

√

δδ
)
]−1

=

[

c1 +
3

4

(
1− c1

)
]−1

(3.69)

(andc1 = 2
√

δδ by definition). It now becomes clear why this value was chosenfor â. Plugging (3.68) and
(3.69) into (3.67) we deduce that

c1
e · (e + ǫ8)− 1

â = c1
e ·

(

e + 1
2 · e

c1
· (1− c1)

)

−
(

c1 + 3
4

(
1− c1

)
)

= c1 + 1
2 · (1− c1) − c1 − 3

4

(
1− c1

)

= −1
4 · (1− c1)

< 0.

Therefore setting

τ7 = − 1

R1−y
·
[
c1

e
· (e + ǫ)− 1

a

]

,

we haveτ7 > 0, and (3.66) leads to

α ≤ A8 =⇒ m2(n, ℓ, w) ≤ ny · w

R1−y
·
[
c1

e
· (e + ǫ8)−

1

a

]

= −τ7 · w · ny. (3.70)

SettingA7 = A8 gives us the required result.

Lemma 3.35. There areN9, A9,Γ9, τ9 > 0 with

n ≥ N9, α ≤ A9, γ ≤ Γ9 =⇒ m1(n, ℓ, w) ≤ −τ9 · ny. (3.71)

Proof: Recall that we had a bound onm1(n, ℓ, w) consisting of eight termst1, . . . , t8, see (3.58). We then
chose six of these terms to make upm2(n, ℓ, w), see (3.59). In Lemma 3.34 we showed that there was some
τ7 > 0 for which

m2(n, ℓ, w) ≤ −τ7 · w · ny (3.72)

for α small enough. We fixτ7 so be some value that satisfies (3.72).

In this proof we will show that the two remaining terms ofm1(n, ℓ, w) (namelyt1 and t4) are dominated
by (3.72) asn gets large. More formally we will show that for each of these termsti, given anyǫ there are
N,A,Γ for which

n ≥ N,α ≤ A, γ ≤ Γ =⇒ ti
τ7 · w · ny

≤ ǫ.
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• 1) t1 is dominated by−τ7 · w · ny.
First recall that

t1 = −
w ln

(
w
nR

)

ln(2)
− w

ln(2)
.

So using the definitionγ = w
n1−y we have

t1
τ7 · w · ny

=
1

τ7 · ln(2)
·
[

−
ln

(
w
nR

)

ny
− 1

ny

]

=
1

τ7 · ln(2)
·
[

−
ln

(
γ

Rny

)

ny
− 1

ny

]

,

which we can write as

t1
τ7 · w · ny

=
1

τ7 · ln(2)
·
[

−
ln

(
γ
R

)

ny
+

ln(ny)

ny
− 1

ny

]

. (3.73)

Recall thatR andy are fixed, and that

lim
x→∞

ln(x)

x
= 0.

So settingx = ny we see that ifγ is upper bounded then (3.73) will tend to zero asn gets large. Formally,
for anyǫ10 > 0 there areN10,Γ10 with

n ≥ N10, γ ≤ Γ10 =⇒ t1
τ7 · w · ny

< ǫ10. (3.74)

• 2) t4 is dominated by−τ7 · w · ny.
We start by recalling that

t4 = −ℓ ln
(

1− w

(nR)1−y

)

.

Using the definitionsα = ℓ
n andγ = w

n1−y we obtain

t4
τ7 · w · ny

= −
ℓ ln

(

1− w
(nR)1−y

)

τ7 · w · ny
= −

α · n1−y · ln
(

1− γ
R1−y

)

τ7 · w
= − α

τ7
·
ln

(

1− γ
R1−y

)

γ
. (3.75)

Sinceln(1−x)
x → −1 whenx tends to zero, by making bothα andγ small enough we can bring (3.75) as close

to zero as we need. Formally, for anyǫ12 > 0, there areA12,Γ12 with

α ≤ A12, γ ≤ Γ12 =⇒ t4
τ7 · w · ny

≤ ǫ12. (3.76)

• 3) Combining it all.
We have

m1(n, ℓ, w) ≤ m2(n, ℓ, w) + t1 + t4.

From Lemma 3.34 we know that there isA7 for whichα ≤ A7 implies

m1(n, ℓ, w) ≤ −τ7 · w · ny + t1 + t4

= −τ7 · w · ny ·
(

1 +
t1

−τ7 · w · ny
+

t4
−τ7 · w · ny

)

.
(3.77)
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Now let ǫ10 = ǫ12 = 1
3 (in fact anything< 1

2 would do). PickN10,Γ10 from (3.74),A12,Γ12 from (3.76).
Now set

N9 = N10,
Γ9 = min(Γ10,Γ12),
A9 = A12,
ǫ9 = 1/3 (= ǫ10 = ǫ12).

Combining (3.74), (3.76) and (3.77), we can deduce that ifn ≥ N9, α ≤ A9, γ ≤ Γ9 then

m1(n, ℓ, w) ≤ −τ7 · w · ny · (1− ǫ9 − ǫ9) = −τ7 · w
3
· ny ≤ −τ7

3
· ny,

where the last inequality holds becausew ≥ 1. So settingτ9 = τ7
3 gives us the required result.

Definition 3.36. Let Â be a value forA9 that satisfies (3.71) (we know that such a value exists by Lemma 3.35).

The result of Case 2 is summarized in the following theorem:

Theorem 3.37.Suppose we are given0 < R < 1 and0 < δ < 1
2 . LetÂ be taken from Definition 3.36. Then

there areN9,Γ9, τ9 > 0 (depending only onR, δ andy) for which

n ≥ N9 =⇒ ∀ℓ = 1, . . . ,
⌊

Ân
⌋

, ∀w = 1, . . . ,
⌊
Γ9 · n1−y

⌋
: m(n, ℓ, w) ≤ exp

(
− τ9 · ny

)
.

3.4.6 Case 3: Smallγ, α ≥ Â.

We will make use of some of the work done in Case 2. Letâ andΓ̂a be taken from Definitions 3.26 and 3.28.
We will assume throughout this section (Case 3) thatγ ≤ Γ̂a. Recall from (3.25) thatα andγ are defined as

α =
ℓ

n
, γ =

w

n1−y
. (3.78)

Propositions 3.30, 3.31 and 3.32 still hold. We rewrite thembelow after some algebraic manipulations:

s1(n,w) ≤ n ·
[

u1
︷ ︸︸ ︷

− γ

ny
· ln

(
γ

Rny

)

u2
︷ ︸︸ ︷

−R ln

(

1− γ

Rny

)]

.

f1(n, ℓ, w) ≤ n ·
[

u3
︷ ︸︸ ︷

α ln
( γ

R1−y

)

u4
︷ ︸︸ ︷

−α ln
(

1− γ

R1−y

)

u5
︷ ︸︸ ︷

− γ

R1−y
· 1
a

]

.

g1(n, ℓ) ≤ n ·
[

u6
︷ ︸︸ ︷

α

2
ln

(2δ

α
− 1

)

− δ ln
(

1− α

2δ

)

+
α

2
ln

(2δ

α
− 1

)

− δ ln
(

1− α

2δ

) ]

.

(3.79)
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Outline of Case 3:Intuitively, whenÂ ≤ α ≤ 1 andγ → 0, the terms in (3.79) behave as follows:u1, u2, u4

andu5 tend to zero,u6 is upper bounded by some positive value that depends onÂ, andu3 → −∞. Therefore
the sum of allui’s will tend to−∞, and so we can certainly upper bound it by−τ for someτ > 0 (any value
will do). This means that we can upper boundm1(n, ℓ, w) by

−τ · n,

with τ > 0. This is actually a stronger statement than is required (we need only−τ · ny).

Proposition 3.38. If α ≥ Â then there is a valuêcA ≥ 0 depending only onδ andÂ for which

g1(n, ℓ) ≤ ĉA · n.

Proof: We know that
g1(n, ℓ) ≤ n · u6(α),

where

u6(α) =
α

2
ln

(
2δ

α
− 1

)

− δ ln

(

1− α

2δ

)

+
α

2
ln

(
2δ

α
− 1

)

− δ ln

(

1− α

2δ

)

.

Now because0 < A ≤ α ≤ 2δ < 1, we study the functionu6(α) over the rangeIα = [Â, 2δ]. We note that
u6(α) is differentiable and therefore continuous overIα. Sou6(α) is a continuous real function over a closed
bounded interval, it is therefore bounded. In particular there exists an upper boundc2 (depending only onδ
andÂ). We setĉA = max(c2, 0) (to ensure that̂cA ≥ 0) and obtain

g1(n, ℓ) ≤ u6(α) · n ≤ ĉA · n.

Lemma 3.39. Letu3 = α ln( γ
R1−y ) be taken from (3.79). Ifα ≥ Â then for anyτ14 > 0 there isΓ14 with

γ ≤ Γ14 =⇒ u3 ≤ −τ14.

Proof: First notice that ifγ < R1−y thenln( γ
R1−y ) < 0. Therefore

α ≥ Â, γ < R1−y =⇒ α · ln
( γ

R1−y

)

≤ Â · ln
( γ

R1−y

)

, (3.80)

and
lim
γ→0

Â · ln
( γ

R1−y

)

= −∞.

So formally for anyτ15 > 0 there isΓ15 > 0 with

γ ≤ Γ15 =⇒ Â · ln
( γ

R1−y

)

≤ −τ15. (3.81)

So we setτ15 = τ14, take some valueΓ15 that satisfies (3.81). LettingΓ14 = min
(
Γ15, R

1−y
)
, and combining

this with (3.80) we obtain:

α ≥ Â, γ ≤ Γ14 =⇒ α · ln
( γ

R1−y

)

≤ Â · ln
( γ

R1−y

)

≤ −τ14,
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as required.

We will show that the termsu1, u2, u4 andu5 in (3.79) are dominated byu3 = α · ln
(

γ
R1−y

)

.

Proposition 3.40. If α ≥ Â then for anyǫ16 > 0 there areN16,Γ16 > 0 with

n ≥ N16, γ ≤ Γ16 =⇒ s1(n, ℓ) + f1(n, ℓ, w) ≤ n ·
[
u3 + ǫ16

]
.

Proof: We know from (3.79) that

s1(n, ℓ) + f1(n, ℓ, w) ≤ n ·
[
u1 + u2 + u3 + u4 + u5

]
. (3.82)

Recalling that
lim
x→0

x · ln(x) = 0,

we can deduce (by settingx = γ
ny ) that asγ gets small andn gets large,

u1 = − γ

ny
· ln

(
γ

Rny

)

will tend to zero. Similarly, using the fact that

lim
x→0

ln(1− x) = 0,

we can show that asγ gets small andn gets large,u2, u4 andu5 all tend to zero. So formally this means that
given anyǫ16 > 0, there areN16,Γ16 > 0 with

n ≥ N16, γ ≤ Γ16 =⇒ u1 + u2 + u4 + u5 ≤ ǫ16.

The required statement then follows immediately.

We can now combine all this to obtain the following:

Proposition 3.41. If α ≥ Â there areN21,Γ21, τ21 > 0 with

n ≥ N21, γ ≤ Γ21 =⇒ m1(n, ℓ, w) ≤ −τ21 · ny. (3.83)

Proof: We are supposing throughout this proof thatα ≥ Â. Recall that

m1(n, ℓ, w) = s1(n,w) + f1(n, ℓ, w) + g1(n, ℓ).

We first setǫ16 = 1
2 in Proposition 3.40, and get valuesN16 andΓ16 with

n ≥ N16, γ ≤ Γ16 =⇒ s1(n, ℓ) + f1(n, ℓ, w) ≤ n ·
[
u3 +

1

2

]
. (3.84)

Next, we know from Proposition 3.38 that there is some valueĉA ≥ 0 (depending only onR andÂ) with

g1(n, ℓ) ≤ ĉA · n. (3.85)
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We now setτ14 = ĉA + 1 in Lemma 3.39. This gives us some valueΓ14 with

γ ≤ Γ14 =⇒ u3 ≤ −(ĉA + 1). (3.86)

So settingN21 = N16 andΓ21 = min(Γ14,Γ14) we combine (3.84), (3.85) and (3.86) to deduce that ifα ≤ Â
then

n ≥ N21, γ ≤ Γ21 =⇒ m1(n, ℓ, w) ≤ s1(n,w) + f1(n, ℓ, w)
︸ ︷︷ ︸

+ g1(n, ℓ)
︸ ︷︷ ︸

≤ n ·
[
u3 + 1

2

]
+ n · ĉA

= n ·
[
u3 + 1

2 + ĉA

]

≤ n ·
[
− (ĉA + 1) + 1

2 + ĉA

]

= n ·
[
− 1

2

]
,

so settingτ21 = 1
2 we have shown a stronger statement than the required result.Indeed becauseτ21 > 0 and

0 < y < 1, we have−τ21 · n ≤ −τ21 · ny.

Definition 3.42. Let Γ9 andτ9 be values that satisfy (3.71) (such values exists by Lemma 3.35), in Case 2.
Let Γ21 andτ21 be values that satisfy (3.83) (such values exist by Proposition 3.41). We definêΓℓ as

Γ̂ℓ = min
(
Γ9,Γ21

)
.

Our three constantŝA, Γ̂ℓ andΓ̂u have now all been defined. Once more, these values depend onlyon R, δ
andy. Letting τ22 = min(τ9, τ21) andN22 = max(N9, N21), we summarize the result for Cases 2 and 3
below:

Theorem 3.43.Suppose we are given0 < R < 1 and0 < δ < 1
2 . Let Γ̂ℓ be taken from Definition 3.42. Then

there areN22, τ22 > 0 (depending only onR, δ andy) for which

n ≥ N22 =⇒ ∀ℓ = 1, . . . , ⌊2δn⌋ , ∀w = 1, . . . ,
⌊

Γ̂ℓ · n1−y
⌋

: m(n, ℓ, w) ≤ exp
(
− τ22 · ny

)
.

3.4.7 Case 4: Anyα, Γ̂ℓ ≤ γ ≤ Γ̂u.

Outline: We will first show that forn large enough we havef1(n, ℓ, w) + g1(n, ℓ) ≤ n · [v + ǫ], wherev is
some function ofα andγ, andǫ can be made as small as necessary. Then, we will show that there is some
τ > 0 for whichv ≤ −τ (for all valuesα, γ we are considering in Case 4). Finally we will show thats1(n,w)

n
tends to zero whenn gets large, and therefore is dominated byf1(n, ℓ, w) + g1(n, ℓ).
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We start by giving a reminder of the definitions ofα andγ:

α =
ℓ

n
, γ =

w

n1−y
.

Recall thatPw was defined in (3.18) as follows:

Pw =
1

2
− 1

2
·
(

1− 2w

nR

)(nR)y

.

Definition 3.44. We defineβ as

β = exp
(

− 2γ

R1−y

)

.

Notice thatβ depends onγ, and therefore onn. We are assuming in this section thatΓ̂ℓ ≤ γ ≤ Γ̂u. (Γ̂u and
Γ̂ℓ are constants depending only onR, δ andy taken from Definitions 3.20 and 3.42). So becauseexp(−x) is
a decreasing function we have

B̂1
︷ ︸︸ ︷

exp
(
− 2Γ̂u

R1−y

)
≤ β ≤

B̂2
︷ ︸︸ ︷

exp
(
− 2Γ̂ℓ

R1−y

)
. (3.87)

Furthermore notice that since2Γ̂ℓ
R1−y , 2Γ̂u

R1−y > 0, we have

0 < B̂1, B̂2 < 1. (3.88)

We know that for any constantc ∈ R,

lim
x→∞

(

1− c

x

)x
= exp(−c).

The following lemma essentially states that ifc depends onx but is boundedthen we have an equivalent
result:

Lemma 3.45. Letf : R→ R be a bounded function. Then for anyǫ > 0 there isX with

x ≥ X =⇒ exp
(
− f(x)

)
− ǫ ≤

(

1− f(x)

x

)x
≤ exp

(
− f(x)

)
+ ǫ.

Proof: See Appendix C.

Intuitively the fact thatγ ∈
[
Γ̂ℓ, Γ̂u

]
(in Case 4) enables us to treatγ like a constant. More precisely we use

the fact that it can get neither arbitrarily large nor arbitrarily close to zero asn gets large. From Lemma 3.45
we deduce the following:

Corollary 3.46. Let β be taken from Definition 3.44. Ifγ ≤ Γ̂u (which we assume throughout case 4), then
for anyǫ > 0 there isN with

n ≥ N =⇒ 1

2
· (1− β)− ǫ ≤ Pw ≤

1

2
· (1− β) + ǫ. (3.89)
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Proof: Recall that

Pw =
1

2
− 1

2
·
(

1− 2w

nR

)(nR)y

=
1

2
− 1

2
·
(

1− 2γ/R1−y

(nR)y

)(nR)y

. (3.90)

So applying Lemma 3.45 withx = (nR)y andf(x) = 2γ
R1−y (γ depends onn) leads to the required result,

sinceβ = exp
(
− f(x)

)
.

Now recall thatf(n, ℓ, w) was defined in (3.21) as

f(n, l, w) = (Pw)ℓ · (1− Pw)n−ℓ, (3.91)

and sincef1(n, ℓ, w) = ln
(
f(n, ℓ, w)

)
we obtain

f1(n, ℓ, w) = ℓ ln
(
Pw

)
+

(
n− ℓ

)
· ln

(
1− Pw

)
. (3.92)

We now give an upper bound onf1(n, ℓ, w):

Proposition 3.47. For anyǫ23 > 0, there isN23 > 0 with

n ≥ N23 =⇒ f1(n, ℓ, w) ≤ n ·
[

− ln(2) + α ln

(
1− β

1 + β

)

+ ln
(
1 + β

)
+ ǫ23

]

. (3.93)

Proof: From Corollary 3.46 we have that for anyǫ23 > 0, there isN23 with

n ≥ N23 =⇒ ln(Pw) ≤ ln

(
1

2
· (1− β)

)

+ ǫ23, (3.94)

and

n ≥ N23 =⇒ ln(1− Pw) ≤ ln

(
1

2
· (1 + β)

)

+ ǫ23. (3.95)

Therefore becauseℓ = α · n, n ≥ N23 implies that

f1(n, l, w) = ℓ ln
(
Pw

)
+

(
n− ℓ

)
· ln

(
1− Pw

)

≤ ℓ ·
(

ln
(

1
2(1− β)

)
+ ǫ23

)

+
(
n− ℓ

)
· ln

(

1
2 (1 + β) + ǫ23

)

(using (3.94) and (3.95))

≤ n ·
[

− α ln(2) + α ln(1− β) + α · ǫ23

− ln(2) + ln(1 + β) + α ln(2) − α ln(1 + β) + (1− α) · ǫ23

]

= n ·
[

− ln(2) + α ln

(

1−β
1+β

)

+ ln
(
1 + β

)
+ ǫ23

]

,

as required.
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Now, we define

c =
1 + β

1− β
, (3.96)

so that the bound in (3.93) can be written as

n ≥ N23 =⇒ f1(n, ℓ, w) ≤ n ·
[

− ln(2) + α ln

(
1

c

)

ln

(
2c

c + 1

)

+ ǫ23

]

. (3.97)

Notice that because1+x
1−x is a strictly increasing function, if0 < B̂1 ≤ β ≤ B̂2 < 1 then

1 <

Ĉ1
︷ ︸︸ ︷
(

1 + B̂1

1− B̂1

)

≤ c ≤

Ĉ2
︷ ︸︸ ︷
(

1 + B̂2

1− B̂2

)

. (3.98)

Next, the bound ong1(n,w) from Proposition 3.32 still holds, we rewrite it below (after some algebraic
manipulations, see (3.79)):

g1(n, ℓ) ≤ n ·
[
α

2
ln

(
2δ

α
− 1

)

− δ ln

(

1− α

2δ

)

+
α

2
ln

(
2δ

α
− 1

)

− δ ln

(

1− α

2δ

)]

. (3.99)

We combine (3.97) and (3.99) to obtain the following definition:

Definition 3.48. Let v(α, c) be the following function:

v(α, c) = − ln(2) + α ln(1
c ) + ln( 2c

c+1)

+α
2 ln(2δ

α − 1)− δ ln(1− α
2δ ) + α

2 ln(2δ
α − 1)− δ ln(1− α

2δ
).

(3.100)

(δ is a parameter with0 < δ < 1
2 , andδ = 1− δ).

So using this with Proposition 3.47, we see that for anyǫ23 > 0, there isN23 with

n ≥ N23 =⇒ f1(n, ℓ, w) + g1(n, ℓ) ≤ n ·
[
v(α, c) + ǫ23

]
. (3.101)

Proposition 3.49. There isτ24 > 0 (depending only onR, δ and y) for which for any0 < α < 1 and
Ĉ1 ≤ c ≤ Ĉ2 we have

v(α, c) ≤ −τ24.

Proof: We will proceed by carefully analyzing the functionv(α, c). We divide the proof into steps:

• 1) For fixedc we find whichα maximizesv(α, c).
We start by differentiatingv(α, c) with respect toα. We define

v′(α, c) =
∂

∂α
v(α, c).
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This gives us

v′(α, c) = ln
(

1
c

)
+ 1

2 ln
(

2δ
α − 1

)
+ α

2

[
2δ
α − 1

]−1(− 2δ
α2

)
− δ

[
1− α

2δ

]−1(− 1
2δ

)

+1
2 ln

(
2δ
α − 1

)
+ α

2

[
2δ
α − 1

]−1(− 2δ
α2

)
− δ

[
1− α

2δ

]−1(− 1
2δ

)

= ln
(

1
c

)
+ 1

2 ln

(

(2δ
α − 1) · (2δ

α − 1)

)

− δ
2δ−α + δ

2δ−α − δ
2δ−α

+ δ
2δ−α

= ln
(

1
c

)
+ 1

2 ln
(

4δδ
α2 − 2

α + 1
)
.

Now,

v′(α, c) = 0 ⇐⇒ ln
(

1
c

)
+ 1

2 ln

(

4δδ
α2 − 2

α + 1

)

= 0

⇐⇒ ln

(

4δδ
α2 − 2

α + 1

)

= ln
(
c2

)

⇐⇒ 4δδ
α2 − 2

α + 1 = c2

⇐⇒ (1− c2) · α2 − 2 · α + 4δδ = 0.

We solve this quadratic equation inα to obtain

v′(α, c) = 0 ⇐⇒ α =
1±

√

1− 4δδ · (1− c2)

1− c2
=

1±
√

1 + 4δδ · (c2 − 1)

1− c2
.

Clearly we have1+
√

1 + 4δδ · (c2 − 1) > 0 and1− c2 < 0 (sincec > 1). This means that the first solution

α1 =
1 +

√

1 + 4δδ · (c2 − 1)

1− c2
(3.102)

is negative. So since we are considering the range0 < α < 2δ, the only extremal point we need to look at is
the other solution

α2 =
1−

√

1 + 4δδ · (c2 − 1)

1− c2
=

√

1 + 4δδ · (c2 − 1)− 1

c2 − 1
.

We write this as a function ofc, so we define

u(c) =

√

1 + 4δδ · (c2 − 1)− 1

c2 − 1
. (3.103)

Now becausev′(α, c) is continuous forα ∈]0, 2δ[, and

lim
α→0

v′(α, c) =∞, lim
α→2δ

v′(α, c) = −∞,
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we can deduce thatv′(α, c) > 0 whenα < u(c) andv′(α, c) < 0 (otherwiseα = u(c) is the only zero of
v′(α, c)). Thereforeα = u(c) is a maximal point ofv(α, c). So if we let

t(c) = v
(
u(c), c

)
,

then for anyα, c with 0 < α < 2δ andĈ1 ≤ c ≤ Ĉ2, we have:

v(α, c) ≤ t(c). (3.104)

So we can achieve our goal by upper boundingt(c). We are considering values ofc in the range1 < Ĉ1 ≤
c ≤ Ĉ2 (see (3.98)). Our strategy is to show thatt is strictly increasing, and that it tends to zero asc gets
large, and therefore thatt(c) ≤ t(Ĉ2) < 0, so−τ24 = t(Ĉ2) will be a suitable value (see Figure3.1).

u(c)

t(c) α

v(α, c)

c

t(c)

Ĉ2

−τ24

Figure 3.1: v(α, c) andt(c).

• 2) We show thatt(c) is strictly increasing forc > 1.
First of all, using the definition ofv(α, c), we have:

t(c) = v
(
u(c), c

)

= − ln(2) + u(c) ln
(

1
c

)
+ ln

(
2c

c+1

)

+u(c)
2 ln

(
2δ

u(c) − 1
)
− δ ln

(
1− u(c)

2δ

)
+ u(c)

2 ln
(

2δ
u(c) − 1

)
− δ ln

(
1− u(c)

2δ

)

= ln
(

c
c+1

)
− δ ln

(
1− u(c)

2δ

)
− δ ln

(
1− u(c)

2δ

)
+ u(c) ·

X
︷ ︸︸ ︷
[

ln
(1

c

)

+
1

2
ln

(( 2δ

u(c)
− 1

)( 2δ

u(c)
− 1

))
]

.

We will now show thatX = 0. Recall from (3.103) thatu(c) was defined as

u(c) =

√
V − 1

c2 − 1
, where V = 1 + 4δδ · (c2 − 1). (3.105)
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We start with the conclusion we are trying to reach and use equivalences all along:

X = 0 ⇐⇒ ln

(

1
c

)

+ 1
2 ln

(

4δδ
u2(c)

− 2δ+2δ
u(c) + 1

)

= 0

⇐⇒ 4δδ
u2(c)

− 2
u(c) + 1 = c2

⇐⇒ 4δδ(c2−1)2

(
√

V −1)2
− 2(c2−1)√

V −1
= c2 − 1 (from (3.105))

⇐⇒ 4δδ(c2−1)

(
√

V −1)2
− 2√

V −1
= 1 (we can divide byc2 − 1 becausec > 1)

⇐⇒ 4δδ(c2 − 1)− 2
√

V + 2 = (
√

V − 1)2

⇐⇒ 4δδ(c2 − 1)− 2
√

V + 2 = V − 2
√

V + 1

⇐⇒ 4δδ(c2 − 1) + 1 = V.

The last line is true from (3.105), and so since we used equivalences all along we deduce thatX = 0. This
means that

t(c) = ln

(
c

c + 1

)

− δ ln

(

1− u(c)

2δ

)

− δ ln

(

1− u(c)

2δ

)

. (3.106)

We let
a = 4δδ · (c2 − 1), (3.107)

and so

a′ =
∂

∂c
a = 8δδc. (3.108)

Recalling thatu(c) was defined in (3.103) as

u(c) =

√

1 + 4δδ · (c2 − 1)− 1

c2 − 1
=

√
1 + a− 1

c2 − 1
, (3.109)

we obtain:
u′(c) = ∂

∂cu(c)

=
1
2

a′√
1+a

(c2−1)−
(√

1+a−1
)
2c

(c2−1)2

= c
(c2−1)2

·
[

4δδ(c2−1)√
1+a

− 2
√

1 + a + 2

]

= c
(c2−1)2

·
[

a√
1+a
− 2
√

1 + a + 2

]

= c
(c2−1)2

·
[

1+a−1√
1+a
− 2
√

1 + a + 2

]

= c
(c2−1)2

·
(

2−
√

1 + a− 1√
1+a

)

.

(3.110)
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Now, using the expression fort(c) in (3.106), we have:

t′(c) = ∂
∂ct(c)

= c+1
c

c+1−c
(c+1)2

+ δ
[
1 + u(c)

2δ

]−1 u′(c)
2δ + δ

[
1 + u(c)

2δ

]−1 u′(c)
2δ

= 1
c(c+1) + u′(c) ·

[

δ
2δ+u(c) + δ

2δ+u(c)

]

= 1
c(c+1) + u′(c) ·

[

4δδ−u(c)

4δδ−2u(c)+u(c)2

]

.

Plugging (3.109) and (3.110) into this we obtain

t′(c) =
1

c(c + 1)
+

1

c(c2 − 1)
· 3a + 4− (4 + a)

√
1 + a

a + 2− 2
√

1 + a
. (3.111)

Now,

t′(c) > 0 ⇐⇒ 1
c(c+1) + 1

c(c2−1) ·
3a+4−(4+a)

√
1+a

a+2−2
√

1+a
> 0

⇐⇒ 1
c(c2−1)

· 3a+4−(4+a)
√

1+a

a+2−2
√

1+a
> − 1

c(c+1)

⇐⇒ − c(c+1)
c(c2−1)

· 3a+4−(4+a)
√

1+a

a+2−2
√

1+a
< 1

⇐⇒ 1
c−1 ·

3a+4−(4+a)
√

1+a

2
√

1+a−a−2
< 1

⇐⇒ 3a + 4− (4 + a)
√

1 + a >
(
c− 1

)
·
(
2
√

1 + a− a− 2
)

⇐⇒ 3a + 4−
(
c− 1

)
·
(
− a− 2

)
> (4 + a)

√
1 + a +

(
c− 1

)2 · 2
√

1 + a

⇐⇒ 2a + 2 + ca + 2c >
(
a + 2c + 2

)
·
√

1 + a

⇐⇒
(
2a + 2 + ca + 2c

)2
>

(
a + 2c + 2

)2 ·
(
1 + a

)

⇐⇒ 4a2 + 8a + 4ca2 + 12ca + 4 + 8c + c2a2 + 4c2a + 4c2 >
(
a2 + 4ca + 4a + 4c2 + 8c + 4

)
·
(
1 + a

)

⇐⇒ −a3 + a2
(
c2 − 1

)
> 0

⇐⇒ −a + c2 − 1 > 0

⇐⇒ c2 − 1 > 4δδ
(
c2 − 1

)
(by the definition ofa in (3.107))

⇐⇒ 1 > 4δδ.
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Sinceδ < 1
2 it follows that 4δδ < 1, and therefore the last line is always true. Because we have used

equivalences all the way we deduce that the original statement holds, namelyt′(c) > 0 for all c > 1. Sot(c)
is a strictly increasing function over the range we are concerned with.

• 3) We show thatt(c) tends to zero whenc→∞.
First recall from (3.103) that

u(c) =

√

1 + 4δδ · (c2 − 1)− 1

c2 − 1
.

So we have
lim
c→∞

u(c) = 0. (3.112)

Now

lim
c→∞

t(c) = lim
c→∞

[

ln
( c

c + 1

)

− δ ln
(

1− u(c)

2δ

)

− δ ln
(

1− u(c)

2δ

)]

.

Combining this with (3.112) we obtain

lim
c→∞

t(c) = ln(1) + lim
u→0

[

− δ ln
(

1− u

2δ

)

− δ ln
(

1− u

2δ

)]

= 0. (3.113)

• 4) Combining2) and3), we deduce thatt(c) < 0 for any c > 1, in particulart(Ĉ2) < 0. Therefore by
setting

τ24 = −t(Ĉ2),

we can deduce that
c ≤ Ĉ2 =⇒ t(c) ≤ −τ24. (3.114)

Notice thatĈ2 depends only on̂B2 (see (3.98)), which depends only on̂Γℓ (see (3.87)), which in turn depends
only onR, δ andy. So as required,τ24 will depend only onR, δ andy.

Combining (3.114) with (3.104), for anyα, c with 0 < α < 2δ andĈ1 < c ≤ Ĉ2, we have:

v(α, c) ≤ t(c) ≤ −τ24,

as required.

Finally we show thats1(n,w) is dominated byn, and will therefore be negligible.

Proposition 3.50. If Γ̂ℓ ≤ γ ≤ Γ̂u, then there areτ25 > 0 andN25 with

n ≥ N25 =⇒ m1(n, ℓ, w) ≤ −τ25 · n.

Proof: First recall that
m1(n, ℓ, w) = s1(n,w) + f1(n, ℓ, w) + g1(n, ℓ).
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• 1) We show that forn large enoughf1(n, ℓ, w) + g1(n, ℓ) ≤ −τ26 · n for someτ26.
Recall from (3.101) that for anyǫ23 > 0, there isN23 with

n ≥ N23 =⇒ f1(n, ℓ, w) + g1(n, ℓ) ≤ n ·
[
v(α, β) + ǫ23

]
, (3.115)

Furthermore, Proposition 3.49 tells us that there isτ24 > 0 with

v(α, β) ≤ −τ24,

and so by settingǫ23 = τ24
2 andτ26 = τ24

2 we can ensure that

n ≥ N23 =⇒ f1(n, ℓ, w) + g1(n, ℓ) ≤ −τ24

2
· n = −τ26 · n.

• 2) We show thats1(n,w) is dominated by−τ26 · n.
We know from Lemma 3.30 that

s1(n, ℓ) ≤ −w ln

(
w

nR

)

− nR ln

(

1− w

nR

)

. (3.116)

Sinceγ = w
n1−y , this means that

s1(n, ℓ)

n
≤ − γ

ny
ln

(
1

R
· γ

ny

)

− R ln

(

1− 1

R
· γ

ny

)

. (3.117)

Now becauseγ ≤ Γ̂u, γ
ny tends to zero asn gets large. So because

lim
x→0

x ln(x) = lim
x→0

ln(1− x) = 0,

we can deduce thats1(n,ℓ)
n tends to zero asn gets large. So formally for anyǫ29 > 0 there isN29 with

n ≥ N29 =⇒
∣
∣
∣
∣

s1(n, ℓ, w)

−τ26 · n

∣
∣
∣
∣
≤ ǫ29. (3.118)

3) We put all this together.
We need to be a little careful about using (3.118) to make surethe inequalities are in the right direction.
(3.118) tells us that

n ≥ N29 =⇒ −ǫ29 ≤
s1(n, ℓ, w)

−τ26 · n
,

and since−τ26 · n < 0, this leads to

n ≥ N29 =⇒
(
− τ26 · n

)
· s1(n, ℓ, w)

−τ26 · n
≤

(
− τ26 · n

)
·
(
− ǫ29

)
. (3.119)

43



Settingǫ29 = 1
2 we obtain

n ≥ N29 =⇒ s1(n,w) + f1(n, ℓ, w) + g1(n, ℓ) ≤ s1(n,w) − τ26 · n

= −τ26 · n ·
(

1 + s1(m,w)
−τ26·n

)

≤ −τ26 · n ·
(
1− ǫ29

)
(using (3.119))

= − τ26
2 · n (sinceǫ29 = 1

2 ),

and therefore settingN25 = N29, andτ25 = τ26
2 gives us the required result.

Once more this is a stronger result than was required, since we just needed to show thatm1(n, ℓ, w) ≤ τ25 ·ny.
We summarize the result for Case 4 below:

Theorem 3.51. Suppose we are given0 < R < 1 and 0 < δ < 1
2 . Let Γ̂ℓ and Γ̂u be taken from Defini-

tions 3.42 and 3.20. Then there areN25, τ25 > 0 (depending only onR, δ andy) for which

n ≥ N25 =⇒ ∀ℓ = 1, . . . , n, ∀w =
⌈

Γ̂ℓ · n1−y
⌉

, . . . ,
⌊

Γ̂ℓ · n1−y
⌋

: m(n, ℓ, w) ≤ exp
(
− τ25 · ny

)
.

3.4.8 Conclusion

Now that we have covered all four cases presented in subsection 3.4.3, we can deduce the result we had set
out to prove, namely Theorem 3.15, which we restate below:

Theorem 3.15.Suppose we are given0 < R, 0 < y < 1 and0 < δ < 1
2 with R < 1− h(δ). Then there are

N, τ > 0 (depending only onR, δ andy) for which

n ≥ N =⇒ ∀ℓ = 1, . . . , ⌊2nδ⌋ ,∀w = 1, . . . , ⌊nR⌋ : m(n, ℓ, w) ≤ exp
(
− τ · ny

)
. (3.120)

We can now complete the proof that our family of codes approaches the Gilbert-Varshamov bound with high
probability. From Theorem 3.14 we know that

Pr

[

dmin(C) ≤ nδ

]

≤ nδ ·
nR∑

w=1

2nδ∑

ℓ=1

m(n, ℓ, w).

Theorem 3.15 then tells us that ifR < 1− h(δ) then there areN, τ > 0 for whichN ≥ n implies that

Pr

[

dmin(C) ≤ nδ

]

≤ nδ ·
nR∑

w=1

2nδ∑

ℓ=1

exp
(
− τ · ny

)
≤

(
2δ2R

)
· n3 · exp

(
− τ · ny

)
.

So clearly we have

lim
n→∞

Pr

[

dmin(C) ≤ nδ

]

= 0.
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It would be interesting to determine the smallest column weight of M for which the resulting family still
approaches the GV-bound. Our construction above had a column weight ofO(ny), and we see that this value
appears in the bound (3.120):

n ≥ N =⇒ ∀ℓ = 1, . . . , ⌊2nδ⌋ ,∀w = 1, . . . , ⌊nR⌋ : m(n, ℓ, w) ≤ exp
(
− τ · ny

)
.

This leads to the question of whether a similar analysis on a construction using some other weightW would
yield the modified bound

n ≥ N =⇒ ∀ℓ = 1, . . . , ⌊2nδ⌋ ,∀w = 1, . . . , ⌊nR⌋ : m(n, ℓ, w) ≤ exp
(
− τ ·W

)
.

If this were the case whenW = log(n)·f(n), wheref(n) is any function for whichf(n)→∞whenn→∞,
then the corresponding family would approach the GV-bound,and be encodable in timeO

(
n log(n)f(n)

)
.
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Chapter 4

Short Algebraic-Geometric Codes for
Transmission over the Erasure Channel

4.1 Introduction

Algebraic-Geometric (AG) codes are arguably the most powerful class of algebraic codes in existence. They
contain the Reed-Solomon (RS) codes as a subclass, but unlike RS-codes, they allow for the construction
of arbitrarily long codes over a fixed alphabet, with asymptotically good performance. In fact it was shown
[87] that for a squareq ≥ 49 it is possible to construct infinite families of AG-codes over Fq that beat the
asymptotic Gilbert-Varshamov bound.

Despite their excellent properties, and despite the algorithmic advances regarding their encoding and decod-
ing, there are very few practical uses of AG-codes, whereas RS-codes have been and are being used in many
applications. One possible reason is that RS-codes are better understood, and have somewhat better hardware
implementations.

Nevertheless, AG-codes are better than RS-codes since theyallow the construction of much longer codes
over the same alphabet, while enabling a similarly structured encoding and decoding process. This advantage
can be interpreted in different ways. The straightforward interpretation is that larger pieces of data can be
protected using the same field operations as RS-codes. A different interpretation is that if a piece of data is
to be protected using a code of some given lengthn, then an AG-code allows this to be done with a smaller
finite field, which in turn means that the encoding and decoding algorithms will run faster.

The latter interpretation could be a major insight into a practical exploitation of AG-codes. The reason is that
in many applications the size of the data to be encoded is constrained by outer applications, such as those
that do not allow an unreasonably long delay. Moreover, because practical implementations of encoding and
decoding algorithms for AG-codes scale quadratically withthe block-length, having an AG-code of large
block-length may be unfeasible in many situations. However, for applications requiring very short blocks
(such as video streaming), AG-codes can be made to run very fast.

This chapter is concerned with illustrating and quantifying the performance of very short AG-codes over the
Erasure Channel, and more specifically of comparing them to RS-codes. A number of codes have been sug-
gested to protect the data in this transmission model, the most prominent of which are Tornado codes [46],
RA-codes [22], LT-codes [45], and Raptor codes [76]. While these have been shown to have excellent perfor-
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mance on the Erasure Channel, the lengths of the codes need tobe reasonably large. When very short blocks
are required, AG and RS-codes become competitve solutions.

We compare the performances of AG and RS-codes for block lengths up to64. The smaller field size enables
faster encoding and decoding, but the drawback is an increased error probability due to the larger minimum
distance. We measure this by developing an efficient algorithm to compute these exact error probabilities.

Finally, this work has been motivated by practical needs, which leads us to focus on a specific transmission
problem. We obtain some practical data to illustrate the speed-ups predicted in theory. The work was done
in collaboration with the company Digital Fountain and the codes presented are being used in some of their
commercial products. This is, as far as we know, the first practical use of AG-codes.

4.2 The Erasure Channel

We will be concerned in this chapter with transmissions overthe Q-ary erasure channel. Informally, an
alphabet element sent over this channel is either received intact (with some probability1−p) or lost completely
(with probabilityp). In the latter case it it said to have beenerased.

Definition 4.1. TheQ-ary erasure channel over an alphabetΣ of sizeQ has input setΣ, output setΣ ∪ {?}
(where ? meanserasure) and transition matrixM = (Mij)i∈Σ,j∈Σ∪{E}, where

Mij =







p if j = ?
1− p if j = i
0 otherwise.

(4.1)

Decoding a linear code over this channel is particularly simple. Given a generator matrix, decoding can be
reduced to solving a system of linear equations. IfG denotes thek × n generator matrix,u a message vector
andc the corresponding codeword then we know that

uG = c. (4.2)

Given onlyG andc, recoveringu amounts to solving a system ofn linear equations ink variables. Each
erasure removes one component ofc. In other words it removes one equation (corresponding to one column
of G). If I ⊆ [n] denotes the set of indices of the positions that arenot erased (we call theseintact), then
decoding reduces to solving the system of equations

uG′ = c′ (4.3)

whereG′ is thek × |I| submatrix ofG consisting of those columns whose indices are inI, andc′ is the
subvector ofc containing the indices inI. We say that the decodingsucceedsif this submatrixG′ has rankk
(i.e. we can solve the system), andfails otherwise. It is clear that if|I| < k then the decoding will always fail.

Proposition 4.2. If a codeword of an[n, k, d]Q-code is transmitted over theQ-ary erasure channel, and
≥ n− d + 1 positions are intact (equivalently≤ d− 1 position are erased), then the decoding will succeed.

Proof: Clearly the system (4.3) has at least one solution (namely the actual message vectoru). So we need
to show that this solution is unique. If there was another solution v ∈ Fk

Q then the codewordvG ∈ Fn
Q would

have the same entries asc at the positions inI (and|I| = n− d + 1). Therefore

d(vG, c) ≤ n− (n − d + 1) = d− 1, (4.4)
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leading to a contradiction (sincevG andc are both codewords).

Although very simple theQ-ary erasure channel has been very relevant, in large part due to the Internet. Data
is divided into packets to which are appended checksums. At the receiver side packets are either assumed to be
intact or simply discarded. The latter can happen for various reasons, for example if the checksum verification
fails, or the packet might simply not arrive if a router runs out of buffer memory somewhere along the way.

4.3 Algebraic-Geometric Codes

In this section we describe the construction and propertiesof AG-codes. We start by looking at RS-codes,
which are in fact special cases of AG-codes.

4.3.1 Reed-Solomon Codes

Throughout this chapterFq will denote the finite field of sizeq. We first note that there is a bijection between
Fk

q and the set of polynomials inFq[x] of degree< k:

Definition 4.3. Foru = (u1, . . . uk) ∈ Fk
q we define the corresponding polynomial

fu(x) =

k−1∑

i=0

ui+1 · xi. (4.5)

We will define Reed-Solomon codes through their encoding map.

Definition 4.4. Let Fq be a finite field, letk ≤ n ≤ q, and letα1, . . . , αn be distinct elements ofFq. The
[n, k]q Reed-Solomon(RS) code corresponding to these field elements has encodingmapϕ : Fk

q → Fn
q with

ϕ
(
u) =

(
fu(α1), . . . , fu(αn)

)
. (4.6)

So RS-codes are obtained by evaluating polynomials of bounded degrees at field elements. The Singleton
bound states that for any[n, k, d]-code

d ≤ n− k + 1, (4.7)

and codes for which we have equality in (4.7) are said to bemaximum distance separable(MDS). This is the
case for RS-codes:

Theorem 4.5. Reed-Solomon codes are MDS.

Proof: See for example [82].

This means that over the erasure channelk intact (non-erased) elements are sufficient to guarantee successful
decoding (the code can recover fromd− 1 = n− k erasures). Sincek intact elements are also necessary (or
else there is not enough information), MDS codes are sometimes also calledoptimal.
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4.3.2 Algebraic-Geometric Codes

AG-codes are a natural generalization of RS-codes. For a full introduction to AG-codes, see [60] or [81].
We will assume knowledge of elementary algebraic geometry,which can be found in [70][72][81]. RS-codes
are constructed by evaluating polynomials of bounded degree at certain field elements. As explained in the
introduction, their big drawback is the fact that the lengthis bounded by the field size (since the polynomials
must be evaluated atdistinctelements), so long codes require large fields. The most obvious way around this
would be to evaluate multivariate polynomials at points ofFm

q , this is the principle ofReed-Muller codes(so
RS-codes would be the special casem = 1). However, while this does indeed increase the length, it also
incurs a large cost in the decrease of the minimum distance.

There is a more efficient way of improving the length. Insteadof evaluating all multivariate polynomials up
to a certain degree at randomly chosen elements ofFm

q , we evaluate certain functions at well chosen points of
this space. These well chosen points are the elements of analgebraic curve, and the functions will be taken
from somelinear spaceof this curve.

Definition 4.6. LetX be a smooth nonsingular curve of genusg overFq, letP1, . . . , Pn, Q ben+1 distinctFq-
rational points ofX, let α < n be a positive integer, letL(αQ) be the linear space of the divisorαQ. A (one-
point) Algebraic-Geometric (AG) codeC is obtained as the image of the evaluation mapϕ : L(αQ) → Fn

q

with
ϕ(f) =

(
f(P1), . . . , f(Pn)

)
. (4.8)

We will denote such a code byC[X, (P1, . . . , Pn), αQ]. The genus of the coderefers to the genus of the
underlying curve.

Explicitly constructing these codes (for example by findinga generator matrix) is somewhat more difficult
than RS-codes. We essentially need to know the points on the curveX, and a basis of theFq-spaceL(αQ).
Fortunately, this can be computed using the algorithm of Heßfrom [31].

The resulting dimension and minimum distance are describedin the following proposition [72]:

Proposition 4.7. LetC be an AG-code defined as above. ThenC is an[n, k, d]-code with

k ≥ α + 1− g (4.9)

d ≥ n− α. (4.10)

Furthermore if2g − 2 < α then we have equality in (4.9).

Proof: We will start by showing that the evaluation mapϕ defined in (4.8) is injective. Suppose there is some
f ∈ L(αQ) with ϕ(f) = 0. This means that for alli ∈ [n]

f(Pi) = 0, (4.11)

and therefore thatf has at leastn zeros. But sincef ∈ L(αQ) it has only one pole of degreeα, and so
becauseα < n, we must havef = 0 (f must have as many zeros as poles). Soϕ is injective, and therefore
k = dim(αQ). Now the Theorem of Riemann [72] tells us that

dim(αQ) ≥ deg(αQ) + 1− g = α + 1− g, (4.12)

with equality if2g − 2 < α. So (4.9) follows immediately.
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Next, suppose there is a non-zero codeword of weight< n − α. This means that there isf ∈ L(αQ) which
has at leastα + 1 zeros. However once againf must have as many zeros as poles, so cannot have more than
α zeros, so we must havef = 0. We deduce that all non-zero codewords have weight at leastn − α, from
which (4.10) follows.

We will assume for the rest of this chapter that2g − 2 < α < n. We can deduce from Proposition 4.7 that

n− k + 1− g ≤ d ≤ n− k + 1, (4.13)

where the second inequality follows from the Singleton bound. So the genusg represents the “gap” to the
Singleton bound, and it is therefore desirable to choose a curve whose genus is as small as possible.

In Definition 4.6, constructing a code of lengthn requiredn + 1 distinctpoints on the curveX, which means
thatX needs to have at leastn + 1 points. It turns out that over a given field, a curve must have large genus
to have many points. We therefore have a trade-off between the length of the code (we would likeX to have
many points) and its distance (we would likeX to have a small genus). For a given field sizeq, the maximum
number of points on a curve overFq of genusg is denotedNq(g), and a curve overFq of genusg having
Nq(g) points is called amaximal curve.

4.4 The Specific Codes

We will be concerned only with very short codes (with lengthsup to 64). As explained in the introduction, the
work in this chapter was motivated by certain practical needs, and for this reason we use only finite fields in
the formF2ℓ , whereℓ is a power of2. Indeed it has been established that working with such fieldsyields very
large practical advantages (essentially due to the representation of field elements by bytes rather than uneven
fractions thereof). Were we to use RS-codes, we could work over F16 for length of up to16, then overF256

for lengths between 17 and 64. However with AG-codes we can use F16 for any length. The cost of doing
this is that we need to use a curve with more points, and therefore with higher genus, which decreases the
minimum distance.

Since a larger genus means a smaller minimum distance (see (4.13)), for a given lengthn we would like to
use a curve with genus as small as possible. This means takingthe smallestg for whichN16(g) ≥ n + 1 (see
Section 4.3.2), and then using a maximal curve of genusg. DeterminingNq and finding maximal curves is
a well studied problem, partly motivated by the construction of good AG-codes. The best known upper and
lower bounds onNq(g) for many values ofq andg are regularly updated in [88]. The following table (see [88]
[67] [68] [69] [55] [66]) gives the value ofN16(g) (or the best known bounds), and a corresponding maximal
curve:

50



g N16(g) maximal curve
1 25 x2 + x = y3 + y
2 33 x5 = y2 + y
3 38 x2y4 + x2y = ωx3 + 1
4 45 y2 + xy + x2 + y3 + xy3 + x2y2+

x3y + x4 + x3y2 + x4y + x5 = 0
5 ∈ [49, 53] −
6 65 x5 = y4 + y

Table 4.1: Maximal curves overF16 for genera 1 to 6.

(for the genus 3 curve,ω denotes a third root of unity inF16). We will not use a genus5 curve, partly because
is it not known whether the best known curves are maximal, andmainly because we make only a small gain
in length compared to the genus 4 curve.

For a givenn, we choose the curve of smallest genus with which we can construct a code of lengthn:

n which curve
n ≤ 16 Reed-Solomon (g = 0)

17 ≤ n ≤ 24 g = 1
25 ≤ n ≤ 32 g = 2
33 ≤ n ≤ 37 g = 3
38 ≤ n ≤ 44 g = 4
45 ≤ n ≤ 64 g = 6

Table 4.2: Curves used in our application.

We will see in section 4.6 that the encoding technique we use requires on average only half as many basic
operations for codes overF16 as for codes overF256 (which would be the standard method for these sorts of
lengths). On top of these theoretical advantages, a smallerfield also means that in practical implementations
more machine dependent optimizations are possible.

As seen in the previous section, the price we pay for this speed-up is a decrease in the minimum distance of
the code (by an additive factor ofg), which in turn means that for a fixed erasure channel the probability of
unsuccessful decoding (referred to as theerror probability) will increase. To quantify this we derive in the
next section an efficient algorithm for computing the exact error probabilities.

4.5 Computing the Error Probabilities

Recall that we are considering transmission over theQ-ary erasure channel, in which each alphabet element
is either received intact (with probability1 − p) or lost completely (with probabilityp). So for a given code
C, we transmitn elements, some of which might get erased. LetI ⊆ [n] denote the indices of the elements
that arenot erased (we call theseintact).

We say thatI is good if we can recover our codeword from the elements inI, andbad otherwise. So ifG
is the generator matrix of our code thenI is good if and only if thek × |I| submatrix ofG constructed by
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taking only the columns with indices inI has full rank. So clearly all setsI with |I| < k are bad. Likewise,
as seen in section 4.3, an AG-code of genusg has minimum distance at leastn− k + 1− g. So all setsI with
|I| ≥ k + g are good (in particular with RS-codes, of genus0, all sets of size≥ k are good).

Definition 4.8. For a given[n, k]-codeC, we defineBr to be the number of bad subsets of sizer.

Notice thatBr depends only on the codeC. Since there are in total
(n

r

)
subsetsI ⊆ [n] of sizer (i.e., the

number of erasure patterns), the fraction of subsets of sizer that are bad isBr/
(n

r

)
. Furthermore for a fixed

number of erasuresn− r, all erasure patterns are equally likely, so we obtain the following proposition:

Proposition 4.9. The error probability with an[n, k] AG-code over theQ-ary erasure channel with erasure
probability p is given by

n∑

r=0

Br
(n

r

) · P
[
|I| = r

]
=

n∑

r=0

Br · (1− p)r · pn−r. (4.14)

With an RS-code (genus 0),I is bad if and only if|I| < k, so we have

Br =

{ (n
r

)
if r < k

0 otherwise.

We can therefore deduce:

Corollary 4.10. The error probability with an[n, k] RS-code over theQ-ary erasure channel with erasure
probability p is given by

k−1∑

r=0

(
n

r

)

· (1− p)r · pn−r.

With AG-codes of genus greater than 0, the situation is more complicated. As above, decoding will fail
whenever|I| < k, but on top of that it will also sometimes fail whenk ≤ |I| ≤ k + g − 1 (see Figure4.1
below). So we need to determine how often it fails in these cases, i.e., to find the values ofBr.

Number of intact indices

kk−1 n

can never decode can sometimes decode can always decode

0 k+g−1 k+g

Figure 4.1: The overhead of an AG-code of genusg.

4.5.1 Reduction to an Abelian Group Problem

We will show that for an AG-code, the problem of determining the number of bad subsets of a given size
reduces to an abelian group problem.
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Definition 4.11. Let G be a finite abelian group. Suppose we have two subsetsS, T ⊆ G, and an integerr.
We denote byθ(G,S, T, r) the number ofr-subsetsW ⊆ S for which

∑

w∈W

w ∈ T.

Now we suppose throughout that we have fixed AG-codeC
[
X, (P1, . . . , Pn), αQ

]
.

We denote byD(X) the divisor group ofX, and byD0(X) its subgroup consisting in the divisors of degree
0. Recalling that the principal divisors Prin(X) form a subgroup ofD0(X), Pic(X) (the Picard group) and
Pic0(X) are defined as

Pic(X) = D(X)/Prin(X), and Pic0(X) = D0(X)/Prin(X). (4.15)

Definition 4.12. For a divisorD ∈ D(X), we will denote byD the image of the divisor
(
D− deg(D) ·Q

)
in

Pic0(X).

Note that sinceD − deg(D) · Q has degree 0, its image modulo Prin(X) is indeed in the group Pic0(X).
The following Theorem establishes the link between our problem of determining error probabilities, and the
functionθ from Definition 4.11:

Theorem 4.13. Suppose we have an AG-codeC
[
X, (P1, . . . , Pn), αQ

]
. The number of bad subsetsI ⊆ [n]

with |I| = r is given by
θ
(
Pic0(X), S, T, r

)
,

where S = {P1, . . . , Pn}, and T =
{
−D

∣
∣ D is a positive divisor of degreeα− r

}
.

Proof: Let I be a subset of[n] of sizer. Let K be the function field ofX. We have:

I is bad ⇐⇒ there is a codeword that is zero at all entriesi ∈ I

⇐⇒ ∃f ∈ L(αQ) : f(Pi) = 0 ∀i ∈ I

⇐⇒ ∃f ∈ K : (f) ≥
( ∑

i∈I Pi

)
− αQ

⇐⇒ ∃f ∈ K,D ∈ D(X) : D ≥ 0, (f) =
( ∑

i∈I Pi

)
− αQ + D.

⇐⇒ ∃f ∈ K,D ∈ D(X) : D ≥ 0, (f) =
(

∑

i∈I(Pi −Q)
)

+ D − (α− r) ·Q.

Notice that sincedeg
(
(f)

)
= 0, anyD that satisfies the last line will have degreeα− r. Now if we take the

projection onto Pic0(X), then we get:

I is bad ⇐⇒ ∃f ∈ K,D ∈ D(X) : D ≥ 0, and(f) =
( ∑

i∈I Pi

)
+ D

⇐⇒ ∃D ∈ D(X) : D ≥ 0, and 0 =
(∑

i∈I Pi

)
+ D

⇐⇒ ∃D ∈ D(X) : D ≥ 0, and
∑

i∈I Pi = −D

⇐⇒ ∑

i∈I Pi ∈ T,
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whereT =
{
−D

∣
∣ D ∈ D(X) andD ≥ 0

}
.

Once more, the only candidates forD that can verify this property must have degreeα− r.

4.5.2 The Group AlgebraC[G]

We now look at how to computeθ
(
G,S, T, r

)
. The brute force approach would be to consider all

(n
r

)
r-subsets

W of S and count how many of them have the property that
∑

w∈W w ∈ T . This would require(r − 1) ·
(n

r

)

group operations inG, and
(n

r

)
tests of whether an elementg ∈ G belongs toT (namely

∑

w∈W w). So this
is exponential inn = |G| if r is a constant fraction ofn, which makes the method highly impractical.

A better approach is to consider the group algebraC[G].

Definition 4.14. Let G =
(
{g1, . . . , gm},+

)
be a finite abelian group and letC denote the field of complex

numbers. Thegroup algebraC[G] is a vector space overC of dimensionm with basis elements[g1], . . . , [gm].
There is a product on the basis elementsC[G]

[gi] · [gj ] = [gi + gj ],

that extends naturally to the whole vector space.C[G] forms a ring under this product and the standard vector
space addition.

Let w ∈ C[G]. We can writew as anm-components vector (in basis
{
[g1], . . . , [gm]

}
):

w =






c1
...

cm




 =

m∑

j=1

cj · [gj ].

We then callcj ∈ C the jth componentof w. Notice that while addition inC[G] is done component by
component, multiplication is more complicated:

( m∑

i=1

ai[gi]

)( m∑

j=1

bj [gj ]

)

=

m∑

ℓ=1

(
∑

i,j|gi+gj=gℓ

aibj

)

[gℓ].

So multiplying two elements ofC[G] requiresm2 multiplications andm · (m− 1) additions inC.

We will now look at elements of the polynomial ringC[G][x] (polynomials whose coefficients are inC[G]).

Definition 4.15. Let G = {g1, . . . , gm} be a finite abelian group, and letS ⊆ G. We define the polynomial
pS(x) ∈ C[G][x] as follows:

pS(x) =
∏

gi∈S

(
x + [gi]

)
.

Note thatpS(x) has degree|S|. This polynomial will be of great interest to us because it isclosely linked to
θ(G,S, T, r), as established by the following theorem:
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Theorem 4.16.LetG = {g1, . . . , gm} be a finite abelian group and letS be a subset ofG, with |S| = n. Let
v0, . . . , vn ∈ C[G] be the coefficients ofpS(x), so that

pS(x) =

n∑

i=0

vi · xi.

For eachi = 0, . . . , n, let aij ∈ C be thejth component ofvi:

vi =

m∑

j=1

aij · [gj ] ∈ C[G].

Then for anyT ⊆ G, r = 0, . . . , n we have

θ
(
G,S, T, r

)
=

∑

j|gj∈T

a(n−r)j .

So Theorem 4.16 is saying that theith coefficientvi ∈ C[G] of pS(x) holds all the information we need about
(n− i)-subsets ofS. Its jth componentaij is a positive integer and represents the number of(n− i)-subsets
of S whose elements sum up togj in G.

Proof: Theelementary symmetric polynomials[92] in n variables are defined as

σi(x1, . . . , xn) =
∑

W⊆[n],|W |=n−i

∏

ℓ∈W

xℓ, for i = 0, . . . , n. (4.16)

They have the property that for anya1, . . . , an:
n∏

i=1

(x + ai) =

n∑

i=0

σi(a1, . . . , an) · xi. (4.17)

SincepS(x) is in the same form as the left hand side of (4.17), its coefficientsvi can be written as

vi = σi

(
[g1], . . . , [gn]

)
=

∑

W⊆[n],|W |=n−i

∏

ℓ∈W

[gℓ] =
∑

W⊆[n],|W |=n−i

[ ∑

ℓ∈W

gℓ

]

, (4.18)

from which the result follows.

Example 4.17. It is perhaps more intuitive to see why this theorem holds with small examples. Ifn = 3 and
S = {g1, g2, g3} then it can easily be checked that

pS(x) = x3 +
(
[g1] + [g2] + [g3]

)
· x2 +

(
[g1 + g2] + [g1 + g3] + [g2 + g3]

)
· x +

(
[g1 + g2 + g3]

)
. (4.19)

Now S has three 1-subsets ({g1}, {g1} and{g3}), which all appear in the coefficient ofx2. LikewiseS has
three 2-subsets ({g1, g2}, {g1, g3} and{g2, g3}), which all appear in the coefficient ofx (more precisely the
sum of whose elements all appear). Finally,S has of course a single 3-subset{g1, g2, g3}, the sum of whose
elements appears in the constant coefficient.

Recall that our aim is to determineBr, the number of bad subsets of sizer for r = k, . . . , k + g − 1. From
Theorem 4.13 we know that this can be reduced to computing

θr = θ
(
G,S, T, r

)
, (4.20)

whereG = Pic0(X), andS, T ⊆ G (see Theorem 4.13). Now Theorem 4.16 tells us that we can determineθr

for anyr from pS(x) ∈ C[G][x]. Our next step is to efficiently compute this polynomial.
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4.5.3 Efficiently Computing the PolynomialpS(x)

Throughout we suppose that|G| = m and|S| = n. ComputingpS(x) requiresn·(n−1)
2 multiplications inC[G]

(and the same number of additions inC[G]). While adding two vectorsu, v ∈ C[G] is done component-wise
(and so requiresm additions inC), multiplying u andv is more complicated and requiresm2 multiplications
andm · (m− 1) additions inC.

However, usingFast Fourier Transforms (FFT)[17], two vectors inC[G] can be multiplied much faster.
Multiplication in the algebraA = C[G] = (Cm, ·) is slow (namelyO(m2) operations inC), while in the
algebraB = (Cm, ∗) (where∗ denotes component-wise multiplication), we can multiply two elements using
only m multiplications inC. The algebrasA andB can be linked throughDiscrete Fourier Transforms (DFT).

Definition 4.18. Given a cyclic groupCℓ, the corresponding DFT matrixDℓ ∈ Cℓ×ℓ is defined as

(Dℓ)ij = ω(i−1)(j−1), (4.21)

whereω = e
2iπ
ℓ is a primitiveℓth root unity inC.

It can easily be checked thatDℓ is invertible, with

(D−1
ℓ )ij =

1

ℓ
· ω−(i−1)(j−1). (4.22)

Proposition 4.19. Let G = Cℓ1 × . . . × Cℓk
be an abelian group with|G| = m. LetA = C[G] =

(
Cm, ·

)

andB =
(
Cm, ∗

)
, where∗ denotes component-wise multiplication. LetDG be them×m matrix defined as

follows:
DG = Dℓ1 ⊗ . . . ⊗Dℓk

. (4.23)

Then there are bases ofA andB for which the mappingϕ : A→ B given by

ϕ(u) = DG · u (4.24)

is a C-algebra isomorphism.

Directly computingϕ(u) would requireO(m2) operations inC. However we can make use of (4.23), and
successively multiply appropriate subvectors ofu by eachDℓi

, which will require onlyO
(∑k

i=1 ℓ2
i

)
opera-

tions.

Note: This can actually be further reduced toO
( ∑k

i=1 ℓi log(ℓi)
)

operations using Fast Fourier Transforms
(see for example [17], Chapter 13), but will not be necessaryfor the codes in which we are interested.

Corollary 4.20. Let G = Cℓ1 × . . . × Cℓk
be an abelian group of sizem. LetA andB be the two algebras

as above. Then the DFTϕ : A → B can be computed using
∑k

i=1 ℓ2
i multiplications and

∑k
i=1 ℓi(ℓi − 1)

additions inC, i.e. a total of
k∑

i=1

3ℓ2
i − ℓi = O

( k∑

i=1

ℓ2
i

)

(4.25)

operations inC.
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So we can compute the polynomial

pS(x) =

n∏

i=1

(
x + [gi]

)
(4.26)

by first using the Fourier transformshi = ϕ
(
[gi]

)
to obtain the polynomial̂pS(x) ∈ B[x] defined as

p̂S(x) =
n∏

i=1

(
x + hi

)
=

n∑

i=0

wi · xi, (4.27)

and then taking the inverse transformsvi = ϕ−1(wi) to get the coefficients ofpS(x) =
∑n

i=0 vi · xi. The
algorithm is given below in pseudo-code:

Algorithm 4.1: COMPUTE pS(x)
Input: An abelian groupG, and a subsetS = {g1, . . . , gn} ⊆ G.
Output: The coefficients(v0, . . . , vn) of the polynomialpS(x) =

∏n
i=1

(
x + [gi]

)

1: for d = 1 to n do
2: computehd ← ϕ(gd)
3: for i = 1 to m do
4: wd[i]← 1
5: for j = 1 to d− 1 do
6: wd−j[i]← wd−j[i] · hd[i] + wd−j−1[i]
7: end for
8: w0[i]← hd[i]
9: end for

10: end for
11: for k = 0 to n− 1 do
12: computevk ← ϕ−1(wk)
13: end for
14: return (v0, . . . , vn−1, 1)

To evaluate the running time of this algorithm we first lett =
∑

i ℓ
2
i be the number of operations required for

the DFTs (see Proposition 4.19). We decompose the operations as follows:

1. n DFTs (line 2). This requiresO(nt) operations inC.

2. O(mn2) multiplications inC (line 6).

3. O(mn2) additions inC (line 6).

4. n inverse DFTs (line 12). This requiresO(nt) operations inC.

This gives us a total ofO(mn2 + nt) operations inC.
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4.5.4 The Final Algorithm

We can now combine all the work above to obtain the following algorithm for computing the error probabilities
of our codes:

Algorithm 4.2: ERROR PROBABILITY OF ANAG-CODE

Input: An AG-codeC
[
X, (P1, . . . , Pn), αQ

]
, and a channel erasure probabilityp.

Output: The probability of a decoding failure
1: g ← genus(X)
2: k ← α + 1− g
3: G← Pic0(X)
4: S ← {P1, . . . , Pn}
5: compute the coefficientsv0, . . . , vn ∈ C[G] of pS(x) (wherevi =

∑m
j=1 aij · [gj ])

6: for r = k to k + g do
7: T ←

{
−D

∣
∣ D is a positive divisor of degreeα− r

}
.

8: Br ←
∑

j|gj∈T a(n−r)j

9: end for
10: return

∑k−1
r=0

(
n
r

)
· pn−r · (1− p)r +

∑k+g
r=k Br · pn−r · (1− p)r

Notes: • In step 3 we use the software package Magma [19] to compute Pic0(X).

• ComputingT (step 7) can be done for example by brute force search since there is only a finite
number of positive divisors of degreeα− r in D(X) (we can enumerate the prime divisors of degrees at most
α− r, and look at all appropriate combinations).

• pS(x) only needs to be computed once to obtain the error probabilities for codes of lengthn of all
dimensionsk (sinceP1, . . . , Pn stay the same in the construction, onlyα changes). Furthermore, assuming
that for eachn the set of pointsPi we use for our codes of lengthn is contained in the set we use for our codes
of lengthn + 1, then we can construct thepS(x) of degreen + 1 from that of degreen (see the algorithm for
generatingPS(x)).

4.5.5 The Error Probabilities for our Specific Codes

The Pic0(X) groups of the curves in which we are interested (see Table4.1) are given in Table4.3 below,
along with the corresponding value oft =

∑

i ℓ
2
i . These were computed with the Magma software package

[19].

Genus G = Pic0(X) m = |G| t

1 C5 × C5 25 50
2 C5 × C5 ×C5 × C5 525 100
3 (C3)

3 × (C8)
3 13, 824 219

4 (C3)
4 × (C8)

4 331, 776 292
6 (C5)

12 244, 140, 625 300

Table 4.3: Pic0 groups of our curves
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We implemented in C++ the algorithm above on these groups to obtain the appropriate error probabilities
for all codes that interest us. To assess their impact, we note that in practice for a given message of sizek
(i.e. a given code dimension), a target error probabilityPT is set, and the length (equivalently the overhead)
is chosen to be the smallest value for which the actual error probability stays belowPT . So the cost of the
speed-up obtained by AG-codes over RS-codes can be measuredby how much extra overhead is required to
obtain a certain target error probabilityPT (or equivalently how much smaller the rate of the code needs to
be).

Below are some graphs giving the required overhead for different channel erasure probabilitiesp and target
error probabilitiesPT . We use RS-codes overF256, and AG-codes overF16, each time choosing the code with
the smallest genus enabling us to achieve the required length.
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Figure 4.2: Required length to achieve a target error probability ofPT = 10−3 on a channel with erasure
probabilityp = 0.1.

The graph below presents the same data as Figure4.2, but in terms of rate rather than length.
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Figure 4.4: Required length whenPT = 10−6 andp = 0.01.
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Figure 4.5: Required length whenPT = 10−9 andp = 0.01.

We observe that the AG-code does not require us to transmit many more elements than the RS-code in order
to achieve the target error probability, and in fact in most cases requires the same amount. So in this sense
we can argue that the drawback of higher error probabilitiesis not a large one. As explained earlier, we were
motivated by specific transmission problems and the parameters in the graphs above are chosen to reflect
these.

4.6 Interleaved Vector-Matrix Multiplication

Since we are considering applications of AG-codes, we will also present some implementation properties
quantifying the theoretical speed-ups that smaller fields enable. The aim of this section is to describe the
interleaving technique of [10]. This makes the encoding anddecoding processes forF2ℓ-codes faster, by
making use of the fact that computers can perform many bit operations in a single cycle. This parallelism is
utilized to encode many message vectors concurrently.

It is important to note that this does not improve the complexity (i.e. the asymptotic behavior), but does
nonetheless make things faster for the lengths in which we are interested.

4.6.1 The Regular Representation

The aim in this subsection is to reduce additions and multiplications inF2ℓ to additions and multiplications
of binary vectors and matrices. Throughout we letq = 2ℓ. First recall thatFq is a vector space of dimension
ℓ overF2. Throughout this section we fix an arbitrary basisV = {v1, . . . , vℓ} of Fq overF2. V establishes a
canonical bijection betweenFq andFℓ

2:

Definition 4.21. Given a basisV of Fq overF2, we letσ : Fq → Fℓ
2 be the bijection defined as follows: If

γ =
∑ℓ

i=1 ai · vi then
σ(γ) = (a1, . . . , aℓ). (4.28)
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Notice thatσ is additive with respect to component-wise addition inF2. So addition inFq is reduced to adding
binary vectors. To deal with multiplication inFq we can also express field elements asℓ× ℓ matrices:

Definition 4.22. Given a basisV of Fq overF2, we letτ : Fq → Fℓ×ℓ
2 be the mapping defined as follows:

τ(γ) =






σ(v1 · γ)
...

σ(vℓ · γ)




 . (4.29)

It can then easily be checked that this reduces multiplications inFq to binary vector-matrix multiplications,
i.e., the following proposition holds:

Proposition 4.23. For anyγ, µ ∈ Fq we have

σ(γ · µ) = τ(γ) · σ(µ). (4.30)

4.6.2 Interleaving

We are studying the problem of transmitting a file over a packet network modeled as an erasure channel.
We suppose that the packet sizeL is fixed (soL bit packets correspond to theQ-ary erasure channel with
Q = 2L). The most obvious way to send a file over such a channel is to use an[n, k]Q-code (so that each
packet can be identified with a field element). Therefore a fileconsisting ofk packets would be identified with
a message vector and encoded to a codeword ofn packets, which would then be transmitted. This is however
highly impractical for largeQ since performing the additions and multiplications inFQ becomes extremely
slow.

Instead we use a smaller fieldFq andinterleavemany codewords within the packets. More precisely, suppose
that q = 2ℓ andQ = 2L and also suppose for simplicity thatℓ dividesL, with L = bℓ. We then use an
[n, k]q-codeC.

One packet consists ofL = bℓ bits. We can arrange these in ab × ℓ matrix, each row of which can be
interpreted as an element ofFq (using the bijectionσ defined above):

1 packet←→






g11 . . . g1ℓ
...

...
gb1 . . . gbℓ




 ∈ Fb×ℓ

2

σ
︷︸︸︷←→






γ1
...
γb




 ∈ Fb

q. (4.31)

Now k packets can be concatenated, leading to the following interpretation:

k packets←→M ∈ Fb×kℓ
2

σ
︷︸︸︷←→ M ∈ Fb×k

q (4.32)

(each packet corresponds to a column ofM ). M is the “binary version” ofM , obtained by replacing each
entryγ by σ(γ). Throughout this section, for any matrixP overFq we will write its binary version asP (the
two can be linked either throughσ or τ ).

We compute the encoding by interpreting each row ofM as a message vector for our codeC, which will
get post-multiplied byG to obtain a codeword. So the encoding of theb message vectors inM consists of
computing theb× n matrixC with

C = M ·G, (4.33)
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so each row ofC is a codeword. This matrix multiplication could be done withstandard finite field arithmetic,
but the idea in [10] is to perform this as a multiplication ofbinary matrices.

The data to be encoded is given binary form (i.e. asM ). Rather than converting it to elements ofFq (to M )
which we would then multiply by the generator matrixG ∈ Fk×n

q , instead we storeG in its binary formG
and then perform the binary multiplication.

We constructG ∈ Fkℓ×nℓ
2 by replacing each entryγ of G ∈ Fk×n

q with the ℓ × ℓ matrix τ(γ). We then

compute the matrixC ∈ Fb×nℓ
2 as follows:

C = M ·G. (4.34)

Just asM was identified withk packets, we interpretC asn packets which can then be transmitted. Likewise,
just asb message vectors were interleaved into thek packets ofM , b codewords are interleaved into then
packets ofC. Notice that the link between theFq-matrix and its binary version is established throughσ for
M andC, and throughτ for G.

Multiplying binary matrices can be done by XOR’ing entire columns. The key point for practical applications
is that many bits can be XOR’ed in a single CPU cycle (how many depends on how big the registers of the
specific machine are). So while this does not improve the asymptotic running time (the number of bits that
can be XOR’ed in a single operation is of course constant), itcan nonetheless make things much faster for a
fixed set of parameters. We will refer to one such column (i.e.an element ofFb

2) as asymbol.

The algorithm can be described as follows:

Algorithm 4.3: BINARY MULTIPLY BY XOR’ ING COLUMNS

Input: A binary b× kℓ matrixM , a binarykℓ× nℓ matrixG.
Output: C = M ·G.

1: SetC to theb× nℓ zero matrix
2: for i = 1, . . . , kℓ do
3: for j = 1, . . . , nℓ do
4: if (Gij = 1) then
5:

(
Columnj of C

)
←

(
Columnj of C

)
XOR

(
Columni of M

)

6: end if
7: end for
8: end for
9: return C.

The number of XORs of symbols (i.e. columns) that needs to be performed is equal to the number of ones in
G.

So the interleaving technique for multiplying two matricesoverFq involves interpreting them in their binary
forms, which can then be multiplied using Algorithm4.3 by XOR’ing symbols.

To summarize the encoding process:

1. The generator matrix is stored in its binary formG ∈ Fkℓ×nℓ
q .

2. We interpret ourk packets (consisting ofkL = kbℓ bits) as a matrixM ∈ Fb×kℓ
2

3. ComputeC = M ·G using the algorithm above (so this is done exclusively through XORs of symbols).
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4. C ∈ Fb×nℓ
2 then contains then encoded packets to be transmitted.

4.6.3 Encoding Time

We assess the running time of this algorithm in terms of the number of XORs of symbols per output symbol
produced. We assume that our code is systematic (indeed any code can be brought into systematic form [51]),
so its generator matrixG can be written as

G =
(
Ik

∣
∣ A

)
, (4.35)

whereA is ak × (n − k) matrix in Fq. We letA be the binary version ofA (replacing each field elementγ
by theℓ× ℓ binary matrixτ(γ)).

The systematic packets (the firstk) of course do not need to be computed, though we still count them as output
packets. We need only computeM ·A, and so the number of XORs of symbols that needs to be performed is
equal to the number of ones in thekℓ × (n − k)ℓ matrix A (see the algorithm above). We expect about half

of its entries to be1 which leads to an expectation ofk(n−k)ℓ2

2 XORs of symbols. Since the total number of
symbols produced isnℓ, the number of XORs per output symbol is

kℓ(n− k)

2n
. (4.36)

Notice that this is proportional toℓ, so a smaller field size yields an improvement in the theoretical running
time (the field size isq = 2ℓ).

For comparison, encoding without this XOR’ing technique would involve working with operations overFq.

More precisely we would need to multiply the messageM ∈ Fb×k
q by A ∈ F

k×(n−k)
q from (4.35). So this

would requirebk(n − k) multiplications andb(k − 1)(n − k) additions overFq.

4.6.4 Decoding Time

The decoding time depends not only on the parameters of the code, but also on how many systematic packets
were erased. The decoding process can be described as follows. Suppose that then encoded packets were
transmitted, and thate of the systematic positions were erased. We consider the submatrixD of A whose rows
correspond to the positions of the erased systematic packets, and whose columns correspond to the positions
of the intact (non-erased) redundant packets. The decodingis successful if and only if the rank ofD is e. If
so, thene columns ofD are calculated such that the submatrixE of D formed by these columns is invertible,
and the corresponding intact redundant packets are marked (thesee marked packets form ab × e matrix S
overFq, or equivalently, throughσ, ab× eℓ binary matrixS).

We then letT denote theb × (k − e) Fq-matrix formed by the intact systematic packets. We letJ be the
(k − e) × e submatrix ofA whose rows correspond to the intact systematic packets, andwhose columns
correspond to the marked redundant packets. We then use the interleaving technique (Algorithm4.3) a first
time to computeTJ , and a second time to compute(S − TJ)E−1.

The decoding therefore consists of the following steps:

1. ComputeE−1. We call this theequation solving step.
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2. ComputeTJ . FindingT andJ does not require any work since they are just submatrices of known
matrices. We multiply the matrices in their binary forms using Algorithm4.3. We consider theb× (k−
e)ℓ binary versionT of T (throughσ), and the(k − e)ℓ × eℓ binary versionJ of J (throughτ ), and
computeT · J .

3. Compute theb× eℓ binary matrixR = S − T · J .

4. Perform the multiplicationR ·E−1 to obtain thee systematic packets that were erased.

Step 1 is done through Gaussian elimination, which requiresO(e3) field operations. As a rule of thumb, if
the symbols are large, then the running time of this step is amortized over the computation of the XORs.
However, ife is large, or if the symbols are small, then this step may add significantly to the decoding time.

As for the encoding, we assess the running time of the remaining steps as the number of XORs of symbols to
produce an output symbol. The number of XORs for step 2 is equal to the number of ones inJ . Again since

we expect half of the entries of this(k − e)ℓ × eℓ matrix to be ones, we obtain a total of(k−e)eℓ2

2 XORs for
step 2. Step 3 involves adding twob× eℓ matrices, which requires us to simply XOR the columns one by one,
leading toeℓ XORs. Finally step 4 involves another matrix multiplication. We expect half of the entries of
theeℓ× eℓ matrixE−1 to be ones, which leads us to a total ofe2ℓ2

2 XORs.

The (successful) decoder producesk packets, i.e.kℓ symbols, so combining everything, we need
((k − e)eℓ2

2
+ eℓ +

e2ℓ2

2

)

· 1

kℓ
=

ekℓ + 2e

2k
(4.37)

XORs per output symbol, to which we must add the time taken by the equation solving step.

4.7 Implementations

As explained in the introduction, the work in this chapter was motivated by practical needs, so we include
some implementations to illustrate the speed-ups predicted in theory.

We will focus in this section on the following transmission problem: a given file of size up to 64 kB is to
be transmitted over an impaired packet network, where each packet has a payload of 1 kB. We compare the
performances of RS and AG-codes, which in both cases are implemented using the interleaving technique of
Section 4.6.

Our RS-codes are constructed over the fieldF256, and our AG-codes overF16. We implemented the encoding
and decoding algorithms in C (compiled withgcc , andgcc -O3 ) and ran them on an AMD Athlon MP
2400+ 2 Ghz processor with 1GB of RAM and 256 kB of cache.

4.7.1 Encoding Bit Rates

We saw in the previous section that there is a theoretical speed-up factor of 2 for the encoding. However we
found that in practice the speed-ups were in fact larger. This is true with no optimization, and the effect is
amplified even more when optimization options (gcc -O3 ) are set on the compiler (see the graphs below).

This could be due to many reasons, such as more efficient caching, as larger symbols are XOR’ed together,
but less often. These bit rates and ratios could of course change depending on implementation and on which
machine they are run. The results were nonetheless useful for the context in which we were interested.
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Figure 4.6: Encoding bit rates of RS and AG codes of length 64, with no optimization (gcc ).
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Figure 4.7: The ratio between the encoding bit rates from Figure4.6.
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Figure 4.8: Encoding bit rates of RS and AG codes of length 64, withgcc -O3 optimization.
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Figure 4.9: The ratio between the encoding bit rates from Figure4.8.

4.7.2 Decoding Bit Rates

The theoretical decoding bit rates are a little more complicated. We showed in section 4.6.4 that we expected
the decoder to need

ekℓ + 2e

2k
(4.38)

XORs of symbols per output symbol produced (wheree is the number of erased systematic packets and the
field size is2ℓ), plus time taken by the equation solving step (see section 4.6.4). The latter is essentially
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O(e3), and since the smaller field size does not lead to the same improvements for this step as for the matrix
multiplications, we expect the gap between AG and RS codes tobe smaller whene is large.

In our experiments we supposed a “worst-case scenario”, namely that there aren − k erasures, of which as
many as possible occur in the systematic packets. Formally this means that

e = min(n− k, k). (4.39)

We then make the erasures occur uniformly at random among theappropriate sets of packets.

The graphs below show the decoding bit rates under these conditions for AG and RS-codes.
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Figure 4.10: Decoding bit rates of RS and AG codes, with no optimization.
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Figure 4.11: The ratio between the decoding bit rates from Figure4.10.
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We see that the ratio in Figure4.10 is smaller when the rate gets close to1/2. This is probably due to the
fact that these are the rates for whiche is largest, and so as explained above the equation solving step takes a
bigger share of the running time which reduces the difference between the two codes.

As for the encoding bit rate, the-O3 optimization amplifies the gains that AG make over RS codes, as shown
in the graphs below:
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Figure 4.12: Decoding bit rates of RS and AG codes of length 64, withgcc -O3 optimization.
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Figure 4.13: The ratio between the decoding bit rates from Figure4.12.

The generator matrix of an RS-code can actually be expressedas a Cauchy matrix, which means that the
equation solving step can be done faster (O(e2)). This is the principle ofCauchy Codes, see [10]. With this
improved decoding for RS-codes we obtain the following bit rates:
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Figure 4.14: Decoding bit rates of RS (faster equation solving) and AG codes, with-O3 optimization.
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Figure 4.15: The ratio between the decoding bit rates from Figure4.14.

As expected the gains are not quite as good, but we still get improvements for all dimensions, which get quite
large whene moves aways from its maximum value.

4.8 Conclusion

For applications requiring very short blocks, AG and RS-codes become competitive solutions to protect data
against packet loss. There is a strong argument to be made that AG-codes are in many cases the preferable
option. Their key advantage is the use of smaller fields for a given length, which translates to faster encoding
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and decoding times. Furthermore, the speed-ups predicted in theory seem to actually be amplified in practice.
Although AG-codes do have higher error probabilities, we developed an algorithm to compute these and found
that in many situations the consequences are in fact minor.

We conclude by saying that although AG-codes are most famousfor their asymptotic properties, it seems that
it is for very short lengths that they offer the greatest prospects for practical exploitations. The short AG-codes
presented in this chapter are being used commercially for video delivery.
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Chapter 5

Expander graphs

5.1 Introduction

Expander graphs and their constructions have been investigated since the 1970’s. Their remarkable properties
have led to applications in very diverse areas of computer science and discrete mathematics (coding theory,
network design, cryptography, complexity and others).

There are different ways to define graph expansion, all of which can be shown to be related. Intuitively, a
graph is a good expander if it is highly connected, meaning that all not-too-large sets of vertices have many
neighbors. This is clearly easier to achieve with graphs of larger degree, and the challenge is to construct good
expandersof a given constant degree. Perhaps surprisingly, it was shown [59] that a randomly chosen graph
will have these properties with high probability. Explicitconstructions are however more difficult to achieve.

In this work we will mainly be concerned with the algebraic characterization calledspectral expansion, which
measures the expansion of a graph by looking at its spectrum (more specifically the second largest eigenvalue).
This will enable us to use standard tools from linear algebrato study expansion properties. It also directly
governs themixing rateof a graph, namely the speed at which a random walk on the graphwill converge to
its stationary distribution.

In 1986 Alon [2] gave an upper bound on the spectral expansionthat can be achieved by an infinite family of
graphs. Graphs reaching this bound are referred to asRamanujan graphs, and were first explicitly constructed
by Margulis [54] and independently by Lubotzky, Phillips and Sarnak [44].

More recently, Reingold, Vadhan and Wigderson [61] introduced thezig-zag product, which enables an ele-
gant recursive construction. Although the resulting graphs are not Ramanujan, the construction is remarkable
in that its analysis effectively relies only on linear algebra which makes it not only easier to follow but also
somewhat more intuitive than any of the previous constructions.

The aim of this chapter is to introduce the necessary background for Chapter 6. Sections 5.2 to 5.5 will
present some preliminaries, definitions and standard results on expander graphs. In Section 5.6 we describe
some graph products and operations which will be used in the next chapter. Section 5.7 gives some results
on the spectral expansion of biregular bipartite graphs, which, although straightforward adaptations of their
non-bipartite counterparts, do not appear to feature prominently in the literature.
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5.2 Background

Definition 5.1. We will use the following graph theory conventions:

• An undirected graphG is a pair(V,E) whereV is a finite set (the set of vertices) andE ⊆ V × V is a
symmetric relation onV (the set of edges). Note that self loops are allowed.

• An undirected multigraphG is a pair(V,E) whereV is a finite set (the set of vertices) andE ⊆ V × V is
a multiset (the set of edges) such that

(x, y) ∈ E =⇒ (y, x) ∈ E, with the same multiplicity.

Note that multiples edges and multiple self loops are allowed.

• Thesizeof a graphG = (V,E) is defined as the number of vertices|V |.

• For any subsetS ⊆ V of vertices, theset of neighborsof S, denotedN(S), is defined as

N(S) =
{
v ∈ V | ∃s ∈ S : (s, v) ∈ E

}
.

• Thedegreeof a vertex is the number of incident edges (each self loop is counted as a single edge).

• A graph is said to bed-regular if all its vertices have degreed.

• A graphG = (V,E) is said to bebipartite if there are two disjoint subsetsS, T ⊆ V with V = S ∪ T and
for anys1, s2 ∈ S, t1, t2 ∈ T we have

(s1, s2) /∈ E, and(t1, t2) /∈ E.

We will refer to the elementsS andT as theleft andright vertices.

• Let G = (V,E) be a bipartite graph with left and right vertex setsS andT . G is said to bebiregular if there
areℓ, r for which all left vertices have degreeℓ and all right vertices have degreer.

ℓ andr are called theleft degreeandright degreerespectively. Notice that

ℓ · |S| = r · |T |. (5.1)

• A path of lengthn is a sequencev0, . . . , vn of vertices, with(vi−1, vi) ∈ E for eachi = 1, . . . , n.

• A cycle of lengthn is a path of lengthn in which v0 = vn.

• Thedistancebetween two verticesu, v is the length of the shortest path fromu to v.

In this work we will be dealing mostly with regular undirected multigraphs. Unless otherwise stated, agraph
will refer to an undirected multigraph. We will refer to ad-regular graph of sizen as an[n, d]-graph. We will
also be dealing withbiregular bipartite graphs, whose properties are described in Section 5.7.
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Definition 5.2. We will also use the following linear algebra notation:

• For anyn ∈ N, we define the set[n] as

[n] = {1, . . . , n}.

• A vectorx ∈ Rn is aprobability distribution(or probability vector) if ∀i ∈ [n] : xi ≥ 0, and

n∑

i=1

xi = 1.

• The inner product
〈·, ·〉 : Rn × Rn → R

is defined as

〈x, y〉 =
n∑

i=1

xi · yi.

• Thenormof a vectorx ∈ Rn is defined as

‖x‖ =
√

〈x, x〉.

• Two vectorsx, y ∈ Rn are said to beorthogonal(or perpendicular), if

〈x, y〉 = 0.

We write this asx ⊥ y.

• Two vectorsx, y ∈ Rn are said to beparallel if there is0 6= β ∈ R such that

y = βx.

We write this asx ‖ y.

• A set of vectors{v1, . . . , vn} is said to beorthonormalif they are pairwise orthogonal, and‖vi‖ = 1 for
eachi = 1, . . . , n.

• x ∈ Rn is said to be aneigenvectorof a matrixM ∈ Rn×n if there is an elementλ ∈ R for which

Mx = λx.

λ is then called theeigenvalueof M corresponding tox.

• The set of eigenvalues of a matrixM is called itsspectrum, and is denoted by Spec(M).

• A matrix is said to bestochasticif all its columns are probability vectors. It isdoubly stochasticif all its
rows and all its columns are probability vectors.
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• In ∈ Rn×n denotes then× n identity matrix.

• 1n denotes the vector inRn whose entries are all1.

• 1
‖
n denotes the space of vectors inRn generated by1n:

1‖n = {β · 1n | β ∈ R}.

• 1⊥n denotes the space of vectors inRn that are orthogonal to1n:

1⊥n = {v ∈ Rn | 〈v, 1n〉 = 0}.

Notice that1‖n and1⊥n have respective dimensions1 andn − 1, and that they have only the zero vector in

common. We will use the terminology from [94] and call elements of 1‖n uniform and elements of1⊥n anti-
uniform. We have

Rn = 1‖n ⊕ 1⊥n ,

which means that any vectorw ∈ Rn can be uniquely decomposed asw = w‖ + w⊥ wherew‖ is uniform
andw⊥ is anti-uniform.

Proposition 5.3. We have the following standard results:

• The Cauchy-Schwarz inequality: For anyu, v ∈ Rn:
∣
∣〈u, v〉

∣
∣ ≤ ‖u‖ · ‖v‖. (5.2)

• The triangle inequality: For anyu, v ∈ Rn:

‖u + v‖ ≤ ‖u‖+ ‖v‖. (5.3)

Theadjacency matrixis a very natural way to represent a graph, and provides the link between graph theory
and linear algebra.

Definition 5.4. Theadjacency matrixAdj(A) of a graphA with vertex set[n] is then × n matrix such that
Adj(A)ij is equal to the number of edges between verticesi andj.

Notice that whenA is undirected, Adj(A) is symmetric. When a graphA is regular, thenormalized adjacency
matrix (defined below) will be a very important tool to representA. In fact, we will often identify a regular
graph with its normalized adjacency matrix.

Definition 5.5. Thenormalized adjacency matrixof ad-regular graphA with vertex set[n] is then×n matrix

MA =
1

d
· Adj(A). (5.4)

Notice that since Adj(A) is symmetric, so isMA. Furthermore, since each vertex has degreed we have

∀i ∈ [n] :

n∑

j=1

Adj(A)ij = d,

75



and therefore for each rowi
n∑

j=1

(MA)ij = 1.

Furthermore sinceMA is symmetric, we can deduce that it is a doubly stochastic matrix. We now give some
more properties ofMA.

Theorem 5.6. Anyn× n real symmetric matrix hasn real eigenvalues andn orthonormal eigenvectors.

Proof: This is a standard result, see for example [7].

So in particular, since the normalized adjacency matrix of agraph is real and symmetric, it hasn real eigen-
values which we write (in decreasing order)λ0 ≥ . . . ≥ λn−1, and to which correspond respectivelyn
eigenvectorsv0, . . . vn−1 with

〈vi, vj〉 = δij .

For a graphA, when we refer to thespectrum ofA we will mean the spectrum ofMA.

Proposition 5.7. Let A be a regular graph and letMA be its normalized adjacency matrix. Ifλ0 ≥ . . . ≥
λn−1 are its (ordered) eigenvalues with corresponding orthonormal eigenvectorsv0, . . . , vn−1, then

λ0 = 1 and v0 =
1n√
n

.

Furthermore, for alli = 1, . . . , n− 1 we have

|λi| ≤ 1.

Proof: This is a standard result, we take the proof from [94]. We willstart by showing the second part, namely
that |λi| ≤ 1 ∀i. Let λ be any eigenvalue with corresponding eigenvectorv. For anyj ∈ [n], we denote by
(v)j thejth component ofv. Let k ∈ [n] be an index for which|(v)k| is maximal:

|(v)k| = max
j∈[n]
|(v)j |.

Now sinceMA · v = λv, we have in particular that(MA · v)k = (λv)k, and therefore|(MA · v)k| = |(λv)k|.
Lettingaij = Adj(A)ij , this leads to

∣
∣

n∑

j=1

akj · (v)j
∣
∣ = |λ| · |(v)k|,

and therefore

|λ| =

∣
∣ Pn

j=1 akj ·(v)j

∣
∣

|(v)k |

≤
Pn

j=1 |akj |·|(v)j |
|(v)k | (by the triangle inequality)

≤ ∑n
j=1 |akj| (since|(v)j | ≤ |(v)k| for all j ∈ [n])

= 1 (sinceMA is doubly stochastic).
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It now just remains to be shown that1 is an eigenvalue. This follows immediately from the fact that MA is
doubly stochastic: Taking the uniform vector1n we see that for alli

(MA · 1n)i =

n∑

j=1

aij = 1 = (1n)i,

and thereforeMA · 1n = 1n. Normalizing this eigenvector gives us

λ0 = 1, v0 =
1n√
n

.

The spectrum of a graph can tell us about its expansion properties. Thesecond eigenvaluewill be of particular
interest:

Definition 5.8. Let A be a non-bipartite graph and letλ0 ≥ . . . ≥ λn−1 be its eigenvalues. Thesecond
eigenvalueof A is defined as

λA = max
(
|λ1|, |λn−1|

)
.

SoλA is the second largest eigenvalue in absolute value. Notice that from proposition 5.7, for any graphA
we have0 ≤ λA ≤ 1. Definition 5.8 applies only tonon-bipartitegraphs. We will see in Section 5.7 the
corresponding definition for bipartite graphs.

Proposition 5.9. LetA be a regular graph and letλ0 ≥ . . . ≥ λn−1 be its eigenvalues. Then

• A is connected if and only ifλ1 < 1.

• A is bipartite if and only ifλn−1 = −1.

Proof: See for example [94].

The following characterization of the second eigenvalue ofa graph will be very useful in the next chapter:

Theorem 5.10.For any non-bipartite graphA we have

λA = max
06=x∈1⊥n

∣
∣〈MA · x, x〉

∣
∣

〈x, x〉 .

Proof: See for example [94].
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5.3 Expander Graphs

As explained in the introduction, there are different ways of measuring graph expansion. The most intuitive
ways are combinatorial, and we start withedge expansion. For a graphA = (V,E) and a subsetS ⊆ V of
vertices, we letS denote the complement ofS in V , and define theedge boundaryof S as the set of outgoing
edges fromS:

∂S = E ∩
(
S × S

)
.

Definition 5.11. A graphA = (V,E) is said to be anh-edge expanderif

∀S ⊆ V : |S| ≤ |V |
2

=⇒ |∂S| ≥ h · |S|.

We also define theedge expansion parameterof A as

h(A) := min
{
h | A is anh-edge expander

}
.

So edge expansion requires that sets have many outgoing edges. This is closely related to the concept ofvertex
expansion:

Definition 5.12. A graphA = (V,E) is said to be an(α, β)-vertex expanderif

∀S ⊆ V : |S| ≤ α · |V | =⇒ |N(S)| ≥ β · |S|.

This is saying that any setS of vertices that is not too large “expands” into its neighborhood (i.e.N(S) ≥
β · |S|). Oftenα is set to1

2 which leads to the following common definition:

Definition 5.13. A graphA = (V,E) is said to be aβ-vertex expanderif

∀S ⊆ V : |S| ≤ |V |
2

=⇒ |N(S)| ≥ β · |S|.

We also define
β(A) := max

{
β | A is aβ-vertex expander

}
.

Expander graphs are sometimes said to be “highly connected”, referring to the fact that sets of vertices have
many neighbors. Although this definition has a clear visual interpretation (and goes well with the word
expander), it is sometimes difficult to prove results relating to the expansion of specific graphs using edge or
vertex expansion. Instead we will be mostly concerned with the following algebraic characterization of graph
expansion:

Definition 5.14. A regular graphA = (V,E) is said to be aλ-spectral expanderif its second eigenvalueλA

has the property that
λA ≤ λ.

Recall from Theorem 5.7, that0 ≤ λA ≤ 1. The value1− λA is referred to as thespectral gap. A larger gap
means better expansion. We will refer tod-regularλ-spectral expander of sizen as an[n, d, λ]-graph. When
we say that a graph is aλ-expanderwe mean that it is aλ-spectral expander.
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The definitions above are all essentially measuring the samething. The relationships between them are im-
portant, in the sense that it is often easier to analyze and construct graphs based on their spectral expansion,
while some applications make direct use of their combinatorial expansion properties.

The relationship between edge and spectral expansion is captured in the following theorem [33]:

Theorem 5.15.For any [n, d, λA]-graphA we have

d(1− λA)

2
≤ h(A) ≤ d

√

2(1 − λA). (5.5)

This was proved by Dodziuk [23] and independently by Alon-Milman [6] (see [33]). We can also relate vertex
and spectral expansion as follows:

Theorem 5.16.For any [n, d, λA]-graphA we have

1− 2β(A) ≤ λA ≤
√

1− (β(A) − 1)2

d2 · (8 + 4(β(A) − 1)2)
. (5.6)

The second inequality of (5.6) was proved by Alon in [2]. The first inequality follows from the fact that
h(a) ≤ d · β(A) and Theorem 5.15.

5.4 Random Walks

The behavior of a random walk on a given graph is strongly related to its expansion properties. Although we
have at our disposal a wide range of algebraic tools to study the spectral expansion of a graph, random walks
have the advantage of having a very appealing intuition. When we look at graph products it is often convenient
to conceptualize a product of two graphsA andB in terms of how one step of a random walk on this product
is constructed from steps of walks onA andB. In our proofs we will often supplement the calculations with a
a description of what we are doing in terms of random walks. Furthermore, many of the practical applications
of expander graphs in computer science explicitly use the mixing properties of expander graphs.

Using the normalized adjacency matrixMA, we can analyze random walks in algebraic terms. When we start
with an initial distributionx0 ∈ Rn on the vertices ofA, after one step of a random walk onA the distribution
will be

x1 = MA · x0.

Likewise aftert steps it will be
xt = (MA)t · x0.

We will also refer toMA as thetransition matrixof A.

In any connected non-bipartited-regular graphA, taking a random walk on its vertices starting from any
initial distribution will converge to the uniform distribution 1n

n . The spectral expansionλA determines the
speed of this convergence. The better the expansion properties of A, the faster a walk will converge to the
uniform distribution. This is written more formally in the following theorem (see for example [33]):

Theorem 5.17.LetA be a non-bipartiteλA-spectral expander. Starting with any initial distribution x0 ∈ Rn

on the vertices ofA, the distributionxt after t steps of a random walk will satisfy:

∥
∥xt −

1n

n

∥
∥ ≤ λt

A.
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So we can say that the distribution converges exponentiallyfast to the uniform distribution, with baseλA.

Proof: Letλ0 ≥ . . . ≥ λn−1 be the eigenvalues ofA, with corresponding normalized eigenvectorsv0, . . . , vn−1.
We know from Theorem 5.6 that these eigenvectors form an orthonormal basis ofRn. We can writex0 in this
basis as

x0 =
n−1∑

i=0

αi · vi.

We have:
xt = At · x0

= At ·∑n−1
i=0 αi · vi

=
∑n−1

i=0 αi · λt
i · vi

= α0 · λt
0 · v0 +

∑n−1
i=1 αi · λt

i · vi

= α0 · v0 +
∑n−1

i=1 αi · λt
i · vi (sinceλ0 = 0).

(5.7)

Recall from Proposition 5.7 thatv0 = 1n/
√

n. This means that

α0 = 〈x, v0〉 =

∑n
i=1 xi√

n
=

1√
n

(sincex is a distribution), (5.8)

so that

α0 · v0 =
1n

n
. (5.9)

Continuing with (5.7), we have
∥
∥xt − 1n

n

∥
∥ =

∥
∥xt − α0 · v0

∥
∥

=
∥
∥

∑n−1
i=1 αi · λt

i · vi

∥
∥

=
√

∑n−1
i=1 α2

i · λ2t
i (since thevi’s are orthonormal)

≤ λt
A ·

√
∑n−1

i=1 α2
i

≤ λt
A · ‖x0‖

≤ λt
A (sincex0 is a distribution).
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5.5 Families of Expander Graphs

As we have previously seen with codes, there are many applications of expanders in which we do not know
beforehand the size of the required graph. So just as we had worked families of codes in Chapter 3, we can
define families of graphs. It is much more convenient (and elegant) to construct families of graphs that display
the desired properties, rather than ad-hoc constructions of good graphs of different sizes. Furthermore, when
expanders are employed to show asymptotic results it often becomes necessary to work with infinite families
of graphs.

Definition 5.18. A (fixed degree) family of graphs of degreed is a sequence{Ai}i∈N, whereAi is an[ni, d]-
graph and

lim
i→∞

ni =∞.

A family of graphs is said to be aλ-expander familyif eachAi is aλ-spectral expander. A family is said to be
anexpander familyif it is a λ-expander family for someλ < 1. Recall that a smaller second eigenvalue means
better expansion, so it is desirable to constructλ-expander families forλ as small as possible. We have the
intuition that it is easier to construct expanders of largerdegree (the “high connectivity” can be more readily
achieved with many edges), so the challenge is to build the best possible expandersof a given degreed.

The following theorem (stated in [2]) gives a lower bound on the bestλ that can be achieved, and its relation-
ship to the degree.

Theorem 5.19. (Alon-Boppana). Let{Ai}i∈N be a family of graphs of degreed. Then

lim
i→∞

λ(Ai) ≥
2
√

d− 1

d
.

This is sometimes referred to as theAlon-Boppana bound. It provided a benchmark against which one can
measure how good a given family of expander graphs is. Graphsachieving this bound are referred to as
Ramanujan graphs.

Example 5.20. For anyi ∈ N∗ we defineZi as the ring of integers moduloi:

Zi = Z/iZ. (5.10)

Some examples of explicit expander family constructions:

1. LetVi = Zi × Zi. Each vertex(x, y) ∈ Vi has the following4 neighbors:

(x + y, y), (x− y, y), (x, x + y), (x, x− y).

ThenAi = (Vi, Ei) is an[i2, 4]-graph, and{Ai}i∈N∗ is an expander family [78].

2. LetVi = Zi × Zi. Each vertex(x, y) ∈ Vi has the following eight neighbors:

(x + y, y), (x− y, y), (x, y + x), (x, y − x),
(x + y + 1, y), (x− y + 1, y), (x, y + x + 1), (x, y − x + 1).

(5.11)

ThenAi = (Vi, Ei) is an[i2, 8]-graph, and{Ai}i∈N∗ is an expander family [33] [78].

This was the first construction of an explicit expander family, and is due to Margulis [52] (1973). His
proof was existential in the sense that it did not provide an explicit bound on the expansion of the family.
This was obtained later by Gabber and Galil [27].
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3. Letpi denote theith prime. We letVi = Z×
pi

, and the edge setEi ⊆ Vi × Vi is defined as

Ei =
{
(x, x−1), (x, x + 1), (x, x − 1)

∣
∣ x ∈ Vi\{0}

}
∪

{
(0, 0), (0, 1), (0,−1)

}
. (5.12)

ThenAi = (Vi, Ei) is a[pi, 3]-graph, and{Ai}i∈N∗ is an expander family [33].

4. Letp andq be distinct primes, withp ≡ q ≡ 1 mod4, and letu be an integer for whichu2 ≡ −1 modq
(such au always exists). It can be shown [44] that there are exactly(p + 1) 4-tuples(a0, a1, a2, a3)
with

a2
0 + a2

1 + a2
2 + a2

3 = p, (5.13)

and for whicha0 > 0 is odd, anda1, a2, a3 are even. To each such tuple we associate the matrix
(

a0 + ua1 a2 + ua3

−a2 + ua3 a0 − ua1

)

∈ PGL(2, Fq), (5.14)

and letS be the set of thesep + 1 matrices. The Cayley graphApq of PGL(2, Fq) with respect toS is
then an[N, p + 1]-graph, where

N = |PGL(2, Fq)| = q(q2 − 1). (5.15)

It can be shown [44] that

λApq =
2
√

p

p + 1
. (5.16)

So if we fix p ≡ 1 mod4, take an infinite sequenceq1 < q2 < . . . of primes for whichqi ≡ 1 mod4,
and letAi = Apqi , then{Ai}i∈N∗ is a family of Ramanujan graphs of degree(p + 1).

This construction is due to Lubotzky, Phillips and Sarnak [43] [44] (1988). The termRamanujan graph
comes from this family whose analysis uses the Ramanujan conjecture. This was later extended by
Morgenstern [56] to obtain constructions of(q + 1)-regular Ramanujan graphs for all prime powersq.

5.6 Graph Products and Operations

Because we are working with multigraphs, the edgesE ⊆ V ×V form amultiset(a set in which elements can
appear multiple times). It is often inconvenient to refer toedges as elements of this multiset. Instead, having
a labelingof the edges allows for more concise notation.

We start this section by introducing labelings and the notation that follows, which we will then use to present
some graph products.

5.6.1 Edge Labelings

A labelingof an[n, d]-graphA consists of assigning distinct labels to the edges leaving each vertex ofA. The
labels will be elements of a setL of sized. We often haveL = [d]. In this case for a vertexu ∈ [n], if the
edge labeledi ∈ L connectsu to v then we can say thatv is theith neighbor ofu.

Each edge has two labels (one corresponding to each one of itsvertices), and these labels may be different.
This is saying that ifv is theith neighbor ofu thenu may not be theith neighbor ofv. We write this formally
as follows:
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Definition 5.21. Let A = (V,E) be an[n, d]-graph on vertex set[n]. A labeling in L (so|L| = d) for a vertex
u ∈ [n] is a bijection

µu : L→ N(u). (5.17)

A labelingµ for the whole graphA consists of a labeling for each one of then vertices

µ =
{
µu | u ∈ [n]

}
. (5.18)

All our graphs will either have some arbitrary (but fixed) labeling, or an implicit labeling from their construc-
tion. This enables us to employ the following notation:

Definition 5.22. Let A be an[n, d]-graph on vertex set[n], and with a labeling in[d]. For u, v ∈ [n] and
i ∈ [d] we use the notation

v = u[i] (5.19)

to denote the fact thatv is theith neighbor ofu (i.e. thatµu(i) = v).

Definition 5.23. A labeling of an[n, d]-graphA is said to be ad-edge-coloringif for each edge its two labels
are identical. More formally:

∀u ∈ [n], i ∈ [d] : u[i][i] = u. (5.20)

Not all d-regular graphs haved-colorings. Finding ad-edge-coloring is equivalent to partitioning the vertices
of A into d perfect matchings. So for example ifn is odd thenA does not have ad-edge-coloring. It turns out
that determining whether a given graph hasd-edge-coloring is NP-complete [32]. In this work when we refer
to acoloring we mean an edge-coloring.

Definition 5.24. A labeling is said to be ahalf-coloring if for each colori ∈ [d] there is a corresponding color
ρ(i) ∈ [d] for which any edge coloredi at one end will be coloredρ(i) at the other end. More formally, there
is a mappingρ : [d]→ [d] that satisfies

∀u ∈ [n], i ∈ [d] : u[ρ(i)][i] = u[i][ρ(i)] = u. (5.21)

We refer toρ as thepartner mapping. Notice thatρ is an involution. So ad-edge-coloring is a special case
of a half-coloring, in whichρ is the identity map. When a labeling is a half-coloring, the labels will also be
referred to ascolors.

Half-colorings will be of interest to us because for our analysis of the expansion properties of the deran-
domized tensor product in Chapter 6 it will be necessary and sufficient for the graphs involved to have half-
colorings. They are also interesting because some of the graph products we will see preserve half-colorings,
but not colorings.

Non-regular graphs can also be labeled in a natural way. For each vertexu, the edges adjacent tou are labeled
with elements from a set of sizedeg(u).

5.6.2 Graph Squaring

We use the notation from Definition 5.22 to describe our products.
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Definition 5.25. Let A be an[n, d]-graph with a labeling. The squareA2 of A is the[n, d2]-graph with vertex
set[n] and a labeling in[d]× [d]. For anya ∈ [n] and(i, j) ∈ [d]× [d], we have

a[i, j] = a[i][j]. (5.22)

More intuitively, this can be interpreted as taking all paths of length2 in A. SoA2 has the same vertex set as
A, and we put an edge inA2 between two verticesa, u for each path of length2 betweena andu in A. In
terms of random walks, taking one step inA2 can be decomposed into taking2 substeps inA. For each of
these substeps we haved choices which gives us a total ofd2 choices (as expected since the degree ofA2 is
d2).

Notice that the labeling ofA2 (with [d] × [d] as its set of labels) is implicit to its construction fromA. It can
also be checked that graph squaring preserves half-colorings but not colorings.

SinceA2 has the same size asA but has more edges, we expect it to be a better expander. More precisely, the
second eigenvalue gets squared:

Proposition 5.26. If A has second eigenvalueλA thenA2 has second eigenvalue

λ(A2) = λ2
A.

Proof: If we let λ0 ≥ . . . ≥ λn−1 be the spectrum ofMA, then the spectrum ofM2
A will be λ2

0, . . . , λ
2
n−1.

By definition we have

λA = max
{
|λ1|, . . . , |λn−1|

}
, and λ(A2) = max

{
λ2

1, . . . , λ
2
n−1

}
. (5.23)

Squaring positive numbers preserves their ordering, so as required:

λ(A2) = λ2
A. (5.24)

5.6.3 Graph Tensoring

Definition 5.27. Let A be an[n, d1]-graph, and letB be an[m,d2]-graph. Their tensor productA ⊗ B is
an [nm, d1d2]-graph with vertex set[n] × [m] and a labeling in[d1] × [d2]. For any(a, b) ∈ [n] × [m] and
(i, j) ∈ [d1]× [d2], we have

(a, b)[i, j] = (a[i], b[j]). (5.25)

Throughout this work, we will interpret the vertex set[n] × [m] asn copies of[m]. We will also follow the
convention of [61] and refer to these copies asclouds. So for a vertex(a, b) ∈ [n] × [m], a describes which
cloud it belongs to, andb describes its position within clouda.

In the context of random walks, we can interpret a step(i, j) in A⊗B from the vertex(a, b) as follows:

1. Take one stepbetween clouds. The different possibilities are given by the edges ofA. The positionb
within the cloud does not change:

(a, b)→ (a[i], b).

Notice that there are exactlyd1 possible choices for this step.
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2. Take one stepwithin the new clouda[i]. We view the cloud as a copy ofB, and take one step along an
edge of this copy (so we stay in the same cloud):

(a[i], b)→ (a[i], b[j]).

Notice that there are exactlyd2 possible choices for this step.

So the total number of choices for both steps isd1d2, which as expected is equal to the degree ofA⊗B. The
labeling ofA⊗B (with [d1]× [d2] as its set of labels) is implicit to its construction fromA andB. The two
subsets into which step(i, j) were decomposed above are commutative, we could just as wellhave presented
them the other way round.

It can also be checked that graph tensoring preserves both colorings and half-colorings. Graph tensoring can
also be interpreted as an operation on the corresponding transition matrices. We conveniently have

MA⊗B = MA ⊗MB . (5.26)

The expansion ofA⊗B will be the worse of the two expansions:

Proposition 5.28. If A andB have second eigenvaluesλA andλB thenA⊗B has second eigenvalue

λA⊗B = max
{
λA, λB

}
.

Proof: If we let λ0 ≥ . . . ≥ λn−1 andµ0 ≥ . . . ≥ µm−1 and be the eigenvalues ofMA andMB , then
{
λi · µj

∣
∣ i = 0, . . . , n− 1, j = 0, . . . ,m− 1

}
(5.27)

is the set of eigenvalues ofMA⊗B. Sinceλ0 = µ0 = 1, the result follows.

5.6.4 The Zig-Zag Product

The Zig-zag product, introduced in 2002 by Reingold, Vadhan and Wigderson [61] enables the recursive
construction of expander families. In all previous explicit constructions of expander families, although the
graphs were easy to describe, the proofs of why they lead to good expanders were highly algebraic and rather
complex. It was therefore difficult to conceptualize the connection between the algebra and the actual graphs,
or to get any intuition as to why the resulting families were in fact expanders.

The zig-zag construction however is remarkable in that its analysis effectively relies on linear algebra, which
makes it not only easier to follow but also somewhat more intuitive. Once the expansion properties of the
product are known, it is very simple to show that the recursion suggested in [61] leads to an expander family.

Definition 5.29. Let A be an[n, d1]-graph, and letB be a[d1, d2]-graph. Their zig-zag productA z©B is
an [nd1, d

2
2]-graph with vertex set[n] × [d1] and a labeling in[d2] × [d2]. For any(a, b) ∈ [n] × [d1] and

(i, j) ∈ [d2]× [d2] we have
(a, b)[i, j] = (a[b[i]], b[i][j]). (5.28)

The zig-zag product has an appealing intuition in terms of walks. We can view the construction as first
replacing each vertex ofA by a copy of the vertices ofB (which we call acloud), leading to the vertex set
[n]× [d1]. We can then break up one step (labeled(i, j)) in A z©B from vertex(a, b) into three substeps:
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1. We take one step within the current cloud (d2 choices):

(a, b)→ (a, b[i]).

2. We take one step between clouds (deterministic, only one choice).

(a, b[i])→ (a[b[i]], b[i]).

3. We take one step within the new cloud (d2 choices)

(a[b[i]], b[i]) → (a[b[i]], b[i][j]).

Step 2 is determined by which vertex we are on within the current cloud. Indeed, this vertex corresponds to
an edge label inA, and therefore uniquely defines a neighbor of the current cloud. This leads to a total ofd2

2

choices, which as expected is equal to the degree ofA z©B.

The expansion ofA z©B can be bounded as follows:

Theorem 5.30.If A is an[n, d1, λA]-graph, andB is an[d1, d2, λB ]-graph, thenA z©B is a[n·d1, d2, f(λA, λB)]-
graph, where

f(λA, λB) =
1

2
· (1− λ2

B) · λA +
1

2
·
√

(1− λ2
B)2λ2

A + 4λ2
B . (5.29)

Furthermore, ifλA, λB < 1 thenf(λA, λB) < 1.

Proof: See [61].

Although the bound (5.29) is rather complicated, it can be shown that

f(λA, λB) ≤ λA + λB + λ2
B. (5.30)

As explained earlier, this product leads to recursive construction of fixed degree expander families.

Let B be a fixed[ℓ8, ℓ, λ]-graph for some parametersℓ andλ. We define the family{Ai}i∈N∗ as follows:

A1 = B2

A2 = B ⊗B

∀i > 2 : Ai =

(

A⌈ i−1
2 ⌉ ⊗A⌊ i−1

2 ⌋
)2

z©B.

It can be checked thatAi is a [ℓ8i, ℓ2, µi]-graph, in whichµi = λ + O(λ2). So by pickingλ small enough
to start with, we can ensure that there isµ < 1 for which µi ≤ µ for all i, and therefore that{Ai}i∈N∗ is an
expander family.

We see the usual trade-off between degree and expansion in the choice of the initial graphB. GettingAi to
have a small second eigenvalue requiresλ to be small, which in turn means that the degreeℓ of B must be
large, and this means that the degreeℓ2 of our family will also be larger.

This method does not enable the construction of a family ofd-regular Ramanujan graphs (this would require
µ = O(d−1/2)). With the normal zig-zag product the best we can hope for is asecond eigenvalue ofO(d−1/4),
but through thederandomized zig-zag product(also in [61]) one can obtain a family ofd-regular graph with
µ = O(d−1/3).

86



5.6.5 Derandomized Squaring

The derandomized squaring operation was first presented by Rozenman and Vadhan [64]. Recall that squaring
an [n, d, λA]-graphA consisted in taking all paths of length2. This led to improved expansion properties
(λA → λ2

A), but increased the degree considerably (d → d2). The idea ofderandomized squaringis to take
only a subset of the paths of length2. By cleverly choosing which of these paths to include we can get a
considerably smaller degree thanA2, at the cost of only slightly worse expansion.

The idea is to use another graphC with parameters[d, t, λC ]. Let (u, v,w) be a path of length2 in A. Let
i, k ∈ [d] be the labels of the edges fromu to v and fromv to w respectively. Then inAsC we keep only
those paths of length2 for which i andk are connected inC. The expansion properties of the resulting graph
will depend on the expansion properties of bothA andC. Formally:

Definition 5.31. Let A be an[n, d]-graph, and letC be an[d, t]-graph. The derandomized squareAsC of
A with respect toC is the[n, dt]-graph with vertex set[n] and a labeling in[d1] × [t]. For anya ∈ [n] and
(i, j) ∈ [d]× [t] we have

a[i, j] = a[i][i[j]]. (5.31)

Notice that ifKd is the complete graph ond vertices then we obtain the standard squaring operation:

AsKd = A2. (5.32)

Derandomized squaring does not preserve half-colorings orcolorings. The expansion properties ofAsC will
be analyzed in Section 6.3. The term “derandomized” comes from the fact that performing a random walk
onAsC requires fewer random bits than a random walk onA2. Indeed since the degree is smaller, there are
fewer choices to be made at each step.

5.6.6 Projection

The concept of graph projection will be essential to our proofs in the next chapter. Whenever we have a graph
whose vertices are divided into clouds, we can “collapse” each cloud into a single vertex, while keeping all
the edges.

Definition 5.32. Suppose we have an[nm, d]-graphA with vertex set[n] × [m]. Pn[A] is an[n,md]-graph,
with vertex set[n] and a labeling in[m]× [d], in which for anya ∈ [n], (b, k) ∈ [m]× [d]:

a[b, k] = u, (5.33)

where(u, v) ∈ [n]× [m] is the unique vertex ofA for which (a, b)[k] = (u, v).

Notice that Pn[A] has the same number of edges asA. We can interpret thenm× nm transition matrixMA

of an [nm, d]-graphA as a block matrix, consisting ofn × n blocks, each of sizem×m. For i, j ∈ [n] and
k, ℓ ∈ [m] we use the notation

(MA)ik,jℓ (5.34)

to refer to entry(k, ℓ) of block (i, j). Then× n transition matrix of P[A] is then equal to

(
MPn[A]

)

ij
=

1

m

m∑

k=1

m∑

ℓ=1

(MA)ik,jℓ. (5.35)
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So each block is replaced with a single entry whose value is equal to the sum of all the entries in the block
divided bym. The factor 1

m ensures thatMPn[A] is stochastic.

Example 5.33. Consider the following[18, 2]-graphA,

Figure 5.1: The graphA.

A has 18 vertices divided into 6 clouds. The projection P[A] (= P6[A]) of A is then the following graph:

Figure 5.2: The graph P[A].

So P[A] has 6 vertices, and the same number of edges asA (namely 18).

5.6.7 De-Projection

While projection collapsed each cloud into a single vertex,de-projectionis a sort of reverse operation that
expands each vertex into a cloud.

Definition 5.34. Let A be ad-regular graph with vertex set[n] and a labeling in[d]. We define the de-
projection DP[A] of A as the[nd, 1]-graph with vertex set[n] × [d], in which each vertex(i, k) has a unique
neighbor:

(i, k)[1] = (i[k], ℓ), (5.36)

whereℓ is the unique element of[d] for which i[k][ℓ] = i.
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Notice that the graph DP[A] is a matching (i.e. no two edges are adjacent). If the labeling of A is a half-
coloring, then for eachi ∈ [n] and eachk ∈ [d], the elementℓ from (5.36) is equal to the partner colorρ(k)
of k, so that

∀(i, k) ∈ [n]× [d] : (i, k)[1] = (i[k], ρ(k)). (5.37)

Likewise if the labeling is an edge coloring thenℓ = k so that

∀(i, k) ∈ [n]× [d] : (i, k)[1] = (i[k], k). (5.38)

Notice that DP[A] has the same number of edges asA, and that there are no edges within the clouds, only
between clouds. Also, because it has degree1, one step along DP[A] induces a permutation of the vertices (in
fact an involution).

We can write the transition matrix of DP[A] as follows:

(
MDP[A]

)

ik,jl
=

{
1 if j = i[k] and i = j[ℓ]
0 otherwise.

(5.39)

The de-projection operation is defined for any[n, d]-graph, whereas the projection Pn[A] is defined only for
graphs whose vertices have been divided inton clouds. The relationship between the two operations can be
described as follows: For any[n, d]-graphA, we have

Pn

[
DP[A]

]
= A. (5.40)

Example 5.35. To illustrate the de-projection operation, we consider the[6, 3]-graphA given below. For
simplicity, the labeling in this example is an edge coloring.

Figure 5.3: The graphA.

So the edges ofA are assigned one of three possible colors. Its de-projection DP[A] can then be drawn as:
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Figure 5.4: The graph DP[A].

We see that the vertices ofA are replaced by clouds. Each cloud has one vertex for each color it used inA.
We also see that DP[A] has degree1, and there are edges only between clouds, not within the clouds.

5.7 The Spectrum of Biregular Bipartite Graphs

Although the expansion properties of biregular bipartite graphs have been widely used (expander codes, for
example, are based entirely on these), there appears to be very little mention of the spectrum of such graphs,
and how it can be related to their expansion properties. Nevertheless, there is a similar link to that found
in non-bipartite regular graphs. For lack of reference, these links are derived in this section, along with the
results needed in the next chapter.

We had previously defined thesecond eigenvalueonly for non-bipartite graphs. In this section we extend
this definition to cover biregular bipartite graphs, which will be used for our proofs in the next chapter. Our
aim is then first to prove the results that will be needed, and also to establish the relationship between the
second eigenvalue and combinatorial expansion in the biregular bipartite case. We will show that the second
eigenvalue also governs the rate of convergence of random walks (Proposition 5.45), and that a modified
version of the Expander Mixing Lemma holds (Lemma 5.48).

Throughout this section we will suppose thatC is a biregular bipartite graph withd1 left vertices andd2 right
vertices and of left and right degreesℓ andr.

5.7.1 Notation

Recall that for anyn ∈ N, [n] was defined as{1, . . . , n}, and1n ∈ Rn was the all one vector. We will also
have the following:
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Definition 5.36. If d1 andd2 are the numbers of left and right vertices ofC, then

D1 = {1, . . . , d1}.
D2 = {d1 + 1, . . . , d}.
[d] = {1, . . . , d} = D1 ⊔D2.

(5.41)

When we consider vectors inRd they will often have non-zero entries only in those positions inD1 or only in
D2, and will therefore work with the following spaces:

Definition 5.37. We define the subspacesR1 andR2 of Rd as follows:

R1 = {v ∈ Rd | vi = 0 ∀i ∈ D2}.
R2 = {v ∈ Rd | vi = 0 ∀i ∈ D1}.

We therefore haveRd = R1 ⊕R2.

Definition 5.38. e1 ande2 denote the following vectors inRd:

(e1)i =

{
1 if i ∈ D1

0 if i ∈ D2.
(5.42)

(e2)i =

{
0 if i ∈ D1

1 if i ∈ D2.
(5.43)

Notice thate1 + e2 = 1d, 〈e1, e1〉 = d1, 〈e2, e2〉 = d2, and〈e1, e2〉 = 0.

Recall that in general1‖n and1⊥n denote the spaces of vectors respectively parallel and perpendicular to1n.
We have corresponding definitions fore1 ande2, where the spaces will be embedded intoRd.

Definition 5.39. For i = 1, 2, we have:

e
‖
i = {β · ei | β ∈ R}.

e⊥i = {v ∈ Ri | 〈v, ei〉 = 0}.
(5.44)

5.7.2 Transition Matrix

Let C be a biregular bipartite graph, with left and right vertex setsD1,D2, and of left and right degreesℓ and
r respectively. The number of edges ofC can be expressed in two different ways:

|E(C)| = d1ℓ = d2r, (5.45)

which leads to the following equality
d1

d2
=

r

ℓ
. (5.46)

The adjacency matrix ofC has the form

Adj(C) =

(
0 X

X⊤ 0

)

, (5.47)
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whereX is a d1 × d2 matrix. The rows ofX have weightℓ, while its columns have weightr. Adj(C) is
symmetric and therefore hasd real eigenvalues and an orthonormal set of eigenvectors. The first problem we
encounter is how to define the normalized adjacency matrix ofC. Indeed sinceC is not regular there is no
degree by which to divide Adj(C). Instead we defineMC so that it describes one step of a random walk on
C. This requires it to be stochastic (each column must be a probability vector), which leads to the following
definition:

Definition 5.40. Let C be a biregular bipartite graph as describe above, with Adj(C) as in (5.47). Then the
normalized adjacency matrix (ortransition matrix)MC of C is defined as

MC =







0 1
r ·X

1
ℓ ·X⊤ 0







. (5.48)

BecauseMC is stochastic, its eigenvalues are all between−1 and1. HoweverMC is not symmetric, and
therefore many of the properties we showed in the previous section for regular graphs no longer hold (for
example its eigenvectors are not necessarily pairwise orthogonal).

We start by presenting some characteristics of the spectrumand eigenvectors of Adj(C), which will then relate
to those ofMC . Throughout this section, all vectors of the form

(
x

y

)

(5.49)

will be elements ofRd, in which x ∈ Rd1 represents the topd1 components andy ∈ Rd2 the bottomd2

components. The next proposition states that the eigenvectors of Adj(C) with non-zero eigenvalues come in
pairs.

Proposition 5.41. If
(

x

y

)

(5.50)

is an eigenvector ofAdj(C) with eigenvalueλ, then
(

x

−y

)

(5.51)

is also an eigenvector ofAdj(C) with eigenvalue−λ.

Proof: See appendix C.

Next, we relate the spectrum of Adj(C) to that ofMC . We can also deduce a bijection between the sets of
eigenvectors of the two matrices.

Proposition 5.42. Letu, v ∈ Rd be vectors written as follows:

u =

(
x

y

)

, v =

(
x

√

ℓ/r · y

)

. (5.52)

u is an eigenvector ofAdj(C) with eigenvalueλ if and only ifv is an eigenvector ofMC with eigenvalue λ√
ℓr

.

Proof: See appendix C.
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5.7.3 Eigenvalues and Eigenvectors

The first consequence of Proposition 5.42 is thatMC also hasd real eigenvalues. We letλ0 ≥ . . . ≥ λd−1 be
these eigenvalues, andv0, . . . , vd−1 be the corresponding normalized eigenvectors. It can be checked that

e1 +
r

ℓ
e2 and e1 −

r

ℓ
e2 (5.53)

are eigenvectors ofMC , with respective eigenvalues1 and−1. Since−1 ≤ λi ≤ 1 for all i, we deduce that
λ0 = 1 andλd−1 = −1. Normalizing the vectors in (5.53) gives us

λ0 = 1, v0 =

√

d2/d1 · e1 +
√

d1/d2 · e2√
d

(5.54)

and

λd−1 = −1, vd−1 =

√

d2/d1 · e1 −
√

d1/d2 · e2√
d

. (5.55)

Next, if we callu0, . . . , ud−1 the normalized eigenvectors of Adj(C) (ordered in the usual way), we know
first of all that they form an orthonormal basis ofRd. Using Proposition 5.42, we can also deduce from (5.54)
and (5.55) (and after normalizing) that

u0 =
e1√
2d1

+
e2√
2d2

, ud−1 =
e1√
2d1
− e2√

2d2
, (5.56)

and their corresponding eigenvalues are
√

ℓr and−
√

ℓr respectively.

5.7.4 Random Walks

A random walk on a biregular bipartite graph does not converge to the uniform distribution. Indeed it is clear
that if we start our walk on the left side, then aftert steps we will be on the right side for oddt and back on
the left side for event.

For an initial distributionx ∈ Rd, let

p1 =
∑

i∈D1

xi, and p2 =
∑

i∈D2

xi (5.57)

denote the probabilities of starting on the left and right sides respectively (sop1 + p2 = 1). Then whent is
even, the distributionAtx will converge to

weven= p1 ·
e1

d1
+ p2 ·

e2

d2
, (5.58)

and to
wodd = p2 ·

e1

d1
+ p1 ·

e2

d2
(5.59)

whent is odd. Intuitively this is saying that whent is even it is uniform over the left nodes with probability
p1 and uniform over the right nodes with probabilityp2 (and vice versa whent is odd).
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5.7.5 The Second Eigenvalue

Becauseλd−1 = −1, if we used for biregular bipartite graphs Definition 5.8 of the second eigenvalue, then
it would be1 for every such graph. However we know that some bipartite graphs are better expanders than
others, and would like to have a definition that reflects this.

For a non-bipartite graphA with eigenvaluesλ0 ≥ . . . ≥ λn−1 and corresponding eigenvectorsv0, . . . , vn−1,
the definition of the second eigenvalue ofA as

λC = max
(
|λ1|, |λn−1|

)
(5.60)

was partly motivated in terms of convergence of random walks. The stationary distribution of a random walk
onA is a multiple ofv0. An initial distributionx ∈ Rn can be expressed in the basis given by the eigenvectors
as

x =

n−1∑

i=0

αivi. (5.61)

Under a random walk onA it will converge to its first componentα0v0, andλC therefore describes the rate at
which the other components get killed.

With a biregular bipartite graphC as above the situation is similar, though we must consider walks of even or
odd length separately to get convergence. In both cases the distributions to which the walks converge are in
Span(v0, vd−1), and so this time it is

max
(
|λ1|, |λd−2|

)
(5.62)

that describes the rate at which the remaining components get killed. This leads to to the following definition:

Definition 5.43. Let C be a biregular bipartite graph with transition matrixMC , and letλ0 ≥ . . . ≥ λd−1 be
its eigenvalues. Thesecond eigenvalueof C is defined as

λC = max
(
|λ1|, |λd−2|

)
. (5.63)

Our aim in the rest of this section is to give some properties of λC we will need, and also to see how it can be
related to the expansion properties ofC.

5.7.6 Results We Will Need

We saw in previous sections that in an[n, d] non-bipartite graphA, for anyx ∈ 1⊥n :

‖MA · x‖ ≤ λA · ‖x‖. (5.64)

The following proposition presents the corresponding property of the second eigenvalue of a biregular bipartite
graph.

Proposition 5.44. Let C be a biregular bipartite graph, with transition matrixMC and second eigenvalue
λC .

• For anyx ∈ e⊥1 , we have
∥
∥MC · x

∥
∥ ≤

√

d1

d2
· λC · ‖x‖. (5.65)
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• For anyx ∈ e⊥2 , we have
∥
∥MC · x

∥
∥ ≤

√

d2

d1
· λC · ‖x‖. (5.66)

Proof: We will show only the first part (the second part follows by symmetry). We know from Proposi-
tion 5.42 that ifλ0 ≥ . . . ≥ λd−1 are the eigenvalues ofMC then

√
ℓr ·λ0, . . . ,

√
ℓr ·λd−1 are the eigenvalues

of Adj(C). We also letu0, . . . , ud−1 be the corresponding eigenvectors of Adj(C). These form an orthonor-
mal basis ofRd (since Adj(C) is symmetric). Once again, we decomposex with respect to this basis:

x =

d−1∑

i=0

αiui. (5.67)

Recall from (5.56) that

u0 =
e1√
2d1

+
e2√
2d2

, ud−1 =
e1√
2d1
− e2√

2d2
, (5.68)

Now becausex ∈ e⊥1 we have

α0 = 〈x, u0〉 = 0, αd−1 = 〈x, ud−1〉 = 0. (5.69)

Also recall that

Adj(C) =







0 X

X⊤ 0







, and MC =







0 1
r ·X

1
ℓ ·X⊤ 0







. (5.70)

The important thing to notice next is that becausex ∈ R1, we have

MC · x =







0 1
r ·X

1
ℓ ·X⊤ 0






·
(

x1

0

)

=

(
1
ℓ ·X⊤x1

0

)

=
1

ℓ
· Adj(C) · x. (5.71)

Sinceλi

√
ℓr is the eigenvalue of Adj(C) corresponding toui (see Proposition 5.42) andα0 = αd−1 = 0 (see

(5.69)) this leads to

MC · x =
1

ℓ
· Adj(C) ·

d−2∑

i=1

αi · ui =
1

ℓ
·

d−2∑

i=1

αi ·
√

ℓr · λi · ui. (5.72)

Therefore by the definition ofλC we have

∥
∥MC · x

∥
∥2

=
∥
∥
1

ℓ
·

d−2∑

i=1

αi ·
√

ℓr · λi · ui

∥
∥2 ≤ ℓr

ℓ2
· λ2

C ·

‖x‖2

︷ ︸︸ ︷

∥
∥

d−2∑

i=1

αi · ui

∥
∥2

. (5.73)

And so recalling thatrℓ = d1
d2

, this gives us

∥
∥MC · x

∥
∥ ≤

√
r

ℓ
· λC · ‖x‖ =

√

d1

d2
· λC · ‖x‖, (5.74)

as required.
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5.7.7 Convergence of Random Walks

First of all, we see from the definition ofMC (5.48) that

M2
C =







0 1
r ·X

1
ℓ ·X⊤ 0







2

=







1
ℓrXX⊤ 0

0 1
ℓrX⊤X







. (5.75)

C2 is a regular graph of degreeℓr with two connected components, andM2
C is its transition matrix. Let

µ0 ≥ . . . ≥ µd−1 be its eigenvalues with corresponding eigenvectorsw0, . . . , wd−1. The wi’s form an
orthonormal basis ofRd. It can easily be checked that

M2
C · e1 = e1, M2

C · e2 = e2. (5.76)

Therefore normalizing these we see that

µ0 = 1, w0 =
e1√
d1

(5.77)

and
µ1 = 1, w1 =

e2√
d2

. (5.78)

In general, ifλ is an eigenvalue of a matrixM thenλ2 is an eigenvalue ofM2. So here ifλ0 ≥ . . . ≥ λd−1

are the eigenvalues ofMC then
{
µ0, . . . , µd−1

}
=

{
λ2

0, . . . , λ
2
d−1

}
. (5.79)

Sinceµ0 = λ2
0 andµ1 = λ2

d−1, the remainingµi’s are in
{
λ2

1, . . . , λ
2
d−2

}
, and therefore by the definition of

λC we have
µ2, . . . , µd−1 ≤ λ2

C . (5.80)

Now let x ∈ Rd be an initial distribution on the vertices ofC. We stated above that a random walk of length
t on C will converge to different distributions depending on whether t is even or odd. In this subsection we
show this formally, and prove that the rate of convergence isgiven by the second eigenvalueλC of C.

Proposition 5.45. Suppose we take an even numbert of steps of a random walk onC from an initial distri-
butionx ∈ Rd. Then

‖M t
Cx− weven‖ ≤ λt

C , (5.81)

where
weven= p1 ·

e1

d1
+ p2 ·

e2

d2
. (5.82)

Proof: t is even, so we lett = 2s. The eigenvectorsw0, . . . , wd−1 of M2
C form an orthonormal basis ofRd.

We decomposex with respect to this basis as

x =

d−1∑

i=0

αiwi. (5.83)
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Recall thatp1 andp2 were defined in (5.54) as the probabilities of starting on theleft and right vertices ofC:

p1 =
∑

i∈D1

xi, and p2 =
∑

i∈D2

xi. (5.84)

We have
α0 = 〈x, u0〉 = 〈x,

e1√
d1
〉 =

p1√
d1

, (5.85)

and likewise
α1 =

p2√
d2

. (5.86)

Now recalling thatt = 2s gives us

M t
Cx = (M2

C)s
∑d−1

i=0 αiwi

=
∑d−1

i=0 αiµ
s
iwi

= α0w0 + α1w1 +
∑d−1

i=2 µs
iαiwi.

(5.87)

From the expression forα0, α1 (5.85), (5.86) and forw0, w1 (5.77), (5.78) we obtain

M t
Cx = p1

e1
d1

+ p2
e2
d2

+
∑d−1

i=2 µs
iαiwi

= weven+
∑d−1

i=2 µs
iαiwi

(5.88)

Therefore
‖M t

Cx− weven‖ =
∥
∥

∑d−1
i=2 µs

iαiwi

∥
∥

=
√

∑d−1
i=2 µ2s

i α2
i

≤ λ2s
C

√
∑d−1

i=2 α2
i (using (5.80))

< λt
C · ‖x‖

≤ λt
C .

(5.89)

Proposition 5.46. Suppose we take an odd number of stepst = 2s + 1 of a random walk onC from an initial
distributionx.

1. If x ∈ R1 then

‖M t
Cx− e2

d2
‖ ≤

√

d1

d2
λt

C . (5.90)
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2. If x ∈ R2 then

‖M t
Cx− e1

d1
‖ ≤

√

d2

d1
λt

C . (5.91)

Proof: We will show only the first part, the second part will then follow by symmetry. Recall thatM2
C has

two connected components, so it really is the concatenationof two separate subgraphs, one on the vertices in
D1 and the other on the vertices inD2. This is reflected in its eigenvectorswi which can be divided into two
categories:d1 of them inR1 (for the first subgraph) and the remainingd2 in R2 (for the second subgraph). So
if we expressx in basisw0, . . . , wd−1 as

x =

d−1∑

i=0

αiwi, (5.92)

then we will haveαi = 0 for all wi ∈ R2.

Recall from (5.57) thatp1 andp2 were defined as

p1 =
∑

i∈D1

xi, and p2 =
∑

i∈D2

xi. (5.93)

Therefore in this case sincex ∈ R1 (andx is a distribution), we have

p1 = 1, p2 = 0. (5.94)

It can be checked that
MC ·

e1

d1
=

e2

d2
. (5.95)

Now,
M t

Cx = M2s+1
C ·∑d−1

i=0 αiwi

= MC · (M2
C)s ·∑d−1

i=0 αiwi

= MC ·
(

p1
e1
d1

+ p2
e2
d2

+
∑d−1

i=2 µs
iαiwi

)

(from (5.87))

= MC ·
(

e1
d1

+
∑d−1

i=2 µs
iαiwi

)

(from (5.94))

= e2
d2

+ MC ·
∑d−1

i=2 µs
iαiwi (from (5.95)).

(5.96)

Because
d−1∑

i=2

µs
iαiwi ∈ e⊥1 , (5.97)

Proposition 5.44 tells us that

∥
∥MC ·

d−1∑

i=2

µs
iαiwi

∥
∥ ≤

√

d1

d2
· λC ·

∥
∥

d−1∑

i=2

µs
iαiwi

∥
∥. (5.98)
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This leads to
‖M t

Cx− e2
d2
‖ =

∥
∥MC ·

∑d−1
i=2 µs

iαiwi

∥
∥

≤
√

d1
d2
· λC ·

∥
∥

∑d−1
i=2 µs

iαiwi

∥
∥ (from (5.98))

=
√

d1
d2
· λC ·

√
∑d−1

i=2 µ2s
i α2

i

≤
√

d1
d2
· λC · λ2s

C ·
√

∑d−1
i=2 α2

i (from (5.80))

<
√

d1
d2
· λ2s+1

C · ‖x‖

≤
√

d1
d2
· λt

C .

(5.99)

5.7.8 The Expander Mixing Lemma

We start by stating theexpander mixing lemma, (due to Alon and Chung [3]):

Theorem 5.47.The Expander Mixing Lemma
LetA be ad-regular graph on vertex set[n]. LetS, T ⊆ [n]. Then

∣
∣
∣
∣
|E(S, T )| − d · |S| · |T |

n

∣
∣
∣
∣
≤ λA · d ·

√

|S| · |T |.

This is saying that the number of edges betweenS andT is close to its expected value in a random setting,
namely d·|S|·|T |

2 . The second eigenvalueλA of A determines how close. We show below an analogue of the
expander mixing lemma for biregular bipartite graphs. The only difference is that one of the sets must contain
only left nodes and the other one only right nodes.

Theorem 5.48.The Bipartite Expander Mixing Lemma
LetC be a biregular bipartite graph, with left and right vertex setsD1 andD2 respectively, and left and right
degreesℓ andr. For anyS ⊆ D1 andT ⊆ D2 we have

∣
∣
∣
∣
|E(S, T )| − ℓ · |S| · |T |

d1

∣
∣
∣
∣
≤ λC ·

√
ℓr ·

√

|S| · |T |.

Proof: Let χS ∈ Rd denote the characteristic vector ofS:

(χS)i =

{
1 if i ∈ S
0 otherwise,

(5.100)
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and likewise letχT denote the characteristic vector ofT .

If λ0 ≥ . . . ≥ λd−1 are the eigenvalues ofMC , then Proposition 5.42 tells us that
√

ℓr · λ0 ≥ . . . ≥
√

ℓr · λd−1 (5.101)

are the eigenvalues of Adj(C). We then letu0, . . . , ud−1 be the corresponding normalized eigenvectors of
Adj(C), which form an orthonormal basis ofRd. Once again, we expressχS andχT in this basis:

χS =

d−1∑

i=0

αi · ui, χT =

d−1∑

i=0

βi · ui.

A little maniplulation shows that
∣
∣E(S, T )

∣
∣ = χ⊤

S · Adj(C) · χT , (5.102)

which implies
∣
∣E(S, T )

∣
∣ = χ⊤

S · Adj(C) · χT

=
( ∑d−1

i=0 αiu
⊤
i

)
· Adj(C) ·

( ∑d−1
i=0 βiui

)

=
( ∑d−1

i=0 αiu
⊤
i

)
·
( ∑d−1

i=0 βi

√
ℓrλiui

)

=
√

ℓr ·∑d−1
i=0 αiβiλi (since theui’s are orthonormal)

=
√

ℓr ·
(
α0β0λ0 + αd−1βd−1λd−1 +

∑d−2
i=1 αiβiλi

)

=
√

ℓr ·
(
α0β0 − αd−1βd−1 +

∑d−2
i=1 αiβiλi

)
,

(5.103)

where the last equality follows from the fact thatλ0 = 1 andλd−1 = −1. Recall from (5.56) that

u0 =
e1√
2d1

+
e2√
2d2

, ud−1 =
e1√
2d1
− e2√

2d2
. (5.104)

This means that

α0 = 〈χS , u0〉 =
|S|√
2d1

, and αd−1 = 〈χS , ud−1〉 =
|S|√
2d1

. (5.105)

Likewise we obtain

β0 =
|T |√
2d2

, and βd−1 = − |T |√
2d2

. (5.106)

Combining (5.103), (5.105) and (5.106) leads to

∣
∣E(S, T )

∣
∣ =

√
ℓr ·

(

|S||T |√
4d1d2

− −|S||T |√
4d1d2

+
∑d−2

i=1 αiβiλi

)

=
√

ℓr · 2|S||T |
2
√

d1d2
+
√

ℓr ·∑d−2
i=1 αiβiλi

= ℓ|S||T |
d1

+
√

ℓr ·∑d−2
i=1 αiβiλi (since ℓ

d1
= r

d2
).

(5.107)
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Finally, ∣
∣
∣
∣
|E(S, T )| − ℓ|S||T |

d1

∣
∣
∣
∣

=

∣
∣
∣
∣

√
ℓr ·∑d−2

i=1 αiβiλi

∣
∣
∣
∣

≤
√

ℓr ·
∑d−2

i=1 |αi| · |βi| · |λi|

≤
√

ℓr · λC ·
∑d−2

i=1 |αi| · |βi| (by the definition ofλC)

≤
√

ℓr · λC ·
∑d−1

i=0 |αi| · |βi|.

Now define the vectorsα′, β′ ∈ Rd asα′
i = |αi| and likewise forβ′. We obtain

∣
∣
∣
∣
|E(S, T )| − ℓ|S||T |

d1

∣
∣
∣
∣
≤
√

ℓr · λC · 〈α′, β′〉

≤
√

ℓr · λC · ‖α′‖ · ‖β′‖ (by the Cauchy-Schwartz inequality)

=
√

ℓr · λC · ‖α‖ · ‖β‖

=
√

ℓr · λC · ‖χS‖ · ‖χT ‖

=
√

ℓr · λC ·
√

|S| · |T |,

as required.
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Chapter 6

Derandomization Through Expander
Graphs

6.1 Introduction

The derandomized square introduced by Rozenman and Vadhan in [64] enabled the derandomization of a
standard graph product, leading to graphs of smaller degreeat the cost of slightly worsening the expansion
properties. The derandomized square of a graphA is taken with respect to another graphC, and the authors
obtained in [64] a bound on its spectral expansion as a function of the second eigenvalues ofA andC, which
they then improved in [65]. They also used this product to obtain an alternative proof thatS-T connectivity
in undirected graphs can be solved in deterministic logspace.

In this chapter we introduce derandomized versions of another standard graph product (tensoring), and of a
code product (concatenation). These are based on the ideas presented in [64], and are also taken with respect
to another graph on whose expansion their properties will depend. We will first derive the improved bound
on the expansion of the derandomized square from [65] using adifferent method. We can then use these
techniques to analyze and bound the expansion of the derandomized tensor product. This will require some
of the tools introduced in the previous chapter.

The derandomization technique essentially involves taking a graph and removing certain edges. Which edges
are removed is determined by another graph. In derandomizedcode concatentaion, we apply an analogous
technique to the world of codes, whereby a code is punctured with a pattern given by an expander graph. This
is interesting in the sense that constructing good codes canessentially be reduced to finding good puncturing
patterns, indeed almost any code can be seen as a puncturing of the dual of a Hamming code. Likewise, an
AG-code is really a puncturing of a product of two or more Reed-Solomon codes.

We start with some standard definitions and results that willconstitute the background for the subsequent
proofs. We then obtain in Section 6.3 the bound on the spectral expansion of the derandomized square. The
derivation of our bound on the second eigenvalue of the derandomized tensor product is rather technical. We
give only an outline in Section 6.4 and include the full proofin Appendix B. The analysis is effectively an
extension of that in Section 6.3, though considerably longer. Finally in Section 6.5 we introduce and study
derandomized code concatenation.
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6.2 Background

We will be interacting often with vector spaces, tensor products and inner products. We therefore start by
giving some definitions and standard results.

Definition 6.1.
• If u ∈ Rn andv ∈ Rm thenu⊗ v is a vector inRnm (i.e., we identifyRn ⊗Rm with Rnm). If we index its
entries with the set[n]× [m] then we have

(u⊗ v)ij = ui · vj .

• If G ∈ Rn×n andH ∈ Rm×m thenG⊗H is a matrix inRnm×nm. If we index its rows and columns with
the set[n]× [m] then we have

(G⊗H)ik,jℓ = Gij ·Hkℓ.

• If U andV are subspaces ofRn, thenU ⊗ V is the vector space defined as

U ⊗ V = Span
{
u⊗ v | u ∈ U, v ∈ V

}
.

The basic properties of tensor and inner products we will useare given below:

Proposition 6.2.
• If G ∈ Rn×n, H ∈ Rm×m, u ∈ Rn andv ∈ Rm then

(G⊗H) · (u⊗ v) = (Gu) ⊗ (Hv).

• Tensoring is distributive over vector addition: Ifu1, u2 ∈ Rn andv ∈ Rm then

(u1 + u2)⊗ v = u1 ⊗ v + u1 ⊗ v
v ⊗ (u1 + u2) = v ⊗ u1 + v ⊗ u2.

• If {u1, . . . , un} is a basis ofU and{v1, . . . , vm} is a basis ofV , then

{
ui ⊗ vj | i ∈ [n], j ∈ [m]

}

is a basis ofU ⊗ V . As a consequence we have

dim(U ⊗ V ) = dim(U) · dim(V ).
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• If u1, . . . , un form a basis ofRn then for anyx ∈ Rn we have

x = α1u1 + . . . + αnun, (6.1)

where for alli ∈ [n]:

αi =
〈x, ui〉
〈ui, ui〉

. (6.2)

• If u1, u2 ∈ Rn andv1, v2 ∈ Rm then

〈u1 ⊗ v1, u2 ⊗ v2〉 = 〈u1, u2〉 · 〈v1, v2〉.

In particular if eitheru1 ⊥ u2 or v1 ⊥ v2 then(u1 ⊗ v1) ⊥ (u2 ⊗ v2).

• If u1, . . . , uk ∈ Rn are pairwise orthogonal then

‖u1 + . . . + uk‖2 = ‖u1‖2 + . . . + ‖uk‖2.

• Supposeu1, . . . , un ∈ Rn form an orthonormal basis ofRn, and an elementx ∈ Rn can be expressed as

x = α1u1 + . . . + αnun, (6.3)

whereα1, . . . , αn ∈ R. Then we have

‖x‖2 = α2
1 + . . . + α2

n. (6.4)

Proof: These are all standard results.

6.3 Derandomized Squaring

6.3.1 Introduction

We described the derandomized squaring operation in Subsection 5.6.5. In their original conference paper
[64], Rozenman and Vadhan obtained an upper bound on the second eigenvalue of the derandomized square
by interpreting it as a projection of the zig-zag product, and using the bound from [61] (Theorem 5.30).
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With a more careful analysis, a tighter bound can be found, aswas done by the same authors in [65], and
independently in [16] using a different method. The latter is the derivation we present in this section.

Recall that for an[n, d, λA]-graphA and a[d, t, λC ]-graphC, the derandomized squareAsC is defined
(using the notation from Definition 5.22) as the[n, dt]-graph with

a[i, j] = a[i][i[j]].

For the rest of this section we suppose that we have two graphsA andC with the parameters above. Our aim
is to find an upper bound onλAsC as a function ofλA andλC . Throughout this chapter, we will often abuse
notation and writeG to denote both a graph and its transition matrixMG. Recall from Theorem 5.10 that in
general for a graphG on vertex set[n] we have

λG = max
x∈1⊥n

∣
∣〈Gx, x〉

∣
∣

〈x, x〉 , (6.5)

so we need to look at the effect of the transition matrix (or equivalently, at the effect of one step of a random
walk) on the anti-uniform vectors.

6.3.2 AsC as a Projection

We will considerAsC as a projection of a larger graph. The key point about projections is that analyzing
P[G] over anti-uniform vectors is the same as consideringG itself over vectors that are anti-uniform overall,
but uniform over each cloud:

Proposition 6.3. LetG be a graph with vertex set[n]× [d] (whose vertices are grouped inton clouds of size
d). Then

max
x∈1⊥n

∣
∣〈Pn[G] · x, x〉

∣
∣

〈x, x〉 = max
x∈1⊥n ⊗1

‖
d

∣
∣〈Gx, x〉

∣
∣

〈x, x〉 . (6.6)

From the perspective of random walks, the intuition behind Proposition 6.3 is that taking a step in Pn[G] from
vertex i involves choosing an edge among all those connected to cloudi in G. This choice can be broken
up into first picking a vertex uniformly from all the verticesin cloud i, and then choosing an edge from this
vertex. So it is equivalent to taking a step inG starting from a uniformly chosen vertex of cloudi. We prove
this formally below:

Proof: Let P = Pn[G]. Recall that we can view thend× nd matrix G as a block matrix consisting ofn× n
blocks, each of sized× d. We use the following indexing: Fori, j ∈ [n] andk, ℓ ∈ [d],

Gik,jℓ (6.7)

denotes entry(k, ℓ) of block (i, j). P is then then× n matrix defined as defined as

Pij =
1

d

d∑

k=1

d∑

ℓ=1

Gik,jℓ. (6.8)

There is a natural bijectionπ : 1⊥n →
(
1⊥n ⊗ 1

‖
d

)
defined as

u 7→ u⊗ 1d. (6.9)
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Note thatπ is clearly linear and injective, so since both spaces have dimensionn− 1 it must be a bijection.

We will show that for anyu ∈ 1⊥n , if we let w = π(u) = u⊗ 1d then

〈Pu, u〉
〈u, u〉 =

〈Gw,w〉
〈w,w〉 , (6.10)

from which the required result (6.6) follows immediately.

Gw = G(u⊗ 1d) is a vector inRnd. Indexing its entries with the set[n]× [d] gives us

(
Gw

)

ik
=

(

G(u⊗ 1d)

)

ik

=

n∑

j=1

d∑

ℓ=1

Gik,jℓ ·
(
u⊗ 1d

)

jℓ
=

n∑

j=1

d∑

ℓ=1

Gik,jℓ · uj. (6.11)

So on the one hand we have:
〈
Gw,w

〉
=

〈
G(u⊗ 1d), u⊗ 1d

〉

=
∑n

i=1

∑d
k=1

(
G(u⊗ 1d)

)

ik
·
(
u⊗ 1d

)

ik

=
∑n

i=1

∑d
k=1

(
G(u⊗ 1d)

)

ik
· ui

=
∑n

i=1

∑d
k=1

∑n
j=1

∑d
ℓ=1 Gik,jℓ · uj · ui (from (6.11))

= d ·∑n
i=1

∑d
k=1 Pij · uj · ui (from (6.8)),

(6.12)

while on the other hand:
〈
Pu, u

〉
=

n∑

i=1

(Pu)i · ui =
n∑

i=1

d∑

j=1

Pij · uj · ui. (6.13)

So combining (6.12) and (6.13) we see that
〈
Gw,w

〉
= d ·

〈
Pu, u

〉
. (6.14)

Furthermore sincew = u⊗ 1d we have

〈w,w〉 = 〈u, u〉 · 〈1d, 1d〉 = d · 〈u, u〉. (6.15)

So we can deduce from (6.14) and (6.15) that (6.10) holds:

〈Pu, u〉
〈u, u〉 =

〈Gw,w〉
〈w,w〉 . (6.16)

Next, we define the graphŝA and Ĉ from which we will construct the large graph of whichAsC is a
projection.

Definition 6.4. Let Ĉ be the graph with vertex set[n]× [d], defined as

Ĉ = In ⊗ C.
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Ĉ consists ofn clouds, and each cloud is a copy ofC. There are no edges between the clouds.

Definition 6.5. Let Â be the graph with vertex set[n]× [d] defined as the de-projection ofA:

Â = DP[A].

The de-projection operation was introduced in Subsection 5.6.7. Â is 1-regular, so one step of a random
walk onÂ is an permutation (in fact an involution). There are edges between clouds, but no edges within the
clouds.

Proposition 6.6. Let Â andĈ be defined as above. Then

AsC = Pn[ÂĈÂ].

Since the degrees of̂A andĈ are1 andt respectively, the degree of̂AĈÂ is t. There ared nodes in each
cloud, so there aredt edges leaving each cloud. When a cloud gets collapsed into a single vertex by the
projection, all these edges are kept, which means that Pn[ÂĈÂ] has degreedt.

In terms of random walks, we can get an intuition as to why thisholds. A step labeledℓ ∈ [t] from a vertex
(a, i) ∈ [n]× [d] in ÂĈÂ can be decomposed as

1. A substep in between clouds (in̂A): (a, i)→ (a[i], i). This is deterministic.

2. A substep within the new cloud (in̂C): (a[i], i)→ (a[i], i[ℓ]). There aret choices for this substep.

3. A substep in between clouds (in̂A): (a[i], i[ℓ]) → (a[i][i[ℓ]], i[ℓ]). This is deterministic.

Now an edge(a, i)→ (a[i][i[ℓ]], i[ℓ]) in ÂĈÂ will become an edgea→ a[i][i[ℓ]] in the projected graph.

Relationship with the zig-zag product

Interestingly, as was shown in the original zig-zag productpaper [61], we have the following equality:

A z©C = ĈÂĈ. (6.17)

This also leads to an interpretation of the following equality from the original paper on derandomized squaring
[64]:

d2 · As(C2) = Pn[(A z©C)2]. (6.18)

The multiplication byd2 means that each edge is duplicatedd2 times. The left hand side is equal to Pn[ÂĈ2Â],
while the right hand side is equal to Pn[(ĈÂĈ)2] = Pn[ĈÂĈ2ÂĈ]. But sinceĈ has edges only within the
clouds, the first and last̂C will have no effect on the projected (“collapsed”) graph, and so both sides are
equal.

6.3.3 Bounding the Second Eigenvalue

To bound the second eigenvalue ofAsC we will apply Proposition 6.3 and analyzêAĈÂ. We will be using
the following definition throughout this chapter:
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Definition 6.7. Wheneverw is a vector inRnd, we can vieww as consisting ofn blocks of sized. We index
its entries with the set[n]× [d], so thatwij indexes thejth entry in blocki. We define the mapM : Rnd → Rn

as
(
Mn(w)

)

i
=

d∑

j=1

wij .

So if we have a graph consisting ofn clouds of sized (i.e., with vertex set[n]× [d]), and ifw is a probability
distribution on the set of vertices, thenMn(w) is the marginal distribution on the set of clouds. This operation
can be seen as a projection for vectors.

The following lemma establishes a useful relationship betweenA andÂ = DP[A]:

Lemma 6.8. Let Â = DP[A] be defined as above. Then for anyσ ∈ Rn we have

Mn

(
Â(σ ⊗ 1d

d
)
)

= Aσ. (6.19)

Proof: See Appendix C.

We are now ready to prove the main result of this section.

Theorem 6.9. LetA andC be as above. Then we have

λAsC ≤ λ2
A + λC · (1− λ2

A).

Proof: From Proposition 6.3 we know that

λAsC = max
x∈1⊥n ⊗1

‖
d

∣
∣〈ÂĈÂx, x〉

∣
∣

〈x, x〉 .

Let x ∈ 1⊥n ⊗ 1
‖
d. We define

γ = Âx, (6.20)

and then let

γ‖ = Mn(γ)⊗ 1d

d
, and γ⊥ = γ − γ‖. (6.21)

Soγ‖ is uniform over each cloud,γ⊥ is anti-uniform over each cloud, andγ = γ‖ + γ⊥. We will use the two
following claims:

Claim 1: Ĉγ‖ = γ‖.
Proof: We have

Ĉγ‖ =
(
In ⊗ C

)
·
(
Mn(γ)⊗ 1d

d

)
= Mn(γ)⊗ C · 1d

d
. (6.22)

Now becauseC is doubly stochastic,C · 1d
d = 1d

d . Therefore

Ĉγ‖ = γ‖. (6.23)

�
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Claim 2:
∣
∣〈Ĉγ⊥, γ⊥〉

∣
∣ ≤ λC · 〈γ⊥, γ⊥〉.

Proof: We can decomposeγ⊥ ∈ Rnd as

γ⊥ =






γ⊥
1
...

γ⊥
n




 , (6.24)

whereγ⊥
1 , . . . , γ⊥

n ∈ 1⊥d . So sinceĈ = In ⊗ C this gives us

Ĉγ⊥ =






Cγ⊥
1

...
Cγ⊥

n




 . (6.25)

Therefore ∣
∣〈Ĉγ⊥, γ⊥〉

∣
∣ =

∣
∣
∑n

i=1〈Cγ⊥
i , γ⊥

i 〉
∣
∣

≤ ∑n
i=1

∣
∣〈Cγ⊥

i , γ⊥
i 〉

∣
∣

≤ ∑n
i=1 λC ·

∣
∣〈γ⊥

i , γ⊥
i 〉

∣
∣ (by the definition ofλC)

≤ λC · 〈γ⊥, γ⊥〉.

(6.26)

�

Continuing with our proof, we have
∣
∣〈ÂĈÂx, x〉

∣
∣ =

∣
∣〈ĈÂx, Âx〉

∣
∣ (sinceÂ is symmetric)

=
∣
∣〈Ĉγ, γ〉

∣
∣

=
∣
∣〈Ĉγ‖, γ‖〉 +

0
︷ ︸︸ ︷

〈Ĉγ‖, γ⊥〉 +

0
︷ ︸︸ ︷

〈Ĉγ⊥, γ‖〉 + 〈Ĉγ⊥, γ⊥〉
∣
∣

≤
∣
∣〈Ĉγ‖, γ‖〉

∣
∣ +

∣
∣〈Ĉγ⊥, γ⊥〉

∣
∣

=
∣
∣〈γ‖, γ‖〉

∣
∣ +

∣
∣〈Ĉγ⊥, γ⊥〉

∣
∣ (from Claim 1).

And so we deduce:

∣
∣〈ÂĈÂx, x〉

∣
∣

〈x, x〉 ≤ ‖γ
‖‖2
‖x‖2 +

∣
∣〈Ĉγ⊥, γ⊥〉

∣
∣

‖x‖2 .

Now Â is a permutation, which means that it is length-preserving.Therefore‖γ‖ = ‖Â · x‖ = ‖x‖, and
furthermore, from Claim 2 we have|〈Ĉγ⊥, γ⊥〉| ≤ λC〈γ⊥, γ⊥〉. This leads to:

∣
∣〈ÂĈÂx, x〉

∣
∣

〈x, x〉 ≤ ‖γ
‖‖2
‖γ‖2 + λC ·

‖γ⊥‖2
‖γ‖2 . (6.27)
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If we let θ be the angle betweenγ andγ‖, then we have the following diagram

θ
γ‖

γ
γ⊥

and so (6.27) becomes ∣
∣〈ÂĈÂx,x〉

∣
∣

〈x,x〉 ≤ cos2(θ) + λC · sin2(θ)

= cos2(θ) + λC ·
(
1− cos2(θ)

)

= (1− λC) · cos2(θ) + λC .

(6.28)

Now clearly, since1− λC ≥ 0, this expression will be maximal whencos2(θ) is maximal.

Claim: cos(θ) ≤ λA

Proof: We have:

γ‖ = Mn(γ) ⊗ 1d

d
= Mn(Âx)⊗ 1d

d
.

Sincex ∈ 1⊥n ⊗ 1
‖
d, there isu ∈ 1⊥n with x = u⊗ 1d:

γ‖ = Mn

(
Â(u⊗ 1d)

)
⊗ 1d

d
.

Using Lemma 6.8 we obtain:

γ‖ = d · (Au)⊗ 1d

d
= (Au)⊗ 1d. (6.29)

So this gives us

‖γ‖‖ = ‖Au‖ · ‖1d‖ ≤ λA · ‖u‖ ·
1√
d
, (6.30)

by the definition ofλA, sinceu ∈ 1⊥n . Recall thatÂ is a permutation, it is therefore length preserving
and so we obtain:

‖γ‖ = ‖Âx‖ = ‖x‖ = ‖u⊗ 1d‖ = ‖u‖ · 1√
d
. (6.31)

Combining (6.30) and (6.31) yields

cos(θ) =
‖γ‖‖
‖γ‖ ≤ λA,

as required.�

Combining this Claim with (6.28) gives us

λAsC ≤ λ2
A + λC · (1− λ2

A).
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6.4 Derandomized Tensoring

6.4.1 The Product

The tensor product of two graphsA andB enables the construction of a larger graph with expansion properties
no worse thanA andB but at the cost of a large increase in the degree.

AsC effectively consisted in takingA2 and removing some edges in a clever way. Which edges to remove
was determined by a second graphC. In the same way, the idea of derandomized tensoring is to remove
edges fromA⊗B based on a third graphC, which in this case will be abipartite graph. We will see that the
derandomized tensor product can in some cases reduce the degree of the resulting graph while preserving its
expansion properties.

Let A be an[n, d1]-graph, andB be an[m,d2]-graph. Furthermore letC be a bipartite graph withd1 left
nodes andd2 rights nodes. Keeping the notation from Subsection 5.7.1, we haved = d1 + d2 and we label
the edges ofA andB with the setsD1 andD2 respectively, where

D1 = {1, . . . , d1}
D2 = {d1 + 1, . . . , d},

so that[d] = D1 ⊔D2.

The tensor productA ⊗ B has vertex set[n] × [m], which we interpret asn clouds of sizem. Recall from
its description in Section 5.6.3 that a step inA ⊗ B can be decomposed into two parts: first a step between
clouds, and then a step within the new cloud (we presented them in this order, though they could also be done
the other way round). The first step has a labeli ∈ D1, while the second step has a labelj ∈ D2. In the
derandomized tensor productof A andB with respect toC, denotedA⊗C B we take only the steps(i, j) for
which i andj are connected inC.

We can describeA⊗C B as the graph with vertex set[n]× [m], and in which there is an edge from(a, b) to
(u, v) if and only if the following conditions hold:

1. There is an edge froma to u in A: There isi ∈ D1 with a[i] = u.

2. There is an edge fromb to v in B: There isj ∈ D2 with b[j] = v.

3. i andj are connected inC.

Notice that if we remove the third condition then we obtain the normal tensor product. Also, ifC is the
complete bipartite graph then whenever the first two conditions are verified then so is the third one, and so in
this case the product is also equal to the normal tensor product.

The degree ofA⊗C B is equal to the number of edges inC. Although this product is defined for any bipartite
graphC of the right dimensions, we will be concerned only with the cases in whichC is biregular. The
spectrum and expansion properties of such graphs were discussed in Section 5.7.

A biregular bipartite graph of left and right degreesℓ andr respectively can be labeled in the following way:
the edges are labeled with elements of[ℓ] at their left ends, and with elements of[r] at their right ends, in
such a way that the edges adjacent to a given node all have distinct labels. For a left nodei ∈ D1 and a
label k ∈ [ℓ], i[k] ∈ D2 denotes thekth neighbor ofi (so i[k] is a right node). Because the degree of the
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derandomized tensor product is equal to the number of edges in C, we have

deg
(
A⊗C B

)
= d1ℓ = d2r. (6.32)

We give the formal definition only for the case in whichC is biregular.

Definition 6.10. Let A be an[n, d1]-graph,B be an[n, d2]-graph andC be a biregular bipartite graph with
d1 left nodes,d2 right nodes and of left and right degreesℓ andr respectively. The derandomized tensor
productA⊗C B of A andB with respect toC is an[nm, d1ℓ]-graph with vertex set[n]× [m] and a labeling
in D1 × [ℓ]. For any(a, b) ∈ [n]× [m] and(i, k) ∈ D1 × [ℓ] we have

(a, b)[i, k] = (a[i], b[i[k]]).

We could of course have presented an equivalent definition with a labeling inD2 × [r]. If the labelings ofA
andB are colorings thenA ⊗C B will be undirected. However, if the labelings are only half-colorings then
to ensure that the product is undirectedC also needs to have the following property: for anyi ∈ D1, j ∈ D2,
i andj are connected inC if and only if ρA(i) andρA(j) are connected inC.

Our aim is to analyze the expansion properties ofG = A ⊗C B, more precisely to upper bound its second
eigenvalueλG as a function ofλA, λB andλC .

The main result of this section is the following theorem:

Theorem 6.11. Let A, B andC be graphs as described above, in which the labelings ofA andB are half-
colorings. Suppose without loss of generality thatλB ≤ λA. If G = A⊗C B then

λG ≤ max

(

λA, λB ,m(λA, λB , λC)

)

,

wheref(a, b, c) = ab + c
√

(1− a2)(1− b2), g(b, c) = 1
q

c2

b2
−c2+1

, and

m(a, b, c) = f
(

min(a, g(b, c)), b, c)
)
. (6.33)

Notice that ifC is the complete bipartite graph, thenλC = 0, and sog(λB , λC) = 1 ≥ λA, and therefore
our bound becomesmax

(
λA, λB , λAλB

)
= max

(
λA, λB

)
, which is the same as that of the normal tensor

product, as would be expected.

Also, if
m(λA, λB , λC) ≤ max(λA, λB) = λA⊗B (6.34)

thenA⊗C B has expansion properties at least as good as those ofA⊗B, but with a smaller degree.

If λA = λB then we always haveλA ≤ g(λB , λC), and so we obtain the simpler expression:

Theorem 6.12.Suppose thatλA = λB . If G = A⊗C B then

λG ≤ max

(

λA, F (λA, λC)

)

,

whereF (a, c) = a2 + c · (1− a2).
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Interestingly,F (a, c) is the same bound as for derandomized squaring.

The idea behind the analysis is conceptually the same as thatin the previous section, namely to viewA⊗C B
as the projection of a larger graph, and study this larger graph. However, while previously we could index
our vertices with a two-dimensional array[n]× [d], in this case three dimensions will be required, which will
make both the notation and the proofs rather technical.

6.4.2 Notation

All the notations defined in Subsection 5.7.1 will still hold. We summarize them below:

• If d1 andd2 are the degrees ofA andB as above, then we letd = d1 + d2 and define

D1 = {1, . . . , d1}
D2 = {d1 + 1, . . . , d}
[d] = {1, . . . , d} = D1 ∪D2.

(6.35)

•We define the subspacesR1 andR2 of Rd as follows:

R1 = {v ∈ Rd | vi = 0 ∀i ∈ D2}
R2 = {v ∈ Rd | vi = 0 ∀i ∈ D1}.

(6.36)

• e1 ande2 denote the following vectors inRd:

(e1)i =

{
1 if i ∈ D1

0 if i ∈ D2.
(6.37)

(e2)i =

{
0 if i ∈ D1

1 if i ∈ D2.
(6.38)

Definition 6.13. For i = 1, 2, we have:

e
‖
i = {β · ei | β ∈ R}.

e⊥i = {v ∈ Ri | 〈v, ei〉 = 0}.
(6.39)

6.4.3 Definitions

As explained above, we will analyze the expansion ofA⊗C B by viewing it as a projection of a larger graph
H. In this subsection we give the formal definitions required for the construction ofH.

A⊗C B has vertex set[n]× [m], andH will have vertex set[n]× [m]× [d]. We will suppose throughout this
section that the labelings ofA andB are half-colorings, for which

ρA : D1 → D1, and ρB : D2 → D2 (6.40)

denote the partner mappings forA andB. ρA andρB are involutions.

We start by defining the graphŝA, B̂, X̂ andĈ.
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Definition 6.14. Â is a graph with vertex set[n] × [m] × [d]. Each vertex(a, b, c) has either one or no
neighbors:
• If c ∈ D1 then there is an edge from(a, b, c) to (a[c], b, ρA(c)).
• If c ∈ D2 then(a, b, c) has no neighbors.

B̂ is defined analogously:

Definition 6.15. B̂ is a graph with vertex set[n]× [m]× [d]. Each vertex(a, b, c) has either one or no neigh-
bors:
• If c ∈ D1 then(a, b, c) has no neighbors.
• If c ∈ D2 then there is an edge from(a, b, c) to (a, b[c], ρB(c)).

So Â andB̂ are not regular graphs. Notice that the two graphs “complement” each other in the sense that
every vertex in[n]× [m]× [d] has an edge either in̂A or in B̂, but not in both. They can be naturally combined
as follows:

Definition 6.16. X̂ is the graph with vertex set[n]× [m]× [d] defined as

X̂ = Â + B̂.

SoX̂ is regular, it is a[nmd, 1]-graph. SincêX has degree1, one step of a random walk on̂X is an involution.

Definition 6.17. Ĉ is the graph with vertex set[n]× [m]× [d] defined as

Ĉ = In ⊗ Im ⊗ C.

Ĉ can be interpreted asnm copies ofC. We are now ready to characterizeA⊗C B as a projection:

Proposition 6.18. Suppose we have graphsA,B,C, X̂ , andĈ defined as above. Then

A⊗C B = Pnm[X̂ĈX̂]. (6.41)

The large graphs we are considering have vertex set[n] × [m] × [d]. We can see this asnm copies of[d],
which we refer to as “C-clouds”. TheC-clouds get collapsed in the projection, leading to a graph with vertex
set[n]× [m].

Example 6.19. We illustrate these constructions with the following graphs A, B andC:

C
B

A

Figure 6.1: The graphsA, B andC.
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SoA is an [n, d1] = [6, 3]-graph,B an [m,d2] = [4, 2]-graph andC a bipartite graph withd1 left vertices
andd2 right vertices (sod = 5 vertices in total). For this exampleC is not biregular. We suppose that the
labelings ofA andB are edge colorings to simplify the illustration (so each left vertex ofC corresponds to a
color ofA and each right vertex to a color ofB).

Figure 6.2: The graphĈ.

Figure 6.3: The graphÂ.
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Figure 6.4: The graphB̂.

Figure 6.5: The graphX̂.
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The graphsÂ andB̂ are related to the de-projections ofA andB. We explore this relationship by first defining
the following graphs:

Definition 6.20. A is a graph with vertex set[n]× [d]. Each vertex(a, c) has either one or no neighbors:
• If c ∈ D1 then there is an edge from(a, c) to (a[c], ρA(c)).
• If c ∈ D2 then(a, c) has no neighbors.

Definition 6.21. B is a graph with vertex set[m]× [d]. Each vertex(b, c) has either one or no neighbors:
• If c ∈ D1 then(b, c) has no neighbors.
• If c ∈ D2 then there is an edge from(b, c) to (b[c], ρB(c)).

B can be seen as the de-projection DP[B] of B (which would have vertex set[m] ×D2) to which are added
some edgeless vertices, namely all those in[m]×D1.

It can be checked that
B̂ = In ⊗ B̄. (6.42)

Example 6.22. If we use the graphsA,B andC from Example 6.19 above thenB is the following graph:

Figure 6.6: The graphB.

We also see from Figure6.4 thatB̂ consists ofn = 6 copies ofB, so that the equality

B̂ = In ⊗ B̄ (6.43)

is verified. DP[B], given below is the same but without the edgeless vertices:

Figure 6.7: The graph DP[B].

B̂ is in a certain sense “two steps away” from DP[B]. The differences are:

1) There are some extra edgeless vertices (this corresponds tothe difference between DP[B] andB). See
Figures6.6 and6.7 of Example 6.22 for an illustration

2) There aren copies of this graphB (sinceB̂ = In ⊗B).
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There is a similar relationship betweenA, A andÂ. However with our current tensor product notation it can
only be expressed after an appropriate permutation of the indices (algebraically this is just a change of basis).
Informally, by indexing the vertices with[m]× [n]× [d] instead of[n]× [m]× [d] we can writeÂ as

Im ⊗ Ā. (6.44)

The relationship between̂A and DP[A] is analogous to that between̂B and DP[B].

Change of basis

Although it is intuitively quite clear that the change of basis we require is that in whichu⊗ v ⊗ w becomes
v⊗u⊗w, writing so formally is a little tedious. We include it nevertheless for completeness. Since the change
of basis we need to do is just a permutation of the basis elements, the basis change matrix is a permutation
matrix.

Definition 6.23. Consider the followingnm× nm block matrix

L =






Q11 · · · Q1m
...

...
...

Qn1 · · · Qnm




 ,

whereQij ∈ Rm×n is defined as

(Qij)kℓ =

{
1 if k = j andℓ = i
0 otherwise.

Let P ∈ Rnmd×nmd be the matrix defined as

P = L⊗ Id.

Notice thatP is a permutation matrix, so it is invertible, and is therefore valid basis change matrix. the only
basis change forRnmd we will do is that given byP .

We will use the notationx ∼P y to denote the fact thaty is the expression ofx in the new basis (y = Px).
So for example for anyu ∈ Rn, v ∈ Rm, w ∈ Rd we have

u⊗ v ⊗ w ∼P v ⊗ u⊗ w. (6.45)

Clearly, if x ∼P x′ andy ∼P y′ then
〈x, y〉 = 〈x′, y′〉. (6.46)

A⊗C B as a derandomized square

An alternative construction of̂X is to letX = (A⊗ Im) + (In⊗B), and then set̂X = DP[X]. The graphX
is interesting in that it enables us to expressA ⊗C B as a derandomized square.X has vertex set[n] × [m]
and degreed1 + d2 = d. Its edges are given by

(a, b)[i] =

{
(a[i], b) if i ∈ D1

(a, b[i]) if i ∈ D2.
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Combining our description of the derandomized square as a graph projection in Section 6.3 and (6.41), we
can deduce that

A⊗C B = XsC. (6.47)

A first approach to bounding the expansion ofA⊗C B would be to computeλX , and use the bound onλXsC

from Theorem 6.9. However, this would not take into account the special structure ofX, in terms of how it is
constructed fromA andB, and therefore howλX depends onλA andλB. A better bound can be obtained by
making more use of the structure ofX.

6.4.4 Proof Outline

In this subsection we outline the proof of Theorem 6.11. The full details can be found in Appendix B. Let
G = A⊗C B. Since

G = Pnm[X̂ĈX̂ ],

we use Proposition 6.3 to deduce that

λG = max
x∈1⊥nm

∣
∣〈Gx, x〉

∣
∣

〈x, x〉 = max
x∈1⊥nm⊗1

‖
d

∣
∣〈X̂ĈX̂x, x〉

∣
∣

〈x, x〉 . (6.48)

Recalling thatX̂ was defined aŝA + B̂, we obtain:

|〈X̂ĈX̂x, x〉| = |〈ĈX̂x, X̂x〉| (sinceX̂ is symmetric)

= |〈Ĉ(Â + B̂)x, (Â + B̂)x〉|

≤
0

︷ ︸︸ ︷

|〈ĈÂx, Âx〉| + |〈ĈÂx, B̂x〉| + |〈ĈB̂x, Âx〉| +

0
︷ ︸︸ ︷

|〈ĈB̂x, B̂x〉| .

IndeedÂx ∈ R1 andĈÂx ∈ R2, and likewiseB̂x ∈ R2 andĈB̂x ∈ R1, which leads to

〈ĈÂx, Âx〉 = 0, 〈ĈB̂x, B̂x〉 = 0.

We therefore have
|〈X̂ĈX̂x, x〉| ≤ |〈ĈÂx, B̂x〉| + |〈ĈB̂x, Âx〉|. (6.49)

SinceÂ andB̂ are symmetric this leads to

|〈X̂ĈX̂x, x〉| ≤ |〈B̂ĈÂx, x〉| + |〈ÂĈB̂x, x〉|. (6.50)

(In fact we haveX̂ĈX̂ = ÂĈB̂ + B̂ĈÂ).

Now (6.48) tells us that we must consider vectors in the spaceS = 1⊥nm ⊗ 1
‖
d, which we can decompose as

S =
(
1⊥n ⊗ 1‖m ⊗ 1

‖
d

)

︸ ︷︷ ︸

S1

⊕
(
1‖n ⊗ 1⊥m ⊗ 1

‖
d

)

︸ ︷︷ ︸

S2

⊕
(
1⊥n ⊗ 1⊥m ⊗ 1

‖
d

)

︸ ︷︷ ︸

S3

. (6.51)
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This means that for anyx ∈ S there are uniquex1 ∈ S1, x2 ∈ S2, andx3 ∈ S3 with

x = x1 + x2 + x3. (6.52)

Note thatS1, S2 andS3 have respective dimensionsn − 1, m − 1 and(n − 1)(m − 1). These add up to
nm− 1 = dim(S), as expected.

We will first show (Lemma B.6) that

〈ÂĈB̂x, x〉 = 〈ÂĈB̂x1, x1〉+ 〈ÂĈB̂x2, x2〉+ 〈ÂĈB̂x3, x3〉. (6.53)

The intuition is that the images of the spacesS1, S2 andS3 under the linear transformation defined byÂĈB̂
are also pairwise orthogonal. Therefore when we expand the left hand side of (6.53) only the terms on the
right hand side will remain. Likewise we will have

〈B̂ĈÂx, x〉 = 〈B̂ĈÂx1, x1〉+ 〈B̂ĈÂx2, x2〉+ 〈B̂ĈÂx3, x3〉. (6.54)

Next, lettingm(a, b, c) be the function defined in Theorem 6.11, we will upper bound terms from (6.53) and
(6.54) as follows:

|〈B̂ĈÂx1, x1〉| + |〈ÂĈB̂x1, x1〉| ≤ λA · 〈x1, x1〉.
∣
∣〈B̂ĈÂx2, x2〉

∣
∣ +

∣
∣〈ÂĈB̂x2, x2〉

∣
∣ ≤ λB · 〈x2, x2〉.

∣
∣〈B̂ĈÂx3, x3〉

∣
∣ +

∣
∣〈ÂĈB̂x3, x3〉

∣
∣ ≤ m(λA, λB , λC) · 〈x3, x3〉.

(6.55)

Becausex1, x2 andx3 are pairwise orthogonal, (see (6.51)) andx = x1 + x2 + x3, we have

〈x, x〉 = 〈x1, x1〉 + 〈x2, x2〉 + 〈x3, x3〉. (6.56)

We know from (6.50) that

|〈X̂ĈX̂x, x〉| ≤ |〈B̂ĈÂx, x〉| + |〈ÂĈB̂x, x〉|. (6.57)

So combining (6.53), (6.54) with the inequalities in (6.55)leads to

|〈X̂ĈX̂x, x〉| ≤ λA · 〈x1, x1〉+ λB · 〈x2, x2〉+ m(λA, λB , λC) · 〈x3, x3〉

≤ max

(

λA, λB ,m(λA, λB , λC)

)

·
(

〈x1, x1〉 + 〈x2, x2〉 + 〈x3, x3〉
)

= max

(

λA, λB ,m(λA, λB , λC)

)

·
〈
x, x

〉
(using (6.56)).

(6.58)

The result of Theorem 6.11 then follows immediately:

|〈X̂ĈX̂x, x〉|
〈x, x〉 ≤ max

(

λA, λB ,m(λA, λB , λC)

)

. (6.59)

For the full proof, see Appendix B.
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6.5 Derandomized Code Concatenation

6.5.1 Introduction

The operation ofcode concatenationwas first presented by Forney in [25]. Suppose we have a finite fieldFq1

and an extensionFq2 of Fq1 of degreem. An outer codeC1 overFq2 can be concatenated with aninner code
C1 overFq1 of dimensionm, which will yield a longerFq1-code.

Concatenated codes are particularly useful for the construction of explicit families of good codes. For the
binary case, the constructions of Justesen [37], Zyablov [95], Bloch-Zyablov [9] (usingmultilevel concatena-
tion) and Katsman-Tsfasman-Vladut [38] are all concatenations. This last construction, obtained by concate-
nating a very good fixed binary code (the inner code) with a family of Algebraic-Geometric codes beyond the
Gilbert-Varshamov bound (the outer code), yields some of the best known explicit families of binary codes.

An improved version of the concatenation operation is therefore potentially very interesting in the quest for
better explicit families. The derandomization presented in this section improves the rate of the concatenated
code at the cost of decreasing its relative distance (by how much depends on how good the expander we
employ is).

It is a recurring theme in coding theory that random constructions yield good codes with high probability, but
doing so explicitly is much more difficult (i.e., finding a wayof guaranteeinga good code). Although the
expectedcode is good, there will be some variance in the experiment which also makes very bad codes possible
(very far from the expected result). Expander graphs have the remarkable property that they enable fairly
good “simulations” of random behavior. More precisely one can in some contexts use expanders to achieve
deterministic (i.e., non-random) behavior within a close range of the expectation of a random experiment. So
if the expectation is good, then the result is guaranteed to be almost as good.

In this section we essentially use the fact that randomly puncturing a code will improve its rate, while keeping
its expectedrelative distance fixed. So we employ an expander graph to simulate this random puncturing. In
general, it is an interesting problem to find good ways of puncturing codes. For example an AG-code can be
seen as a puncturing of a product of two or more Reed-Solomon codes, and it would be interesting to study
the properties of the corresponding puncturing pattern.

6.5.2 Definitions

We will consider only binary inner codes. We will suppose throughout this section that we have an[n1, k1, d1]q-
codeC1, and an[n2, k2, d2]2-codeC2, whereq = 2k2 (soFq is an extension ofF2 of degreek2). We will also
suppose that we have a fixed basis ofFq overF2, which leads to a natural bijection

σ : Fq → Fk2
2 . (6.60)

We start by recalling the definition of code concatenation:

Definition 6.24. Let C1 andC2 be as above. We define theirconcatenationC = C1♦C2 as the[n1n2, k1k2]2-
code whose encoding mapE : Fk1k2

2 → Fn1n2
2 can be decomposed as follows:

F
k1k2
2 −→σ−1

Fk1
q −→E1 Fn1

q −→σ F
n1k2
2 −→E2 F

n1n2
2 ,

whereE1 andE2 are the encoding maps ofC1 andC2.
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This amounts to first interpreting the message vectoru ∈ F
k1k2
2 as a message vector inFk1

q for C1 and encoding
it to a codewordc1 ∈ C1. Then each of then1 components ofc1 are interpreted as message vectors ofC2, and
encoded to codewords inC2.

Notice that there is a bijection betweenC1 andC (but they have different dimensions since they use different
alphabets).C consists ofn1 codewords ofC2. We index then1n2 components ofc ∈ C with the set[n1]× [n2]
in the canonical way. We can write a codewordc ∈ C1♦C2 as

c = (x1, . . . , xn1), (6.61)

wherexj ∈ C2 for all j.

We will now punctureC, with a pattern that will be given by a bipartite expander graph. We suppose through-
out this section that we have a biregular bipartite graphH with left vertex set[n1], right vertex set[n2], and
of left and right degreesℓ andr, respectively.

Definition 6.25. Let C1,C2 andH be as above. We construct thederandomized concatenationC1♦HC2 of
C1 andC2 with respect toH by taking their normal concatenationC1♦C2, and then performing the following
puncturing: we remove all components(j, k) ∈ [n1]× [n2] that are not connected inH.

The resulting codeC will have lengthn1ℓ = n2r (which is equal to the number of edges inH).

6.5.3 The Rate ofC1♦HC2

Proposition 6.26. LetH be a biregular bipartite graph as above. LetC1 andC2 also be as above, and letR1

andR2 denote their respective rates. LetR be the rate ofC1♦HC2.

If ℓ > n2 − d2 then

R = R1R2
n2

ℓ
. (6.62)

Proof: We will show thatC1♦HC2 has the same dimension asC1♦C2, namelyk1k2. It will suffice to show
that no non-zero-codeword ofC1♦C2 becomes the zero-codeword after the puncturing (since puncturing is a
linear operation, this makes it injective). Letc be a codeword ofC1♦C2, which we write as

c = (x1, . . . , xn1). (6.63)

Now each non-zeroxj ∈ C2 gets puncturedn2 − ℓ times. Sincexj has weight at leastd2, as long as

n2 − ℓ < d2 (6.64)

xj will not become the zero-codeword. In particularc cannot become the zero-codeword through this punc-
turing.

SinceC1♦HC2 has dimensionk1k2 and lengthn1ℓ, we can deduce that it has rate

R =
k1k2

n1ℓ
=

k1

n1

k2

n2

n2

ℓ
= R1R2

n2

ℓ
. (6.65)
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So as long asℓ > n2 − d2, by performing this puncturing we increase the rate ofC1♦C2 by a factor ofn2
ℓ .

Notice that sincen1ℓ = n2r, we can write (6.62) as

R = R1R2
n2

ℓ
= R1R2

n1

r
= R1

k2

ℓ
= R2

k1

r
. (6.66)

6.5.4 The Relative Distance ofC1♦HC2

We start by giving the following bound on the relative distance ofC1♦C2:

Proposition 6.27. LetC1 andC2 be as above. Then the minimum distance ofC1♦C2 is at leastd1d2.

Proof: Let c be a codeword ofC = C1♦C2. c can be constructed by taking somec1 ∈ C1, interpreting each
of its n1 components as aC2-message vector, and then encoding these to obtainn1 codewordsx1, . . . , xn1 in
C2. So we havec = (x1, . . . , xn1).

Note that wgt(c) is equal to the sum of the weights of thexi’s. Since at leastd1 of these are non-zero (c1 must
have at least that many non-zero components), and each non-zero codeword ofC2 has weight at leastd2, we
have

wgt(c) ≥ d1d2, (6.67)

as required.

Recall thatq = 2k2 = |C2|. We label theq codewords inC2 as

C2 = {c(0)
2 , . . . , c

(q−1)
2 }, (6.68)

wherec
(0)
2 denotes the zero-codeword.

Fix a codewordc ∈ C = C1♦HC2. c was obtained by puncturing some codewordc of C1♦C2. As seen above,
c consists ofn1 codewords ofC2:

c =
(
x1, . . . , xn1

)
, (6.69)

wherexj ∈ C2. For all i ∈ [q − 1] we define the setsSi andTi as

Si =
{
j ∈ [n1]

∣
∣ xj = c

(i)
2

}
and Ti = supp

(
c
(i)
2

)
. (6.70)

So we haveSi ⊆ [n1] andTi ⊆ [n2]. Notice that theSi’s depend onc ∈ C (and therefore on the codeword
c ∈ C we fixed above), but theTi’s do not. This enables us to obtain the following expressionfor the weight
of c:

Lemma 6.28. Let c ∈ C1♦HC2. If Si andTi are defined as above then

wgt(c) =

q−1
∑

i=1

∣
∣EH(Si, Ti)

∣
∣. (6.71)

Proof: Let c be the codeword inC1♦C2 from which c was constructed, and letc1 be theC1-codeword from
which c was constructed. SoS1, . . . , Sq−1 form a partition of supp(c1).
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For eachi ∈ [q − 1] we letai = |Si|, and notice that

q−1
∑

i=1

ai = wgt(c1) ≥ d1. (6.72)

Next, we letbi = |Ti| = wgt
(
c
(i)
2

)
so that for alli ∈ [q − 1] we have:

bi ≥ d2. (6.73)

In c there areai copies of the codewordc(i)
2 . So if there was no puncturing (or equivalently ifH was the

complete bipartite graph), the total weight of all the copies of c(i)
2 would beaibi, and so we would get

wgt(c) =

q−1
∑

i=1

aibi ≥ d2

q−1
∑

i=1

ai ≥ d1d2, (6.74)

as expected.

When puncturing does occur, notice first of all thatSi is a subset of the left vertices ofH, andTi a subset of
the right vertices ofH. The non-zero components ofc are exactly those whose index(j, k) is in Si × Ti for
somei ∈ [q − 1]. Furthermore any component ofc whose index(j, k) ∈ [n1]× [n2] is not an edge inH will

be punctured out. So the total weight of all the copies ofc
(i)
2 after puncturing will be equal to the number of

edges betweenSi andTi. This gives us

wgt(c) =

q−1
∑

i=1

∣
∣EH(Si, Ti)

∣
∣. (6.75)

We have the intuition that ifH is a good expander, then
∣
∣EH(Si, Ti)

∣
∣ should be close to its expected value in

a random setting (i.e., whenH is constructed randomly). This however is only true ifSi andTi are not too
small, for example nothing can be said of the case|Si| = 1. We know that|Ti|/n2 ≥ δ2, but we have no
guarantee on the size ofSi. Once again the intuition behind a largeSi is that we would like to apply many
different puncturing patterns to the same codeword (herec

(i)
2 ) to ensure that the resulting average weight will

be good.

If n1 is much larger thanq, then we are dividing a large set (namely supp(c1), of sizeδ1n1) into few subsets
Si (q of them), and so most elements of supp(c1) will be in a large subset, which is what we are looking for.
So we can ensure that

∣
∣E(Si, Ti)

∣
∣ will be close to its expected value in a random setting as longasq is not too

large, or equivalently, as long as the rate ofC2 is small (sinceq = 2k2).

The Expander Mixing Lemma (see Section 5.7.8) formalized the idea that in a good expander the number
of edges between two sets of vertices is close to what would beexpected in a random setting (the second
eigenvalue ofH determines how close). We restate the bipartite version below (see Section 5.7.8 for a proof).

Lemma 6.29. (The Bipartite Expander Mixing Lemma).
Let H be a biregular bipartite graph, with left and right vertex sets [n1] and [n2] respectively, and left and
right degreesℓ andr. LetλH denote the second eigenvalue ofH. For anyS ⊆ [n1] andT ⊆ [n2] we have

∣
∣
∣
∣
|E(S, T )| − ℓ · |S| · |T |

n1

∣
∣
∣
∣
≤ λH ·

√
ℓr ·

√

|S| · |T |. (6.76)
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The main result of this section is the following theorem:

Theorem 6.30. Let C1,C2 andH be as above. Suppose furthermore thatλH ≤ 1√
ℓr

, andℓ > n2

2
√

d2
. If δ is

the relative distance ofC1♦HC2 then

δ ≥ δ1δ2 − λH ·
√

q − 1 ·
√

δ1δ2. (6.77)

Requiring thatλH ≤ 1√
ℓr

is saying that we wantH to be quite a good expander (otherwise the puncturing
could deviate too much from its expected behavior, opening up the possibility of “worst- case” scenarios about
which we can say nothing).

Proof: Let c ∈ C1♦HC2 be a codeword constructed fromc1 ∈ C1 (as in the analysis above). Suppose
S1, . . . Sq−1 andT1, . . . , Tq−1 are defined as above. We know from Lemma 6.28 that

wgt(c) =

q−1
∑

i=1

∣
∣E(Si, Ti)

∣
∣.

Settingai = |Si| andbi = |Ti|, we deduce from the expander mixing lemma that

wgt(c) ≥
q−1
∑

i=1

(
ℓaibi

n2
− λH ·

√
ℓr ·

√

aibi

)

=

A
︷ ︸︸ ︷

ℓ

n2

q−1
∑

i=1

(aibi)−

B
︷ ︸︸ ︷

λH ·
√

ℓr ·
q−1
∑

i=1

√

aibi . (6.78)

Notice thatA corresponds to the “expected behavior” whereasB corresponds to the “error” (i.e., the variance).
We know that

q−1
∑

i=1

ai ≥ d1 and ∀i ∈ [q − 1] : bi ≥ d2, (6.79)

We use this to deduce that

A =
ℓ

n2
·

q−1
∑

i=1

(aibi) ≥
ℓ

n2
· d2 ·

q−1
∑

i=1

ai ≥
ℓ

n2
· d2d1. (6.80)

This corresponds to the expected behavior in the “worst-case” scenario (i.e.,c1 has weightd1 and all non zero
C2-codewords have weightd2).

Claim 1: A−B is minimal whenbi = d2 ∀i ∈ [q − 1].
Proof: d2 is the smallest possible value eachbi can take. We will show that increasing anybi cannot
decrease the value ofA − B. First note that ifai = 0 thenA − B = 0 for all values ofbi, so the
statement holds. Suppose now thatai ≥ 1. For eachi = 1, . . . , q − 1, we have

∂

∂bi

(
A−B

)
=

ℓ

n2
· ai − λH ·

√
ℓr ·
√

ai

2
· 1√

bi
. (6.81)

We therefore have:

∂
∂bi

(
A−B

)
≥ 0 ⇐⇒ λH ·

√
ℓr ·
√

ai

2
· 1√

bi
≤ ℓ

n2
· ai

⇐⇒ λH ·
√

ℓr · n2

ℓ
· 1

2
√

ai
≤
√

bi.
(6.82)
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We will show that the last line of (6.82) is always true. We call LHS and RHS respectively the left and

right hand sides of this inequality. BecauseλH ≤ 1√
ℓr

andai ≥ 1, we have LHS≤ n2

2ℓ
. Recalling

that ℓ ≥ n2

2
√

d2
(see the theorem statement), we haven2

2ℓ ≤
√

d2. Finally for all i ∈ [n] :
√

d2 ≤
√

bi.
Combining all this we obtain

LHS≤ n2

2ℓ
≤

√

d2 ≤
√

bi = RHS.

We see in (6.82) that this is equivalent to

∂

∂bi

(
A−B

)
≥ 0.

So increasingbi cannot decreaseA−B for anyi ∈ [q − 1], soA− B is minimal when allbi’s are set
to their minimal valued2. �

We letBm denote the value ofB when allbi’s are set tod2. We would now like to upper boundBm, which
along with (6.80) will give us a lower bound onA−Bm (and therefore onA−B by Claim 1).

Bm = λH ·
√

ℓr ·
q−1
∑

i=1

√

aibi = λH ·
√

ℓr ·
√

d2 ·
q−1
∑

i=1

√
ai. (6.83)

Claim 2:
q−1
∑

i=1

√
ai ≤

√
q − 1 ·

√
d1.

Proof: We will use the Cauchy-Schwarz inequality. We define the vector v =
(√

a1, . . . ,
√

aq−1

)⊤ ∈
Rq−1, and let1q−1 ∈ Rq−1 be the all one vector. We know (Cauchy-Schwarz) that

〈v, 1q−1〉2 ≤ ‖v‖2 · ‖1q−1‖2. (6.84)

This means that
( ∑q−1

i=1 vi

)2 ≤
( ∑q−1

i=1 v2
i

)
·
(
q − 1

)
=⇒

( ∑q−1
i=1

√
ai

)2 ≤
( ∑q−1

i=1 ai

)
·
(
q − 1

)

=⇒
( ∑q−1

i=1

√
ai

)2 ≤ d1 ·
(
q − 1

)

=⇒ ∑q−1
i=1

√
ai ≤

√
q − 1 ·

√
d1.

(6.85)

�

Combining (6.83) with Claim 2, we deduce that

Bm ≤ λH ·
√

ℓr ·
√

d2 ·
√

q − 1 ·
√

d1. (6.86)

We know from (6.78) and Claim 1 that wgt(c) ≥ A−Bm. (6.80) and (6.86) therefore lead to

wgt(c) ≥ ℓd1d2

n2
− λH ·

√
ℓr ·

√

d2 ·
√

q − 1 ·
√

d1, (6.87)
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which is also a lower bound on the minimum distanced of C1♦HC2. Since the length ofC1♦HC2 is ℓn1, we
can now obtain a bound on its relative distanceδ:

δ ≥ ℓd1d2

ℓn1n2
− λH ·

√
ℓr · √q − 1 ·

√
d1d2

ℓn1

= δ1δ2 −
λH ·

√
r · √q − 1 ·

√
d1d2√

ℓ · √n1 ·
√

n1

= δ1δ2 − λH ·
√

q − 1 ·
√

r

ℓ
·
√

d1

n1
·
√

d2

n1

= δ1δ2 − λH ·
√

q − 1 ·
√

r

ℓ
·
√

d1

n1
·
√

d2

n2
·
√

ℓ

r
(sincen1 =

n2r

ℓ
)

= δ1δ2 − λH ·
√

q − 1 ·
√

δ1δ2,

(6.88)

as required.
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Appendix A

The Extension of the Binomial Function

This appendix deals with the extension of the binomial function from natural numbers to non negative real
numbers. We give the required definitions, and prove some of the properties needed in Chapter 3. In particular,
we prove Proposition 3.13.

The binomial function
(
a
b

)
is a map

(·
·

)

: N× N→ N,

which we will extend to a map
(·
·

)′
: R≥0 × R≥0 → R≥0,

with the property that

a, b ∈ N =⇒
(

a

b

)

=

(
a

b

)′
.

We will do this using thegamma functionΓ, see ([91]), which is defined everywhere inR>0, and has the
property that

Γ(1) = 1
Γ(z + 1) = z · Γ(z).

In particular, we can deduce from this that

n ∈ N =⇒ Γ(n + 1) = n!.

Because of this slightly inconvenient relation to the factorial function, we will also use Gauss’s simpler nota-
tion

Π(z) = Γ(z + 1),

which is defined over all ofR≥0 and gives us the nicer relationship:

n ∈ N =⇒ Π(n) = n!.

SoΠ can be seen as an extension of the factorial function fromN to R≥0. We use this to define our extension
of the binomial function:
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Definition A.1. For anya, b ∈ R≥0 with a ≥ b, we define:

(
a

b

)′
=







Π(a)
Π(a−b)·Π(b) if a ≥ b

0 otherwise.

Notice that as required, whena, b ∈ N we have

(
a

b

)′
=

(
a

b

)

.

From now on we will just write
(
a
b

)
instead of

(
a
b

)′
. We will start with some lemmas giving general properties

of the functionsΓ andΠ.

Lemma A.2. The gamma function has the following property:

∀x, y ∈ R>0, d ∈ R≥0 : y ≤ x =⇒ Γ(y + d)

Γ(y)
≤ Γ(x + d)

Γ(x)
.

Proof: Suppose we have a fixedd ∈ R≥0: We consider the following function:

f(t) =
Γ(t + d)

Γ(t)
,

over the ranget ∈ R>0. Differentiating we obtain:

f ′(t) =
Γ′(t + d) · Γ(t)− Γ(t + d) · Γ′(t)

Γ(t)2
,

and so
f ′(t) ≥ 0 ⇐⇒ Γ′(t + d) · Γ(t)− Γ(t + d) · Γ′(t) ≥ 0

⇐⇒ Γ′(t + d) · Γ(t) ≥ Γ(t + d) · Γ′(t)

⇐⇒ Γ′(t+d)
Γ(t+d) ≥

Γ′(t)
Γ(t) (sinceΓ(t + d),Γ(t) > 0).

Now in general (see [91]) we have

Γ′(z)

Γ(z)
= −

(
1

z
+ γ +

∞∑

n=1

[
1/n

1 + z/n
− 1

n

])

,

whereγ is the Euler-Mascheroni constant (see [93] [39]). We see that Γ′(z)
Γ(z) increases asz increases, and so

becauset + d ≥ t, we have
Γ′(t + d)

Γ(t + d)
≥ Γ′(t)

Γ(t)
,

which means thatf ′(t) ≥ 0 for all t. Sof is an increasing function, which in particular means that

∀x, y ∈ R>0, d ∈ R≥0 : y ≤ x =⇒ f(y) ≤ f(x) =⇒ Γ(y + d)

Γ(y)
≤ Γ(x + d)

Γ(x)
.
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It is clear that becauseΠ(x) = Γ(x+1), andy ≤ x ⇐⇒ y +1 ≤ x+1, for anyx, y, d ∈ R≥0 we also have

y ≤ x =⇒ Π(y + d)

Π(y)
≤ Π(x + d)

Π(x)
. (A.1)

Lemma A.3. For anyz ∈ R≥0 andm ∈ N we have

Π(z + m)

Π(z)
=

m∏

i=1

(z + i). (A.2)

Proof: We have:
Π

(
z + m

)
=

(
z + m

)
· Π

(
z + m− 1

)

=
(
z + m

)
·
(
z + m− 1

)
· Π

(
z + m− 2

)

=
(
z + m

)
· . . . ·

(
z + 1

)
·Π

(
z
)

=

[
∏m

i=1(z + i)

]

·Π
(
z
)
,

and so the result follows.

Proposition A.4. For anya, b ∈ R with 1 ≤ b ≤ a we have
(

a

b

)

< 2a·h(b/a),

whereh denotes the binary entropy function:

h(x) = −x · log2(x)− (1 − x) · log2(1− x).

Proof: We will useStirling’s formula(see [51], Chapter 10): forx ≥ 1 we have
√

2π · xx+ 1
2 · e−x < Π(x) <

√
2π · xx+ 1

2 · e−x+ 1
12x . (A.3)

We setλ = b
a , so thatb = λa. Sinceb ≤ a we haveλ ≤ 1. We also defineλ = 1− λ. We have:

(
a
b

)
= Π(a)

Π(a−b)·Π(b)

<

[√
2π · aa+ 1

2 · e−a+ 1
12a

]

·
[√

2π · bb+ 1
2 · e−b ·

√
2π · (a− b)a−b+ 1

2 · eb−a

]−1

= 1√
2π
· a1/2

b1/2·(a−b)1/2 · aa

bb·(a−b)a−b · exp
(
− a + b + (a− b) + 1

12a)

= 1√
2π
·
√

a
λa·(1−λ)a · aa

(λa)λa·((1−λ)a)(1−λ)a · exp
(

1
12a)

= 1√
2π·λλa

· 1

λλa·λλa
· exp

(
1

12a)

< 1

λλa·λλa
(sincea ≥ 1).
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Now we see that

λλa · λλa
= 2λ·a·log2(λ)+λ·a·log2(λ) = 2a·(λ·log2(λ)+(1−λ)·log2(1−λ)) = 2−a·h(λ),

and sinceλ = b
a , the result follows.

Proposition A.5. For anya, b, c ∈ N, ǫ ∈ R≥0. We have:

b + ǫ ≤ a =⇒
(

a

c

)(
b

c

)

≤
(

a− ǫ

c

)(
b + ǫ

c

)

, (A.4)

and

b + ǫ ≤ a =⇒
(

a

c

)(
b

c + 1

)

≤
(

a− ǫ

c

)(
b + ǫ

c + 1

)

. (A.5)

Proof: We start with the first inequality:
• 1) Calling LHS and RHS the left and right hand sides of inequation (A.4), we have:

RHS
LHS = π(a−ǫ)

π(a−c−ǫ)·π(c) ·
π(b+ǫ)

π(b−c+ǫ)·π(c) ·
[

π(a)
π(a−c)·π(c) ·

π(b)
π(b−c)·π(c)

]−1

= π(a−ǫ)
π(a−ǫ−c) ·

π(b+ǫ)
π(b+ǫ−c) ·

π(a−c)
π(a) ·

π(b−c)
π(b) .

(A.6)

Recall from Lemma A.3 that

∀z ∈ R≥0,m ∈ N :
Π(z + m)

Π(z)
=

m∏

i=1

(z + i). (A.7)

Now to each one of the four fractions in (A.6) we can apply (A.7). We setm = c, andz = a− c− ǫ, b− c +
ǫ, a− c andb− c to obtain

RHS
LHS =

∏c
i=1(a− c + i− ǫ) · (b− c + i + ǫ) · 1

a−c+i · 1
b−c+i

=
∏c

i=1
a−c+i−ǫ
a−c+i · b−c+i+ǫ

b−c+i

=
∏c

i=1
Ai−ǫ
Ai
· Bi+ǫ

Bi
,

whereAi = a− c + i andBi = b− c + i. Now

A−ǫ
A · B+ǫ

B ≥ 1 ⇐⇒ (A− ǫ) · (B + ǫ) ≥ AB

⇐⇒ AB −Bǫ + Aǫ− ǫ2 ≥ AB

⇐⇒ −B + A− ǫ ≥ 0

⇐⇒ A ≥ B + ǫ.

(A.8)
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Now since we suppose in the statement thata ≥ b + ǫ, for all i we haveAi ≥ Bi + ǫ. So since we used
equivalences everywhere in (A.8), we obtain

c∏

i=1

Ai − ǫ

Ai
· Bi + ǫ

Bi
≥ 1,

which means that
LHS≤ RHS,

and so (A.4) holds.

• 2) The second inequality can be proved in much the same way. We proceed exactly as in1), the only
difference being that in this case we haveBi = b− c− 1+ i. So we have an even stronger inequality between
theAi’s andB′

is: a ≥ b + ǫ implies that for alli: Ai ≥ Bi + ǫ + 1 > Bi + ǫ. So (A.5) also holds.

Proposition A.6. For anya, b, c ∈ R≥0 with b < a, we have
(

a

c

)(
b

c + 1

)

≤
(

a

c + 1/2

)(
b

c + 1/2

)

. (A.9)

Proof: Calling LHS and RHS the left and right hand sides of the inequation (A.9), we have

RHS
LHS = π(a)

π(a−c−1/2)·π(c+1/2) ·
π(b)

π(b−c−1/2)·π(c+1/2) ·
[

π(a)
π(a−c)·π(c) ·

π(b)
π(b−c−1)·π(c+1)

]−1

=

X1
︷ ︸︸ ︷

π(a− c)

π(a− c− 1/2)
· π(b− c− 1)

π(b− c− 1/2)
·

X2
︷ ︸︸ ︷

π(c)

π(c + 1/2)
· π(c + 1)

π(c + 1/2)
.

Now we know from (A.1) that forx, y, d ∈ R≥0 we have

y ≤ x =⇒ Π(y + d)

Π(y)
≤ Π(x + d)

Π(x)
, (A.10)

So settingy = c, x = c + 1
2 andd = 1

2 , we havey < x, and therefore

Π(c + 1/2)

Π(c)
≤ Π(c + 1)

Π(c + 1/2)
.

From this we can deduce that
X2 ≥ 1.

Likewise, we apply (A.10) withy = b− c− 1, x = a− c− 1
2 andd = 1

2 . Since we are supposing thatb < a,
we havey < x, and therefore

Π(b− c− 1/2)

Π(b− c− 1)
≤ Π(a− c)

Π(a− c− 1/2)
,

which leads to
X1 ≥ 1.
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So we have
X1 ·X2 ≥ 1 =⇒ RHS ≥ LHS,

and so (A.9) holds.

We are now ready to prove Proposition 3.13 of Chapter 3, whichwe restate below:

Proposition 3.13.For anyn, ℓ ∈ N, 0 < δ < 1
2 with 1 ≤ ℓ ≤ 2nδ, lettingδ = 1− δ we have

⌊nδ⌋
∑

d=1

(
n− d

⌊ℓ/2⌋

)(
d− 1

⌈ℓ/2⌉ − 1

)

≤ nδ ·
(

nδ

ℓ/2

)(
nδ

ℓ/2

)

. (A.11)

Proof: We call LHS and RHS the left and right hand sides of (A.11). We proceed differently depending on
whetherℓ is even or odd.

• 1) ℓ is even.
Lettingx = ℓ

2 =
⌊

ℓ
2

⌋
=

⌈
ℓ
2

⌉
, we have

LHS =

⌊nδ⌋
∑

d=1

(
n− d

x

)(
d− 1

x− 1

)

≤
⌊nδ⌋
∑

d=1

(
n− d

x

)(
d

x

)

,

where the inequality follows from the fact that everything is positive and in general
(a

b

)
≤

(a+1
b+1

)
. We let

wn,x(d) =

(
n− d

x

)(
d

x

)

.

We will show that for anyn, x and for anyd = 1, . . . , ⌊nδ⌋ − 1 we havewn,x(d) ≤ wn,x(d + 1):

wn,x(d+1)
wn,x(d) =

[
(
n−d−1

x

)(
d+1
x

)
]

·
[
(
n−d

x

)(
d
x

)
]−1

= (n−d−1)!
(n−d−x−1)!x! ·

(d+1)!
(d+1−x)!x)! · (n−d−x)!x!

(n−d)! · (d−x)!x!
d!

= d+1
d+1−x · n−d−x

n−d

=

[
X1

︷ ︸︸ ︷

1− x

d + 1

]−1

·
[

X2
︷ ︸︸ ︷

1− x

n− d

]

.

This means that
wn,x(d) ≤ wn,x(d + 1) ⇐⇒ 1 ≤ X−1

1 ·X2

⇐⇒ X1 ≤ X2

⇐⇒ 1− x
d+1 ≤ 1− x

n−d

⇐⇒ d+1
x ≤ n−d

x

⇐⇒ d + 1 ≤ n− d.

(A.12)
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Now for anyd = 1, . . . , ⌊nδ⌋ − 1, we haved + 1 ≤ ⌊nδ⌋ < n
2 (sinceδ < 1

2 ). So

d + 1 <
n

2
=⇒ 2d + 2 < n =⇒ d + 1 < n− d− 1 < n− d.

Combining this with (A.12) we deduce that

∀ d = 1, . . . , ⌊nδ⌋ − 1 : wn,x(d) ≤ wn,x(d + 1).

So this leads to
∀ d = 1, . . . , ⌊nδ⌋ : wn,x(d) ≤ wn,x(⌊nδ⌋).

We can now deduce:

LHS =

⌊nδ⌋
∑

d=1

wn,x(d) ≤ ⌊nδ⌋ · wn,x(⌊nδ⌋) = ⌊nδ⌋ ·
(

n− ⌊nδ⌋
x

)(⌊nδ⌋
x

)

. (A.13)

Now lettingǫ = nδ − ⌊nδ⌋, we notice thatn− ⌊nδ⌋ − ǫ = n− ⌊nδ⌋ − (nδ − ⌊nδ⌋) = n− nδ = nδ. So we
have

n− ⌊nδ⌋ − ǫ = nδ
⌊nδ⌋+ ǫ = nδ.

(A.14)

Now recall from (A.4) of Proposition A.5 that for anya, b, c ∈ N with b + ǫ ≤ a we have
(

a

c

)(
b

c

)

≤
(

a− ǫ

c

)(
b + ǫ

c

)

. (A.15)

We notice that becauseδ < 1
2 we have⌊nδ⌋ < n/2, which means that⌊nδ⌋ < n − ⌊nδ⌋. So setting

a = n− ⌊nδ⌋, b = ⌊nδ⌋ andc = x we see first of all thatb < a. So sincea andb are integers and0 ≤ ǫ < 1
we haveb + ǫ < a and we therefore can apply (A.15) to obtain

(
n− ⌊nδ⌋

x

)(⌊nδ⌋
x

)

≤
(

n− ⌊nδ⌋ − ǫ

x

)(⌊nδ⌋+ ǫ

x

)

=

(
nδ

ℓ/2

)(
nδ

ℓ/2

)

, (A.16)

where the last equality follows from (A.14) and the fact thatx was defined asx = ℓ
2 . Now we combine (A.13)

and (A.16) to deduce

LHS ≤ ⌊nδ⌋ ·
(

n− ⌊nδ⌋
x

)(⌊nδ⌋
x

)

≤ nδ ·
(

nδ

ℓ/2

)(
nδ

ℓ/2

)

= RHS.

• 2) ℓ is odd.
We letx = ℓ−1

2 . So⌊ℓ/2⌋ = x and⌈ℓ/2⌉ − 1 = (x + 1)− 1 = x. This leads to

LHS =

⌊nδ⌋
∑

d=1

(
n− d

x

)(
d− 1

x

)

≤
⌊nδ⌋
∑

d=1

(
n− d

x

)(
d

x + 1

)

,

where the second inequality follows from the fact that in general
(a

b

)
≤

(a+1
b+1

)
. As above, letting

wn,x(d) =

(
n− d

x

)(
d

x + 1

)

,
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we will show that for anyn, x and for anyd = 1, . . . , ⌊nδ⌋ − 1 we havewn,x(d) ≤ wn,x(d + 1):

wn,x(d+1)
wn,x(d) =

[
(
n−d−1

x

)(
d+1
x+1

)
]

·
[
(
n−d

x

)(
d

x+1

)
]−1

= (n−d−1)!
(n−d−x−1)!x! ·

(d+1)!
(d−x)!(x+1)! · (n−d−x)!x!

(n−d)! · (d−x−1)!(x+1)!
d! ·

= d+1
d−x · n−d−x

n−d

=

[

d+1−(x+1)
d+1

]−1

·
[

n−d−x
n−d

]

=

[
Y1

︷ ︸︸ ︷

1− x + 1

d + 1

]−1

·
[

Y2
︷ ︸︸ ︷

1− x

n− d

]

.

.

We saw above in (A.12) that becaused + 1 ≤ n− d, for anyx ≥ 0 we have

1− x

d + 1
≤ 1− x

n− d
.

So here

Y1 = 1− x + 1

d + 1
< 1− x

d + 1
≤ 1− x

n− d
= Y2,

and thereforeY −1
1 · Y2 ≥ 1. From this we deduce that

∀ d = 1, . . . , ⌊nδ⌋ − 1 : wn,x(d) ≤ wn,x(d + 1),

and therefore
∀ d = 1, . . . , ⌊nδ⌋ : wn,x(d) ≤ wn,x(⌊nδ⌋).

As above, this leads to

LHS =

⌊nδ⌋
∑

d=1

wn,x(d) ≤ ⌊nδ⌋ · wn,x(⌊nδ⌋) = ⌊nδ⌋ ·
(

n− ⌊nδ⌋
x

)( ⌊nδ⌋
x + 1

)

. (A.17)

In exactly the same way as case1) above, settingǫ = nδ − ⌊nδ⌋ gives us

n− ⌊nδ⌋ − ǫ = nδ
⌊nδ⌋+ ǫ = nδ.

(A.18)

Recall from (A.5) of Proposition A.5 that for anya, b, c ∈ N with b + ǫ ≤ a we have
(

a

c

)(
b

c + 1

)

≤
(

a− ǫ

c

)(
b + ǫ

c + 1

)

. (A.19)

If we seta = n − ⌊nδ⌋, b = ⌊nδ⌋ andc = x then as above we haveb + ǫ ≤ a, and we can therefore apply
(A.19) to obtain

(
n− ⌊nδ⌋

x

)( ⌊nδ⌋
x + 1

)

≤
(

nδ

x

)(
nδ

x + 1

)

. (A.20)
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Finally, we saw in Proposition A.6 that for anya, b, c ∈ R≥0 with b < a, we have

(
a

c

)(
b

c + 1

)

≤
(

a

c + 1/2

)(
b

c + 1/2

)

, (A.21)

and so applying this witha = nδ, b = nδ andc = x we haveb < a and therefore

(
nδ

x

)(
nδ

x + 1

)

≤
(

nδ

x + 1/2

)(
nδ

x + 1/2

)

=

(
nδ

ℓ/2

)(
nδ

ℓ/2

)

, (A.22)

where the second equality follows from the fact thatx was defined asx = ℓ−1
2 . Combining (A.17), (A.20)

and (A.22) gives us

LHS ≤ ⌊nδ⌋ ·
(

n− ⌊nδ⌋
x

)( ⌊nδ⌋
x + 1

)

≤ nδ ·
(

nδ

ℓ/2

)(
nδ

ℓ/2

)

= RHS.
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Appendix B

Proof of Theorem 6.11

The proof of Theorem 6.11 was outlined in section 6.4.4, In this appendix we give proofs of the results that
were stated in that section namely we will prove (6.53) and (6.54) (Lemma B.6), and the three inequalities in
(6.55) (Lemmas B.7, B.8 and B.9).

Although there is a certain intuition behind these (similarto that in the section on derandomized squaring), it
is not easy to convince oneself of the truth of the propositions by intuitive reasoning. We therefore make our
proofs more technical and rigorous, even though this does make things more tedious to follow.

We will need some basic results on tensoring, inner productsand the graphs we defined in section 6.4.3.
Although with a little thought we can convince ourselves that they hold, formal proofs are technical. We
therefore lay these results out in the following lemmas for reference. The proofs are included in Appendix C.

Lemma B.1.

1. ∀σ ∈ Rnm, τ ∈ Rn : 〈σ, τ ⊗ 1m〉 = 〈Mn(σ), τ〉.

2. ∀σ ∈ Rnd(1), τ ∈ Rn : 〈σ, τ ⊗ e1〉 = 〈Mn(σ), τ〉.

3. ∀σ ∈ Rnd(2), τ ∈ Rn : 〈σ, τ ⊗ e2〉 = 〈Mn(σ), τ〉.

Lemma B.2.

1. ∀σ ∈ Rn : Mn

(
A(σ ⊗ e1)

)
= d1 · Aσ.

2. ∀σ ∈ Rm : Mm

(
B(σ ⊗ e2)

)
= d2 ·Bσ.

3. ∀σ ∈ Rn,∀τ ∈ Rn : 〈A(σ ⊗ e1), τ ⊗ e1〉 = d1 · 〈Aσ, τ〉.

4. ∀σ ∈ Rm,∀τ ∈ Rm : 〈B(σ ⊗ e2), τ ⊗ e2〉 = d2 · 〈Bσ, τ〉.

Lemma B.3.
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1. C · e1 = d1
d2
· e2.

2. C · e2 = d2
d1
· e1.

3. ∀σ ∈ Rnm : A(σ ⊗ 1d) = A(σ ⊗ e1).

4. ∀σ ∈ Rnm : B(σ ⊗ 1d) = B(σ ⊗ e2).

5. ∀σ ∈ Rn, τ ∈ Rmd : Mnm(σ ⊗ τ) = σ ⊗Mm(τ).

To obtain the required results we will first need to prove two Lemmas (B.4 and B.5). As stated in Theo-
rem 6.11, our bound on the second eigenvalue of a derandomized tensor product required that the labellings
of the graphsA andB be half-colorings. The next two lemmas are the only places wewill use this.

Recall that we interpret the graphB (see Definition B.5 as consisting ofm copies of the vertices ofC (m
clouds), namely one for each vertex ofB. We refer to the vertices in[m] ×D1 as theleft verticesof B, and
to those in[m]×D2 as theright vertices. A vectorτ ∈ Rmd is said to beB-uniform if

Mm(τ) ∈ 1‖m. (B.1)

So if τ is a distribution over the right vertices ofB, it is B-uniform if and only if the marginal over the clouds
is uniform (the probability of being on any given cloud is thesame, namely1m ).

The intuition behind Lemma B.4 is the following: Suppose we start with aB-uniform distribution on the
vertices ofB of the form1m ⊗ σ (so the distribution inside each cloud is the same). Then after one step of a
walk in B it will still be B-uniform.

Lemma B.4. If the labeling ofB is a half-coloring then for anyσ ∈ R2,

Mm

(
B(1m ⊗ σ)

)
= 1m · 〈σ, 1d〉.

Proof: Recall from Definition B.5 thatB is a graph with vertex set[m]× [d] in which each vertex(i, j) has
either one or no neighbors:
• If j ∈ D1 then(i, j) has no neighbors.
• If j ∈ D2 then there is an edge from(i, j) to (i[j], ρB(j)).

One step of a random walk onB can be seen as an involution on the set[m] of vertices (they all have degrees
either1 or 0). Multiplying a vectorτ ∈ Rmd by B involves permuting its components. Formally, if we index
the entries ofτ with the set[m]× [d] then

(Bτ)ij = τi[j],ρ(j). (B.2)

Recall that a half-coloring means that each colorj ∈ D2 has a “partner color”p(j) ∈ D2 for which any vertex
i ∈ [m] satisfies

i[j][ρ(j)] = i[ρ(j)][j] = i. (B.3)

We want to studyB(1m ⊗ σ). Let w = 1m ⊗ σ. If we index the entries ofw with the set[m] × D2 in the
natural way then we have

wi,j = σj . (B.4)
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So using (B.2) gives us
(Bw)i,j = wi[j],ρ(j) = σρ(j). (B.5)

So for alli ∈ [m] the vector(Bw)i ∈ R2 is just a permutation ofσ. We have

(
Mm(Bw)

)

i
=

d∑

j=1

(Bw)i,j =

d∑

j=1

σρ(j) =

d∑

j=1

σj = 〈σ, e2〉.

Since this holds for allm entries ofMm(Bw), we have

Mm(Bw) = 1m · 〈σ, e2〉. (B.6)

A vector τ ∈ Rmd is said to beB-anti-uniform if the marginal over eachC-vertex is anti-uniform. Another
way of phrasing this is that if we decomposeτ as

τ =






τ1
...

τm




 , (B.7)

whereτi ∈ Rd, then
m∑

i=1

τi = 0d. (B.8)

The intuition behind Lemma B.5 is the following: Suppose we start with aB-anti-uniform distribution on the
vertices ofB of the formv ⊗ 1d, with v ∈ 1⊥m (so aC-uniform distribution). Then after one step of a walk in
B it will still be B-anti-uniform.

Lemma B.5. Suppose the labeling ofB is a half-coloring. Letv ∈ 1⊥m, and decomposeb = B(v⊗1d) ∈ Rmd

as follows:

b =






b1
...

bm




 , (B.9)

wherebi ∈ Rd. Then
m∑

i=1

bi = 0d. (B.10)

Proof: Recall that a half-coloring means that each colorj ∈ D2 has a “partner color”ρ(j) ∈ D2 for which
every vertexi ∈ [m] satisfies

i[j][ρ(j)] = i[ρ(j)][j] = i. (B.11)

We will first show that for a fixedj ∈ D2, the mappingχj : [m]→ [m] defined as

χj(i) = i[j]
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is a bijection. Fori, ℓ ∈ [m] we have

χj(i) = χj(ℓ) =⇒ i[j] = ℓ[j]

=⇒ i[j][ρ(j)] = ℓ[j][ρ(j)]

=⇒ i = ℓ (by the definition of a half-coloring).

(B.12)

Soχj is injective and therefore (by cardinality arguments) bijective. Soχj is a permutation of[m].

Now letw = v ⊗ 1n ∈ Rmd. If we index the entries ofw with the set[m]× [d] then

wi,j = vi. (B.13)

Now using (B.2) we have:
(bi)j = (Bw)i,j = wi[j],ρ(j) = vi[j]. (B.14)

So for eachj ∈ [m]:
( m∑

i=1

bi

)

j

=

m∑

i=1

(
bi

)

j
=

m∑

i=1

vi[j] =

m∑

i=1

vχj(i). (B.15)

Sinceχj is a permutation of[m], we can deduce that
( m∑

i=1

bi

)

j

=
m∑

i=1

vi = 0, (B.16)

where the last equality follows from the fact thatv ∈ 1⊥m. So as required,

m∑

i=1

bi = 0d. (B.17)

We are now ready to prove the results we stated in our outline of the proof of Theorem 6.11. We start by
giving a reminder of the definitions of the subspacesS1, S2 andS3 of Rnmd:

S1 = 1⊥n ⊗ 1
‖
m ⊗ 1

‖
d.

S2 = 1
‖
n ⊗ 1⊥m ⊗ 1

‖
d.

S3 = 1⊥n ⊗ 1⊥m ⊗ 1
‖
d.

(B.18)

Lemma B.6. Let S1, S2 and S3 be the subspaces defined in (B.18). Ifx1 ∈ S1, x2 ∈ S2, x3 ∈ S3 and
x = x1 + x2 + x3 then

〈ÂĈB̂x, x〉 = 〈ÂĈB̂x1, x1〉+ 〈ÂĈB̂x2, x2〉+ 〈ÂĈB̂x3, x3〉. (B.19)

〈B̂ĈÂx, x〉 = 〈B̂ĈÂx1, x1〉+ 〈B̂ĈÂx2, x2〉+ 〈B̂ĈÂx3, x3〉. (B.20)
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Proof: We will show only the first part, from which the second part will follow by symmetry. We have

〈ÂĈB̂x, x〉 = 〈ÂĈB̂(x1 + x2 + x3), (x1 + x2 + x3)〉, (B.21)

and therefore expanding this leads to

〈ÂĈB̂x, x〉 =

3∑

i=1

3∑

j=1

〈ÂĈB̂xi, xj〉. (B.22)

We will show that of the nine terms in (B.22), all but the threethat appear in (B.20) are zero. As explained
above, the intuition is that the images of the spacesS1, S2 andS3 under the linear transformation defined by
ÂĈB̂ are also pairwise orthogonal.

By the definitions ofS1, S2 andS3, there arew ∈ 1⊥n , y ∈ 1⊥m with

x1 = w ⊗ 1m ⊗ 1d, x2 = 1n ⊗ y ⊗ 1d, (B.23)

and there areu1, . . . , uk ∈ 1⊥n , v1, . . . , vk ∈ 1⊥m with

x3 =

k∑

i=1

ui ⊗ vi ⊗ 1d. (B.24)

Claim 1: For anyσ ∈ 1⊥n , τ ∈ Rm, we have

〈ÂĈB̂x2, σ ⊗ τ ⊗ 1d〉 = 0. (B.25)

Proof: Recall thatB̂ = In ⊗B (see Section 6.4.3).

B̂x2 = B̂(1n ⊗ y ⊗ 1d) = (In ⊗B)(1n ⊗ y ⊗ 1d) = 1n ⊗B(y ⊗ 1d) = 1n ⊗ b, (B.26)

whereb = B(y ⊗ 1d). We can decomposeb ∈ Rmd as follows:

b =






b1
...

bm




 , (B.27)

whereb1, . . . , bm ∈ Rd. Now recalling thatĈ = In ⊗ Im ⊗ C, we obtain

ĈB̂x2 = (In ⊗ Im ⊗ C) ·
(

1n ⊗






b1
...

bm






)

= 1n ⊗






Cb1
...

Cbm




 = 1n ⊗






t1
...

tm




 , (B.28)

where∀j ∈ [m] : tj = Cbj ∈ Rd. Let t ∈ Rmd be defined as

t =






t1
...

tm




 . (B.29)
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We now need to change bases (purely for notational purposes). We make the basis change given by the
matrixP from Definition 6.23. This gives us

ĈB̂x2 = 1n ⊗ t ∼P






1n ⊗ t1
...

1n ⊗ tm




 . (B.30)

In this new basis we havêA ∼P 1m ⊗A, so that

ÂĈB̂x2 ∼P Â(1n ⊗ t) =






A(1n ⊗ t1)
...

A(1n ⊗ tm)




 . (B.31)

Again in our new basis,σ ⊗ τ ⊗ 1d becomes

σ ⊗ τ ⊗ 1d ∼P τ ⊗






σ ⊗ 1d
...

σ ⊗ 1d




 =






τ1(σ ⊗ 1d)
...

τm(σ ⊗ 1d)




 . (B.32)

Recall that we need to compute
〈ÂĈB̂x2, σ ⊗ τ ⊗ 1d〉, (B.33)

which according to (B.31) and (B.32) is equal to

〈






A(1n ⊗ t1)
...

A(1n ⊗ tm)




 ,






τ1(σ ⊗ 1d)
...

τm(σ ⊗ 1d)






〉

. (B.34)

We can express this as

〈ÂĈB̂x2, σ ⊗ τ ⊗ 1d〉 =
∑m

j=1

〈
A(1n ⊗ tj), τj(σ ⊗ 1d)

〉

=
∑m

j=1 τj ·
〈
A(1n ⊗ tj), σ ⊗ e1

〉

=
∑m

j=1 τj · d ·
〈
Mn

(
A(1n ⊗ tj)

)
, σ

〉
(Lemma B.1 (2))

=
∑m

j=1 τj · d ·
〈
tj, 1d

〉
·

0
︷ ︸︸ ︷〈
1n, σ

〉
(Lemma B.4)

= 0 (sinceσ ∈ 1⊥n ).

(B.35)

�

The next two claims are corollaries of Claim 1:

Claim 2: 〈ÂĈB̂x2, x1〉 = 0.
Proof: Recall that

x1 = w ⊗ 1m ⊗ 1d, (B.36)

wherew ∈ 1⊥n . So the result follows by settingσ = w andτ = 1m in Claim 1.�
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Claim 3: 〈ÂĈB̂x2, x3〉 = 0.
Proof: Recall that

x3 =

k∑

i=1

ui ⊗ vi ⊗ 1d. (B.37)

For eachi = 1, . . . , k, settingσ = ui ∈ 1⊥n andτ = vi ∈ 1⊥m in Claim 1 enables us to obtain

〈ÂĈB̂x2, ui ⊗ vi ⊗ 1d〉 = 0, (B.38)

which means that 〈
ÂĈB̂x2, x3

〉
=

〈
ÂĈB̂x2,

∑

i ui ⊗ vi ⊗ 1d

〉

=
∑

i

〈
ÂĈB̂x2, ui ⊗ vj ⊗ 1d

〉

= 0.

(B.39)

�

Claim 4: 〈ÂĈB̂x3, x1〉 = 0.
Proof: Recall that

x1 = w ⊗ 1m ⊗ 1d, x3 =
k∑

i=1

zi
︷ ︸︸ ︷

ui ⊗ vi ⊗ 1d . (B.40)

We will show that for eachi, 〈ĈB̂zi, Âx1〉 is zero. SincêB = In ⊗B, we have

B̂zi = B̂(ui ⊗ vi ⊗ 1d) = ui ⊗B(vi ⊗ 1d) = ui ⊗ b, (B.41)

whereb = B(vi ⊗ 1d). We can decomposeb ∈ Rmd as follows:

b =






b1
...

bm




 , (B.42)

whereb1, . . . , bm ∈ Rd. Now recalling thatĈ = In ⊗ Im ⊗ C, we obtain

ĈB̂zi = (In ⊗ Im ⊗ C) ·
(

ui ⊗






b1
...

bm






)

= ui ⊗






Cb1
...

Cbm




 = ui ⊗






t1
...

tm




 , (B.43)

wheretj = Cbj. Changing the basis, (B.43) becomes

ĈB̂zi ∼P






ui ⊗ t1
...

ui ⊗ tm




 . (B.44)

Since in this new basiŝA ∼P Im ⊗A andx1 ∼P 1m ⊗ w ⊗ 1d, we can deduce that

Âx1 ∼P 1m ⊗A(w ⊗ 1d). (B.45)
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So combining (B.44) and (B.45) leads to

〈ĈB̂zi, Âx1〉 =

〈






ui ⊗ t1
...

ui ⊗ tm




 ,






A(w ⊗ 1d)
...

A(w ⊗ 1d)






〉

. (B.46)

This can be written as

〈ĈB̂zi, Âx1〉 =
m∑

j=1

〈

ui ⊗ tj , A(w ⊗ 1d)

〉

=

〈

ui ⊗
m∑

j=1

tj, A(w ⊗ 1d)

〉

. (B.47)

We know from Lemma B.5 that
m∑

j=1

bj = 0d. (B.48)

So

m∑

j=1

tj =

m∑

j=1

Cbj = C ·

0d
︷ ︸︸ ︷
m∑

j=1

bj = 0d. (B.49)

Plugging in (B.49) we see that (B.47) is equal to zero, and therefore

〈ĈB̂zi, Âx1〉 = 0. (B.50)

SinceÂ is symmetric, we have

〈
ÂĈB̂x3, x1

〉
=

〈
ĈB̂x3, Âx1

〉
=

〈
ĈB̂

k∑

i=1

zi, Âx1

〉
=

k∑

i=1

0
︷ ︸︸ ︷
〈
ĈB̂zi, Âx1

〉
= 0. (B.51)

�

Claim 5: 〈ÂĈB̂x1, x2〉 = 0.
Proof: Recall that

x1 = w ⊗ 1m ⊗ 1d, x2 = 1n ⊗ y ⊗ 1d, (B.52)

with w ∈ 1⊥n andy ∈ 1⊥m. SinceB is a permutation on elements ofRm × R2, it is clear that it fixes
uniform vectors, in particular:

B(1m ⊗ e2) = 1m ⊗ e2. (B.53)

This leads to
B̂x1 = (In ⊗B)(w ⊗ 1m ⊗ 1d)

= w ⊗B(1m ⊗ e2)

= w ⊗ 1m ⊗ e2 (using (B.53)).

(B.54)

In the same way (though again a basis change is required to accommodate the limits of the current
notation) it can be shown that

Âx2 = 1n ⊗ v ⊗ e1. (B.55)
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Now (B.54) leads to

ĈB̂x1 = (Inm ⊗ C)
(
w ⊗ 1m ⊗ e2

)

= w ⊗ 1m ⊗ C · e2

= w ⊗ 1m ⊗ d2
d1
· e1 (from Lemma B.3 (1)).

(B.56)

So combining (B.55) and (B.56) gives us
〈
ÂĈB̂x1, x2

〉
=

〈
ĈB̂x1, Âx2

〉
(sinceÂ is symmetric)

= d2
d1
·
〈
1n ⊗ v ⊗ e1, w ⊗ 1m ⊗ e1

〉
(using (B.55) and (B.56))

= d2
d1
·

0
︷ ︸︸ ︷〈
1n, w

〉
·〈v ⊗ e1, 1m ⊗ e1〉

= 0 (sincew ∈ 1⊥n ).

�

Claim 6: 〈ÂĈB̂x1, x3〉 = 0.
Proof: Recall that

x1 = w ⊗ 1m ⊗ 1d, x3 =
k∑

i=1

zi
︷ ︸︸ ︷

ui ⊗ vi ⊗ 1d, (B.57)

with w ∈ 1⊥n , ∀i = 1, . . . k : ui ∈ 1⊥n andvi ∈ 1⊥m. We know from (B.56) that

ĈB̂x1 =
d2

d1
·
(
w ⊗ 1m ⊗ e1

)
. (B.58)

Now by changing basis we havêA ∼P Im ⊗A, which means that

ÂĈB̂x1 ∼P
d2

d1
·
(
1m ⊗A(w ⊗ e1)

)
. (B.59)

Since for alli ∈ [k] : zi ∼P vi ⊗ ui ⊗ 1d , we obtain
〈
ÂĈB̂x1, zi

〉
= d2

d1
·
〈
1m ⊗A(w ⊗ e1), vi ⊗ ui ⊗ 1d

〉
(from (B.59))

= d2
d1
·

0
︷ ︸︸ ︷〈
1m, vi

〉
·
〈
A(w ⊗ 1d), ui ⊗ 1d

〉

= 0 (sincevi ∈ 1⊥m).

(B.60)

This leads to

〈
ÂĈB̂x1, x3

〉
=

〈
ÂĈB̂x1,

k∑

i=1

zi

〉
=

k∑

i=1

0
︷ ︸︸ ︷
〈
ÂĈB̂x1, zi

〉
= 0. (B.61)

�
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Claim 7: 〈ÂĈB̂x3, x2〉 = 0.
Proof: Recall that

x2 = 1n ⊗ y ⊗ 1d, x3 =
k∑

i=1

zi
︷ ︸︸ ︷

ui ⊗ vi ⊗ 1d, (B.62)

with y ∈ 1⊥m, ∀i = 1, . . . k : ui ∈ 1⊥n andvi ∈ 1⊥m. We have:

ĈB̂zi = Ĉ
(
In ⊗B

)(
ui ⊗ vi ⊗ 1d

)

= Ĉ
(
ui ⊗B(vi ⊗ 1d)

)

=
(
In ⊗ Im ⊗ C

)(
ui ⊗B(vi ⊗ 1d)

)

=
(
ui ⊗ ti

)
,

(B.63)

whereti =
(
Im ⊗ C

)(
B(vi ⊗ 1d)

)
∈ Rmd. We can now write

〈
ÂĈB̂zi, x2

〉
=

〈
ĈB̂zi, Âx2

〉
sinceÂ is symmetric

=
〈
ui ⊗ ti, 1n ⊗ v ⊗ e1

〉
using (B.63) and (B.55)

=

0
︷ ︸︸ ︷〈
ui, 1n

〉
·
〈
ti, y ⊗ 1d

〉

= 0 sinceui ∈ 1⊥n .

(B.64)

This leads to

〈
ÂĈB̂x3, x2

〉
=

〈
ÂĈB̂

k∑

i=1

zi, x2

〉
=

k∑

i=1

0
︷ ︸︸ ︷
〈
ÂĈB̂zi, x2

〉
= 0. (B.65)

�

Combining everything: We know from (B.22) that

〈ÂĈB̂x, x〉 =
3∑

i=1

3∑

j=1

〈ÂĈB̂xi, xj〉. (B.66)

Claims 2 to 7 tell us that six of the nine terms in (B.66) are zero, so keeping only the remaining ones leads to

〈ÂĈB̂x, x〉 = 〈ÂĈB̂x1, x1〉+ 〈ÂĈB̂x2, x2〉+ 〈ÂĈB̂x2, x2〉, (B.67)

as required.

The next 3 lemmas will prove the inequalities of (6.55).
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Lemma B.7. LetS2 = 1
‖
n ⊗ 1⊥m ⊗ 1

‖
d. For anyx2 ∈ S2, we have:

∣
∣〈B̂ĈÂx2, x2〉

∣
∣ +

∣
∣〈ÂĈB̂x2, x2〉

∣
∣ ≤ λB · 〈x2, x2〉.

Proof: Recall first of all that we can writex2 as

x2 = 1n ⊗ y ⊗ 1d. (B.68)

Next, we saw in (B.55) that
Âx2 = 1n ⊗ y ⊗ e1. (B.69)

So this gives us
ĈÂx2 = Ĉ(1n ⊗ y ⊗ e1)

= 1n ⊗ y ⊗ C · e1

= 1n ⊗ y ⊗ d1
d2
· e2 (from Lemma B.3 (1)).

(B.70)

Also, sinceB̂ = In ⊗B
B̂x2 = 1n ⊗B(y ⊗ 1d). (B.71)

We therefore have

〈B̂ĈÂx2, x2〉 = 〈ĈÂx2, B̂x2〉 (B̂ is symmetric)

= d1
d2
· 〈1n ⊗ y ⊗ e2, 1n ⊗B(y ⊗ 1d)〉 (from (B.70) and (B.71))

= d1
d2
· 〈1n, 1n〉 · 〈y ⊗ e2, B(y ⊗ e2)〉 (from Lemma B.3 (4) )

= d1
d2
· 〈1n, 1n〉 · d2 · 〈y,By〉 (from Lemma B.2 (2) )

= d1 · 〈1n, 1n〉 · 〈y,By〉.

(B.72)

Now sincey ∈ 1⊥m we know by definition that
∣
∣〈y,Bv〉

∣
∣ ≤ λB〈y, y〉. (B.73)

We therefore have:
∣
∣〈B̂ĈÂx2, x2〉

∣
∣ = d1 ·

∣
∣〈1n, 1n〉

∣
∣ ·

∣
∣〈y,By〉

∣
∣

≤ d1 ·
∣
∣〈1n, 1n〉

∣
∣ · λB · 〈y, y〉

= d1 · λB · 〈1n, 1n〉 · 〈y, y〉 · 〈1d,1d〉
d

= d1
d · λB · 〈1n ⊗ y ⊗ d, 1n ⊗ y ⊗ d〉

= d1
d · λB · 〈x2, x2〉.

(B.74)
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Analogously, we can show that

∣
∣〈ÂĈB̂x2, x2〉

∣
∣ ≤ d2

d
· λB · 〈x2, x2〉. (B.75)

Sinced1 + d2 = d, we can combine (B.74) and (B.75) to obtain
∣
∣〈ĈÂx2, B̂x2〉

∣
∣ +

∣
∣〈ĈB̂x2, Âx2〉

∣
∣ ≤ λB · 〈x2, x2〉, (B.76)

as required.

Lemma B.8. LetS1 = 1⊥n ⊗ 1
‖
m ⊗ 1

‖
d. For anyx1 ∈ S1, we have:

∣
∣〈B̂ĈÂx1, x1〉

∣
∣ +

∣
∣〈ÂĈB̂x1, x1〉

∣
∣ ≤ λA · 〈x1, x1〉.

Proof: Analogous to that of Lemma B.7 (though a basis change is required).

Theorem B.9. Letm(a, b, c) be the function defined in (6.33) of Theorem 6.11. Letx3 ∈ S3. Then

∣
∣〈B̂ĈÂx3, x3〉

∣
∣ +

∣
∣〈ÂĈB̂x3, x3〉

∣
∣ ≤ m(λA, λB , λC) · 〈x3, x3〉. (B.77)

Proof: SinceB̂ is symmetric, we have

〈B̂ĈÂx3, x3〉 = 〈ĈÂx3, B̂x3〉. (B.78)

Let γ = Âx3 andµ = B̂x3. Notice that

γ ∈ Rn ⊗ Rm ⊗R1, µ ∈ Rn ⊗ Rm ⊗R2. (B.79)

We defineγ‖ andγ⊥ as follows:

γ‖ = Mnm(γ)⊗ e1

d1
, γ⊥ = γ − γ‖.

Soγ‖ is uniform andγ⊥ is anti-uniform over the left nodes of eachC-cloud (soγ‖ ⊥ γ⊥), andγ = γ‖ + γ⊥.
In the same way we decomposeµ with respect to the right nodes of eachC-cloud. Formally,

µ‖ = Mnm(µ)⊗ e2

d2
, µ⊥ = µ− µ‖.
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Claim 1: 〈Ĉγ‖, µ⊥〉 = 〈Ĉγ⊥, µ‖〉 = 0.

Proof: γ‖ ∈ Rn ⊗ Rm ⊗ e
‖
1, andĈ = In ⊗ Im ⊗ C. Now for anyw ∈ e

‖
1 we haveCw ∈ e

‖
2, so

Ĉγ‖ ∈ Rn ⊗ Rm ⊗ e
‖
2. On the other hand,µ⊥ ∈ Rn ⊗ Rm ⊗ e⊥2 , which means that〈Ĉγ‖, µ⊥〉 = 0.

The second part can be shown in exactly the same way.�

Using Claim 1 we see that:

〈ĈÂx3, B̂x3〉 = 〈Ĉγ, µ〉

= 〈Ĉγ‖ + Ĉγ⊥, µ‖ + µ⊥〉

= 〈Ĉγ‖, µ‖〉+
0

︷ ︸︸ ︷

〈Ĉγ‖, µ⊥〉+
0

︷ ︸︸ ︷

〈Ĉγ⊥, µ‖〉+〈Ĉγ⊥, µ⊥〉 (Claim 1)

= 〈Ĉγ‖, µ‖〉+ 〈Ĉγ⊥, µ⊥〉

= ‖Ĉγ‖‖ · ‖µ‖‖ · cos
(
Ĉγ‖, µ‖) + ‖Ĉγ⊥‖ · ‖µ⊥‖ · cos

(
Ĉγ⊥, µ⊥)

.

(B.80)

Therefore we have
∣
∣〈ĈÂx3, B̂x3〉

∣
∣ ≤ ‖Ĉγ‖‖ · ‖µ‖‖+ ‖Ĉγ⊥‖ · ‖µ⊥‖. (B.81)

Now, we know thatx3 ∈ S3 with S3 = 1⊥n ⊗ 1⊥m ⊗ 1
‖
d. Let u0, . . . un−1 andv0, . . . , vm−1 be the normalized

eigenvectors ofA andB respectively. As usualu0 andv0 are uniform whileu1, . . . un−1 andv1, . . . , vm−1

form orthonormal bases of1⊥n and1⊥m respectively. Consequently,

{
ui ⊗ vj ⊗

1d√
d

∣
∣ i ∈ [n− 1], j ∈ [m− 1]

}

is an orthonormal basis ofS3. So there areαij ∈ R with

x3 =

n−1∑

i=1

m−1∑

j=1

αij · (ui ⊗ vj ⊗
1d√
d
). (B.82)

Claim 2: ‖x3‖2 = d
d2
· ‖µ‖2

Proof: Since the basis in whichx3 is expressed in (B.82) is orthonormal, we have

‖x3‖2 =
n−1∑

i=1

m−1∑

j=1

α2
ij. (B.83)

Now for i = 1, . . . , n− 1 let wi ∈ Rm be defined as

wi =

m−1∑

j=1

αijvj, (B.84)
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so that

x3 =
n−1∑

i=1

m−1∑

j=1

αij(ui ⊗ vj ⊗
1d√
d
) =

n−1∑

i=1

(ui ⊗ wi ⊗
1d√
d
). (B.85)

Notice that because the vectorsu1, . . . , un−1 are pairwise orthogonal, theui⊗wi⊗1d are also pairwise
orthogonal.

∥
∥µ

∥
∥2

=
∥
∥B̂x3

∥
∥2

=
∥
∥

∑n−1
i=1 B̂ ·

(
ui ⊗ wi ⊗ 1d√

d

)∥
∥2

=
∥
∥

∑n−1
i=1 ui ⊗B ·

(
wi ⊗ 1d√

d

)∥
∥2

=
∑n−1

i=1

∥
∥ui ⊗B ·

(
wi ⊗ 1d√

d

)∥
∥2

(since theui’s are pairwise orthogonal)

=
∑n−1

i=1

∥
∥B ·

(
wi ⊗ 1d√

d

)∥
∥2

(since‖ui‖ = 1 ∀i).

(B.86)

From Lemma B.3 (4) we know that

B ·
(
wi ⊗

1d√
d

)
= B ·

(
wi ⊗

e2√
d

)
. (B.87)

SinceB is a permutation on elements ofRm⊗R2, it is length preserving on these elements. This leads
to

∥
∥B ·

(
wi ⊗

1d√
d

)∥
∥ =

∥
∥wi ⊗

e2√
d

∥
∥ =

∥
∥wi

∥
∥ ·

∥
∥

e2√
d

∥
∥ =

√

d2

d
·
∥
∥wi

∥
∥. (B.88)

So plugging (B.88) into (B.86) gives us

∥
∥µ

∥
∥2

=
d2

d
·

n−1∑

i=1

∥
∥wi

∥
∥2

. (B.89)

Sincewi =
∑m

j=1 αijvj , and thevj ’s are pairwise orthogonal, we obtain

‖wi‖2 =
m−1∑

j=1

α2
ij · ‖vj‖2 =

m−1∑

j=1

α2
ij. (B.90)

Plugging (B.90) into (B.89) gives us

∥
∥µ

∥
∥2

=
d2

d
·

n−1∑

i=1

m−1∑

j=1

α2
ij =

d2

d
‖x3‖2, (B.91)

where the last equality follows from (B.83).�
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Claim 3: ‖x3‖2 = d
d1
‖γ‖2.

Proof: Analogous to that of Claim 2.�

Claim 4:
∥
∥Ĉγ‖∥∥ =

√
d1
d2
· ‖γ‖‖

Proof: Lemma B.3 (1) tells us that
C · e1

d1
=

e2

d2
. (B.92)

Now recall thatγ‖ = Mnm(γ)⊗ e1
d1

, andĈ = Inm ⊗ C. We therefore have

Ĉγ‖ = Mnm(γ)⊗ C · e1

d1
= Mnm(γ)⊗ e2

d2
. (B.93)

This leads to
∥
∥Ĉγ‖∥∥ =

∥
∥Mnm(γ)

∥
∥ ·

∥
∥

e2

d2

∥
∥ =

∥
∥Mnm(γ)

∥
∥ · 1√

d2
, (B.94)

and therefore
∥
∥Ĉγ‖∥∥ =

√

d1

d2
· ‖γ‖‖. (B.95)

�

Claim 5: ‖Ĉγ⊥‖ ≤ λC ·
√

d1
d2
· ‖γ⊥‖.

Proof: We saw in Proposition 5.44 that for anyx ∈ e⊥1

∥
∥Cx

∥
∥ ≤

√

d1

d2
· λC · ‖x‖. (B.96)

Now we can decomposeγ⊥ ∈ Rnm ⊗ e⊥1 as

γ⊥ =






γ⊥
1,1
...

γ⊥
n,m




 , (B.97)

whereγ⊥
i,j ∈ e⊥1 . Therefore

Ĉγ⊥ =






Cγ⊥
1,1
...

Cγ⊥
n,m




 , (B.98)

and so

‖Ĉγ⊥‖2 =
∑n

i=1

∑m
j=1 ‖Ĉγ⊥

i,j‖2

≤ ∑n
i=1

∑m
j=1

d1
d2
· λ2

C · ‖γ⊥
i,j‖2 (from (B.96), sinceγ⊥

i,j ∈ e⊥1 )

= d1
d2
· λ2

C · ‖γ⊥‖2.

(B.99)
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And so we conclude that

‖Ĉγ⊥‖ ≤ λC ·
√

d1

d2
· ‖γ⊥‖. (B.100)

�

Continuing with our proof, from (B.81) we obtain
∣
∣〈ĈÂx3, B̂x3〉

∣
∣

〈x3, x3〉
≤ ‖µ

‖‖ · ‖Ĉγ‖‖
‖x3‖2

+
‖µ⊥‖ · ‖Ĉγ⊥‖
‖x3‖2

, (B.101)

and so Claims 4 and 5 then give us
∣
∣〈ĈÂx3, B̂x3〉

∣
∣

〈x3, x3〉
≤

√

d1

d2
· ‖µ

‖‖
‖x3‖

· ‖γ
‖‖

‖x3‖
+ λC ·

√

d1

d2
· ‖µ

⊥‖
‖x3‖

· ‖γ
⊥‖
‖x3‖

. (B.102)

From Claims 2 and 3 we know that

‖x3‖ =

√

d

d1
‖γ‖, ‖x3‖ =

√

d

d2
‖µ‖. (B.103)

Therefore (B.102) and (B.103) lead to
∣
∣〈ĈÂx3, B̂x3〉

∣
∣

〈x3, x3〉
≤

√

d1

d2
·
√

d1d2

d
· ‖µ

‖‖
‖µ‖ ·

‖γ‖‖
‖γ‖ + λC ·

√

d1

d2
·
√

d1d2

d
· ‖µ

⊥‖
‖µ‖ ·

‖γ⊥‖
‖γ‖ · (B.104)

We now letθA be the angle betweenγ andγ‖, andθB be the angle betweenµ andµ‖. Notice that

cos(θA) =
‖γ‖‖
‖γ‖ , sin(θA) =

‖γ⊥‖
‖γ‖ , (B.105)

and likewise forθB . With these definitions, (B.104) can be reduced to
∣
∣〈ĈÂx3, B̂x3〉

∣
∣

〈x3, x3〉
≤ d1

d
· cos(θA) · cos(θB) + λC ·

d1

d
· sin(θA) · sin(θB). (B.106)

Since in general for anyθ ∈ [0, π/2] we havesin(θ) =
√

1− cos2(θ), we can deduce:
∣
∣〈ĈÂx3, B̂x3〉

∣
∣

〈x3, x3〉
≤ d1

d
· cos(θA) · cos(θB) + λC ·

d1

d
·
√

(1− cos2(θA)) · (1− cos2(θB)). (B.107)

In exactly the same way it can be shown that
∣
∣〈ĈB̂x3, Âx3〉

∣
∣

〈x3, x3〉
≤ d2

d
· cos(θA) · cos(θB) + λC ·

d2

d
·
√

(1− cos2(θA)) · (1− cos2(θB)). (B.108)

Sinced = d1 + d2, combining (B.107) and (B.108) gives us
∣
∣〈ĈÂx3, B̂x3〉

∣
∣

〈x3, x3〉
+

∣
∣〈ĈB̂x3, Âx3〉

∣
∣

〈x3, x3〉
≤ f(cos(θA), cos(θB), λC), (B.109)

where
f(a, b, c) = ab + c ·

√

(1− a2) · (1− b2). (B.110)
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Claim 6: cos(θB) ≤ λB

Proof: First recall from (B.82) that there areαij ∈ R with

x3 =

n−1∑

i=1

m−1∑

j=1

αij · (ui ⊗ vj ⊗
1d√
d
). (B.111)

Settingbj = B(vj ⊗ 1d√
d
) ∈ Rmd gives us

µ = B̂x3

= B̂ ·
( ∑n−1

i=1

∑m−1
j=1 αij · (ui ⊗ vj ⊗ 1d√

d
)
)

=
∑n−1

i=1

∑m−1
j=1 αij · (In ⊗B) · (ui ⊗ vj ⊗ 1d√

d
)

=
∑n−1

i=1

∑m−1
j=1 αij · (In · ui)⊗

bj
︷ ︸︸ ︷

B · (vj ⊗
1d√
d
)

=
∑n−1

i=1

∑m−1
j=1

αij√
d
· (ui ⊗ bj).

Recall thatµ‖ was defined as
µ‖ = Mnm(µ)⊗ e2

d2
. (B.112)

Lemma B.3 (5) tells us that
Mnm(ui ⊗ bj) = ui ⊗Mm(bj), (B.113)

and therefore

µ‖ =

n−1∑

i=1

m−1∑

j=1

αij√
d
·Mnm(ui ⊗ bj)⊗

e2

d2
=

n−1∑

i=1

m−1∑

j=1

αij√
d
· ui ⊗Mm(bj)⊗

e2

d2
.

Now bj = B(vj ⊗ e2), and therefore Lemma B.2 (2) tells us that

Mm(bj) = d2 ·Bvj. (B.114)

This leads to

‖µ‖‖2 = ‖∑n−1
i=1

∑m−1
j=1

αij√
d
· ui ⊗Mm(bj)⊗ e2

d2
‖2

= ‖∑n−1
i=1

∑m−1
j=1

αij√
d
· ui ⊗ (d2 ·Bvj)⊗ e2

d2
‖2 (from (B.114))

=
∑n−1

i=1

∑m−1
j=1

αij√
d
· ‖ui‖2 · ‖d2 · Bvj‖2 · ‖ e2

d2
‖2 (since theui’s are pairwise orthogonal)

=
∑n−1

i=1

∑m−1
j=1

αij√
d
· d2

2 · ‖Bvj‖2 · 1
d2

(since∀i : ‖ui‖ = 1).

(B.115)
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Now sincevj ∈ 1⊥m, by the definition ofλB we have

‖Bvj‖ ≤ λB‖vj‖ = λB . (B.116)

So plugging this into (B.115) gives us

‖µ‖‖2 ≤ λ2
B ·

d2

d
·

n−1∑

i=1

m−1∑

j=1

αij. (B.117)

We also know from (B.91) that

‖µ‖2 =
d2

d
·

n−1∑

i=1

m−1∑

j=1

αij . (B.118)

So combining (B.117) and (B.118) leads to

‖µ‖‖
‖µ‖ ≤ λB. (B.119)

�

Claim 7: cos(θA) ≤ λA.
Proof: Analogous to that of Claim 6.�

Combining it all: Sincecos(θA) ∈ [0, λA], andcos(θB) ∈ [0, λB ], (B.109) tells us that
∣
∣〈ĈÂx3, B̂x3〉

∣
∣

〈x3, x3〉
+

∣
∣〈ĈB̂x3, Âx3〉

∣
∣

〈x3, x3〉
≤M(λA, λB , λC), (B.120)

where
M(λA, λB , λC) = max

{
f(a, b, λC) | a ∈ [0, λA], b ∈ [0, λB ]

}
. (B.121)

Theorem B.10 below states that

M(λA, λB , λC) ≤ m(λA, λB , λC), (B.122)

and so we deduce
∣
∣〈ĈÂx3, B̂x3〉

∣
∣ +

∣
∣〈ĈB̂x3, Âx3〉

∣
∣ ≤ m(λA, λB , λC) · 〈x3, x3〉, (B.123)

as required.

154



Theorem B.10. Suppose that we haveλA, λB , c ∈ [0, 1] with λB ≤ λA. Letf(a, b, c) be the function

f(a, b, c) = ab + c
√

(1− a2)(1 − b2), (B.124)

let M(λA, λB , c) be the quantity

M(λA, λB , c) = max
{
f(a, b, c) | a ∈ [0, λA], b ∈ [0, λB ]

}
, (B.125)

and letg(b, c) be the function

g(b, c) =
1

√
c2

b2
− c2 + 1

. (B.126)

Then we have:

M(λA, λB , c) =

{
f(λA, λB , c) if λA ≤ g(λB , c)
f(g(λB , c), λB , c) otherwise.

(B.127)

So another way of putting this is

M(λA, λB , c) = f

(

min
(
λA, g(λB , c)

)
, λB , c

)

:= m(λA, λB , λC), (B.128)

which means thatm(a, b, c) is as defined in Theorem 6.11.

Proof: First of all, we have
∂

∂a
f(a, b, c) = b− ac

√
1− b2

√
1− a2

. (B.129)

Now
∂
∂af(a, b, c) ≥ 0 ⇐⇒ b

√
1− a2 ≥ ac

√
1− b2 ⇐⇒

√
1
a2 − 1 ≥ c

√
1
b2
− 1

⇐⇒ 1
a2 ≥ c2 · ( 1

b2
− 1) + 1

⇐⇒ a ≤ 1
q

c2

b2
−c2+1

⇐⇒ a ≤ g(b, c),

whereg(b, c) is taken from (B.126).

Furthermore, for anyb, c ∈ [0, 1] we have

∂

∂a
f(0, b, c) = b ≥ 0, (B.130)

which means that for fixedb andc, f(a, b, c) is increasing whena ∈ [0, g(b, c)], and decreasing whena ∈
[g(b, c), 1]. So over the rangea ∈ [0, λA] (and for fixedb, c ∈ [0, 1]), depending on whetherλA ≤ g(b, c) we
have one of the two following cases:
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Case 2Case 1

λAλA

f(a, b, c)f(a, b, c)

g(b, c)g(b, c)
aa 11 00

The maxima off(a, b, c) over the rangea ∈ [0, λA] will therefore be ata0 = min
(
λA, g(b, c)

)
. We will

consider the two valuesa0 can take separately. We will show that in both cases, whenb ∈ [0, λB ] and
c ∈ [0, 1] we have:

f(a0, b, c) ≤ f(a0, λB , c), (B.131)

from which the result follows.

Case 1:g(b, c) < λA. Soa0 = g(b, c). Let

h1(b, c) = f
(
a0, b, c

)
= f

(
g(b, c), b, c

)
=

b
√

c2

b2
− c2 + 1

+ c ·
√

(1− b2) · (1− 1
c2

b2
− c2 + 1

). (B.132)

It can then be checked that
∂

∂b
h1(b, c) =

1− c2

√

(c/b)2(1− b)2 + 1
, (B.133)

which means that

∀ b, c ∈ [0, 1] :
∂

∂b
h1(b, c) ≥ 0. (B.134)

Therefore for fixedc, h1(b, c) increases withb and so whenb is in the range[0, λB ] it is maximal when
b = λB :

∀ b, c ∈ [0, 1] : h1(b, c) ≤ h1(λB , c). (B.135)

Case 2:λA ≤ g(b, c). Soa0 = λA. Let

h2(b, c) = f
(
a0, b, c

)
= f

(
λA, b, c

)
. (B.136)

Now for anya, b, c we havef(a, b, c) = f(b, a, c). Therefore

h2(b, c) = f
(
b, λA, c

)
. (B.137)
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We showed above that for fixedb andc, f(a, b, c) is increasing whena ∈ [0, g(b, c)]. So applying this to
(B.137) we can deduce that for fixedc, h2(b, c) is increasing forb ∈ [0, g(λA, c)].

Claim: ∀x, c ∈ [0, 1] : g(x, c) ≥ x.
Proof: Recall from (B.126) thatg(x, c) is defined as

g(x, c) =
1

√
c2

x2 − c2 + 1
. (B.138)

Now we have:
x

g(x, c)
= x

√

c2

x2
− c2 + 1. (B.139)

Therefore

(
x

g(x,c)

)2
= x2

(
c2

x2 − c2 + 1
)

= c2 − x2c2 + x2

= c2
(
1− x2

)
+ x2

≤
(
1− x2

)
+ x2 (sincec ∈ [0, 1] and1− x2 ≥ 0)

= 1,

(B.140)

and the result follows immediately.�

From this claim we obtain
λB ≤ λA ≤ g(λA, c). (B.141)

(The first inequality is an assumption we made in the statement of the proposition). We have the following
situation:

λB
λB

f(λA, b, c)

g(λA, c) 10
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So over the rangeb ∈ [0, λB ], h2(b, c) is maximal whenb = λB :

h2(b, c) ≤ h2(λB , c), (B.142)

which concludes case 2.
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Appendix C

Proofs

This appendix contains the proofs that are either too technical to feature in the main chapters, or that do not
involve results of central importance.

Lemma 3.16.For anyǫ1 > 0, there areN1,Γ1 with

N ≥ N1, γ ≥ Γ1 =⇒
∣
∣
∣
∣
Pw −

1

2

∣
∣
∣
∣
≤ ǫ1. (C.1)

Proof: Using the definitionγ = w
n1−y , we get

Pw =
1

2
− 1

2

(

1− 2w

Rn

)(nR)y

=
1

2
− 1

2

(

1− 2γ

Rny

)(nR)y

, (C.2)

and therefore
∣
∣
∣
∣
Pw −

1

2

∣
∣
∣
∣
=

∣
∣
∣
∣

1

2

(

1− 2γ

Rny

)(nR)y ∣
∣
∣
∣
=

∣
∣
∣
∣

1

2

(

1− 2γ

R1−y · (nR)y

)(nR)y ∣
∣
∣
∣
. (C.3)

To make notation simpler, we let

x = (nR)y, a =
2γ

R1−y
. (C.4)

So the expression in (C.3) is
∣
∣
∣
∣

1

2

(

1− a

x

)x∣
∣
∣
∣
. (C.5)

Studying the asymptotic properties of (C.5) is a little delicate since we need to consider the asymptotic be-
havior of two variablesx anda. Furthermore the growth rate of one with respect to the othercould behave in
many different ways (corresponding to howw grows withn). We start by seeing that

(

1− a

x

)x

= exp

[

x · ln
(
1− a

x

)
]

,

and so recalling that the Maclaurin expansion ofln(1− z) is

−z − 1

2
· z2 − 1

3
· z3 − 1

4
· z4 − . . . ,
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we obtain
(

1− a

x

)x

= exp

[

x ·
(
− a

x
− a2

2x2
− a3

3x3
− . . .

)
]

= exp

[

− a− a2

2x
− a3

3x2
− . . .

]

. (C.6)

Now sincex > 0, no matter howx behaves, we will have

lim
a→∞

(
− a− a2

2x
− a3

3x2
− . . .

)
= −∞. (C.7)

Notice thatx could have any behavior asa gets large and (C.7) would still hold. Now combining (C.6) and
(C.7) we obtain

lim
a→∞

(

1− a

x

)x

= 0.

So replacinga andx according to (C.4), and combining this with (C.3), we can deduce that

lim
γ→∞

∣
∣
∣
∣
Pw −

1

2

∣
∣
∣
∣
= 0.

Formally, this means that for anyǫ1 > 0 there isΓ1 with

γ ≥ Γ1 =⇒
∣
∣
∣
∣
Pw −

1

2

∣
∣
∣
∣
≤ ǫ1.

Now recall that the only values ofw we consider arew = 1, . . . , ⌊nR⌋. So sinceγ = w
n1−y , for w to get large

it is also necessary thatn be large enough. Although this is sort of implicit in the statement “γ ≥ Γ1”, we
make this requirement explicit, by saying there areN1,Γ1 with

n ≥ N1, γ ≥ Γ1 =⇒
∣
∣
∣
∣
Pw −

1

2

∣
∣
∣
∣
≤ ǫ1.

Theorem 3.22.For anyb, x with b ≥ 1 and0 ≤ x ≤ 1 we have

1− x ≤
(

1− x

b

)b
. (C.8)
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Proof: Using the Maclaurin expansion ofln(1− x), we obtain:

ln(1− x) = −x− 1

2
x2 − 1

3
x3 − 1

4
x4 − . . .

= −b · x
b
− b2 · 1

2

(x

b

)2
− b3 · 1

3

(x

b

)2
− . . .

b≥1
︷︸︸︷

≤ −b · x
b
− b · 1

2

(x

b

)2
− b · 1

3

(x

b

)2
− . . .

= b ·
(

x

b
− 1

2

(x

b

)2
− 1

3

(x

b

)2
− . . .

)

= b · ln
(

1− x

b

)

= ln
((

1− x

b

)b
)

.

Because the functionln is increasing, we obtain

1− x ≤
(

1− x

b

)b
, (C.9)

as required.

Lemma 3.33.For allx, b ∈ R>0 we have

−x ln(bx) ≤ 1

be
.

Proof: Suppose thatb ∈ R>0 is fixed, and lett(x) = −x ln(bx). Differentiating we get

t′(x) =
∂

∂x
t(x) = − ln(bx)− x

bx
b = − ln(bx)− 1.

Now,
t′(x) = 0 ⇐⇒ ln(bx) = −1

⇐⇒ bx = 1
e

⇐⇒ x = 1
be .

Furthermore,t′′(x) = − 1
bx < 0, sox = 1

be is a maxima fort.

t
( 1

be

)
= − 1

be
· ln

(
b

1

be

)
= − 1

be
· ln

(1

e

)
=

1

be
.

Now x = 1
be is a maxima, so∀x ∈ R>0 : t(x) ≤ t

(
1
be

)
, and the result follows.

Lemma 3.45.Let f : R→ R be a bounded function. Then for anyǫ > 0 there isX with

x ≥ X =⇒ exp
(
− f(x)

)
− ǫ ≤

(

1− f(x)

x

)x
≤ exp

(
− f(x)

)
.
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Proof: The second inequality follows from the fact that for anyz ∈ R : (1 + z) ≤ exp(z).

Next, we have:
(

1− f(x)

x

)x
= exp

[

x · ln
(

(1− f(x)

x

)]

.

Recall that the Maclaurin expandion ofln(1− z) is

ln(1− z) = −z − 1

2
z2 − 1

3
z3 − 1

4
z4 − . . . .

This leads to
(

1− f(x)

x

)x
= exp

[

− f(x) − f(x)2

2x
− f(x)3

3x2
− . . .

]

. (C.10)

Therefore sincef(x) is bounded, by makingx large enough, we can bring (C.10) as close as necessary to
exp

(
− f(x)

)
. The result then follows.

Lemma 6.8.Let Â = DP[A]. Then for anyσ ∈ Rn we have

Mn

(
Â(σ ⊗ 1d

d
)
)

= Aσ. (C.11)

Proof: Recall that in the notation from definition 5.22, for a vertexa ∈ [n] and a labelk ∈ [d], a[k] denotes
thekth neighbor ofa.

Now multiplying σ ∈ Rn by A can be described as follows:

(
Aσ

)

i
=

1

d
·

d∑

k=1

σi[k]. (C.12)

Next recall that the transition matrix of̂A = DP[A] was defined in (5.39):

(
Â

)

ik,jl
=

{
1 if j = i[k] and i = j[ℓ]
0 otherwise.

(C.13)

Therefore, we have
(
Â(σ ⊗ 1d)

)

ik
= (σ ⊗ 1d)i[k]ℓ = σi[k]. (C.14)

So
(

Mn

(
Â(σ ⊗ 1d

d
)
)
)

i

=
1

d
·

d∑

k=1

(
Â(σ ⊗ 1d)

)

ik
=

1

d
·

d∑

k=1

σi[k]. (C.15)

Combining (C.12) and (C.15) then leads to

Mn

(
Â(σ ⊗ 1d

d
)
)

= d · Aσ, (C.16)

as required.

Lemma B.1

162



1. ∀σ ∈ Rnm, τ ∈ Rn : 〈σ, τ ⊗ 1m〉 = 〈Mn(σ), τ〉.

2. ∀σ ∈ Rnd(1), τ ∈ Rn : 〈σ, τ ⊗ 1d1〉 = 〈Mn(σ), τ〉.

3. ∀σ ∈ Rnd(2), τ ∈ Rn : 〈σ, τ ⊗ 1d2〉 = 〈Mn(σ), τ〉.

Proof: We will prove only part (1), the proofs of (2) and (3) are analogous.

We index the elements of vectors in the the spaceRm⊗Rd with the set[m]× [d]. For anyi ∈ [n], j ∈ [d] we
have

(τ ⊗ 1d2)ij = τi (C.17)

Now
〈σ, τ ⊗ 1d2〉 =

∑m
i=1

∑d
j=1 σij · (τ ⊗ 1d2)ij

=
∑m

i=1

( ∑d
j=1 σij

)
· τi (from (C.17))

=
∑m

i=1

(
Mm(σ)

)

i
· τi

= 〈Mm(σ), τ〉.

(C.18)

Lemma B.2

1. ∀σ ∈ Rn : Mn

(
A(σ ⊗ 1d1)

)
= d1 · Aσ.

2. ∀σ ∈ Rm : Mm

(
B(σ ⊗ 1d2)

)
= d2 ·Bσ.

3. ∀σ ∈ Rn,∀τ ∈ Rn : 〈A(σ ⊗ 1d1), τ ⊗ 1d1〉 = d1 · 〈Aσ, τ〉.

4. ∀σ ∈ Rm,∀τ ∈ Rm : 〈B(σ ⊗ 1d2), τ ⊗ 1d2〉 = d2 · 〈Bσ, τ〉.

Proof:
• The proofs of (1) and (2) and analogous to that of Lemma 6.8.

• For (3), letσ ∈ Rn andτ ∈ Rn.

〈A(σ ⊗ 1d1), τ ⊗ 1d1〉 = 〈Mn

(
A(σ ⊗ 1d1)

)
, τ〉 (using Lemma B.1 (2))

= 〈d1 · Aσ, τ〉 (using (1))

= d1 · 〈Aσ, τ〉.
(C.19)

• the proof of (4) if analogous to that of (3).

Lemma B.3
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1. C · 1d1 = d1
d2
· 1d2 .

2. C · 1d2 = d2
d1
· 1d1 .

3. ∀σ ∈ Rnm : A(σ ⊗ 1d) = A(σ ⊗ 1d1).

4. ∀σ ∈ Rnm : B(σ ⊗ 1d) = B(σ ⊗ 1d2).

5. ∀σ ∈ Rn, τ ∈ Rmd : Mnm(σ ⊗ τ) = σ ⊗Mm(τ).

Proof:

• (1) and (2) follow immediately from the fact that the transition matrix ofC is in the form






0 1
r ·X

1
ℓ ·XT 0







, (C.20)

where the rows and columns ofX have weightr andℓ respectively. So

C · 1d1 =
r

ℓ
· 1d1 =

d1

d2
· 1d1 . (C.21)

• For (3) RecallA has vertex set[n]× [m]× [d], and that all vertices in[n]× [m]× [d2] are edgeless. Therefore
for anyx ∈ Rn ⊗ Rm ⊗ Rd(2) we haveAx = 0. Now

A · 1d = A
(
1d1 + 1d2

)
= A · 1d1 . (C.22)

• The proof of (4) is analogous to that of (3).

• For (5), on the left hand side we haveMnm(σ ⊗ τ) ∈ Rn ⊗ Rm. For anyi ∈ [n], j ∈ [m]

Mnm(σ ⊗ τ)ij =

d∑

k=1

σi · τjk. (C.23)

On the right hand side, first note thatMm(τ) ∈ Rm and

(
Mm(τ)

)

j
=

d∑

k=1

τjk. (C.24)

Now (
σ ⊗Mm(τ)

)

ij
= σi ·

(
Mm(τ)

)

j

= σi ·
∑d

k=1 τjk

= Mnm(σ ⊗ τ)ij using (C.23),

(C.25)

and so (5) follows.
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List of Symbols

Algebra

N Natural numbers ({0, 1, 2, . . .})
N∗ Positive natural numbers ({1, 2, 3, . . .})
Z Ring of integers
Zn Ring of integers modulon (Z/nZ)
Q Field of rationals
R Field of real numbers
R≥0 Set of non-negative real numbers
R>0 Set of positive real numbers
C Field of complex numbers
Fq Finite field of sizeq
Cℓ Cyclic group of sizeℓ
Dℓ DFT matrix corresponding toCℓ

[n] The set{1, . . . , n}
⌈x⌉ Smallest integer not smaller thanx
⌊x⌋ Largest integer not larger thanx
S ⊔ T Disjoint union of the setsS andT

Linear Algebra

〈x, y〉 Inner product of the vectorsx andy
x⊗ y Tensor product of the vectorsx andy
‖x‖ Norm of vectorx
x ‖ y Vectorsx andy are parallel
x ⊥ y Vectorsx andy are orthogonal
1n The vector inRn whose entries are all1

1
‖
n Space of vectors inRn generated by1n

1⊥n Space of vectors inRn that are orthogonal to1n

Rn×m The set of alln×m matrices with entries in the ringR
lker(M) Left kernel of the matrixM
rker(M) Right kernel of the matrixM
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Algebraic Geometry

X Algebraic curve
D(X) Divisor group of the curveX
D0(X) Group of divisors of degree 0
Prin(X) Group of principal divisors
Pic(X) D(X) modulo Prin(X)
Pic0(X) D0(X) modulo Prin(X)
D Divisor (element ofD(X))
L(D) Linear space of the divisorD
dim(D) Dimension of the divisorD
deg(D) Degree of the divisorD
Nq(g) Maximum number of points on a curve overFq of genusg

Coding Theory

C Code
wgt(x) Hamming weight of the vectorx
d(x, y) Hamming distance between the vectorsx andy
Br(x) Ball of radiusr around the vectorx
Vol(r, n) Volume of a ball of radiusr in Fn

2

dmin(C) Minimum distance of the codeC
δ(C) Relative distance of the codeC
dim(C) Dimension of the codeC
R(C) Rate of the codeC
{Ci}i∈N∗ Family of codes
hq q-ary entropy function
h Binary entropy function

Graph Theory

Kd Complete graph ond vertices
N(a) Set of neighbors of the vertexa
N(S) Set of neighbors of the set of verticesS
a[i] ith neighbor of vertexa
λA Second eigenvalue of the graphA
Pn[A] Projection of sizen of the graphA
DP[A] De-projection of the graphA
A2 Square of the graphA
AsC Derandomized square of the graphA with respect to the graphC
A⊗B Tensor product of the graphsA andB
A⊗C B Derandomized tensor product of the graphsA andB with respect to the graphC
A z©B Zig-zag product of the graphsA andB
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