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Abstract

This work is concerned with codes, graphs and their linksapGrbased codes have recently become very
prominent in both information theory literature and preatiapplications. While most research has centered
around their performance under iterative decoding, amdihe of study has focused on more combinato-
rial aspects such as their weight distribution. This is thgl@ we explore in the first part of this thesis,
investigating the trade-off between rate and relativeadist. More precisely, we show, using a probabilistic
argument, that there exist graph-based codes approadt@rasymptotic Gilbert-Varshamov bound, and that
are encodable in tim@(n!*<) for anye > 0, wheren is the block length.

The second part is concerned with more practical issuese syecifically the erasure channel. Although
the codes mentioned above have been shown to perform vehynvthls setting, this nonetheless requires
their lengths to be quite large. When short blocks are requicertain algebraic constructions become viable
solutions. In particular Reed-Solomon (RS-) codes are imsg@ide range of applications. However, there do
not appear to be any practical uses of the more general AdigeBrometric (AG-) codes, despite humerous
advantages. We explore in this work the use of very short AGes for transmissions over the erasure channel.
We present their advantages over RS-codes in terms of tleeleridecoder running times, and evaluate the
drawbacks by designing an efficient algorithm for computimg error probabilities of AG-codes. The work
was done as part of an industrial collaboration with spetifinsmission problems in mind, and we include
some practical data to illustrate the theoretical improsets.

Graphs and codes can be related in different ways, and a ¢&iph a goodexpanderoften yields a code
with certain desirable properties. In the third part we dgti graph products and their expansion properties.
Just as thelerandomized squaringperation essentially takes the square of a graph and rensovee edges
according to a second graph, we introducedbendomized tensoringperation which removes edges from
the tensor product of two graphs according to a third grapte didtain a bound on the expansion of the
product in terms of the expansions of the constituent grajMesalso apply the same ideas to a code product,
leading to thederandomized code concatenatioperation and its analysis.

Keywords: Repeat-Accumulate code, Gilbert-Varshamov bound, Redok®n code, Algebraic-Geometric
code, erasure channel, expander graph, derandomizednggjulerandomized tensoring, code concatenation.



Resune

Ce travail concerne les codes, les graphes et leurs lierscdrstructions de codes a partir de graphes ont
recemment pris beaucoup d'importance, tant dans lesqatidins de théorie de l'information que dans les
applications pratiques. Alors que la recherche s’est ritajimment centrée sur leur performance dans le
décodage itératif, une autre direction s’est plutdafis@e sur des aspects plus combinatoires, tels que leur
distribution de poids. C’est cette approche que nous expfodans la premiere partie de cette thése, en
etudiant le compromis entre rendement et distance mieim@lus précisément, hous montrons, suite a un
argument probabiliste, qu'’il existe de tels codes appnactzaborne asymptotique de Gilbert-Varshamov, et
pour lesquels il existe un algorithme d’encodage avec tesepgarcours)(n!*¢) pour toute > 0, olin
représente la longueur de bloc.

La seconde partie concerne des problemes plus pratigussspecifiquement le canal a effacement. Bien
gue les codes mentionnés ci-dessus aient de tres bonrfesmmnces dans ce cadre, leur longueur doit
néanmoins étre assez grande. Lorsque des blocs coutts&mmssaires, certaines constructions algébriques
deviennent des solutions viables. En particulier, les sdgeReed-Solomon (RS) sont utilisés dans une grande
panoplie d'applications. Il n'y a cependant apparemmentiae utilisation pratiqgue des codes Algébriques-
Géomeétriques (AG) pourtant plus généraux, et ceciggitadle nombreux avantages. Nous explorons dans ce
travail I'utilisation de codes AG trés courts pour la tramssion sur le canal a effacement. Nous présentons
leurs avantages sur les codes RS, en termes des temps derpaietencodeur et du décodeur, puis évaluons
leurs inconvénients en concevant un algorithme efficace galculer les probabilités d’erreur des codes AG.
Ce travail a été réalisé dans le cadre d'une collabamatidustrielle, motivé par des problemes de transmissio
spécifiques, et nous incluons également des donnéeéguyamipour illustrer les gains théoriques.

Il existe plusieurs facons d’'établir la relation entrs des et les graphes, et un graphe qui est un bon
expanseurmmene souvent a un code avec certaines propriétés sablesi Dans la troisieme partie nous
nous intéressons aux produits de graphes et leurs piepiidexpansion. Tout comme I'opération darré
dérandomig prend le carré d’'un graphe et lui retire des arétes selateurieme graphe, nous introduisons le
produit tensoriel @randomi§, qui enleve des arétes du produit tensoriel de deux geagdlen un troisieme
graphe. Nous obtenons une borne sur I'expansion du prodddretion de I'expansion des graphes utilisés.
Nous adaptons également ces idées a un produit de codeantainsi a laoncaénation de codesatandomige

et son analyse.

Mots-clés: Code Repeat-Accumulate, borne de Gilbert-Varshamov, ded®eed-Solomon, code Algébrique-
Géomeétrique, canal a effacement, graphe expanseug, @darandomisé, produit tensoriel dérandomisé, con-
caténation de code.
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Chapter 1

Introduction

The aim of coding theory is to provide methods of transngtiimformation in a reliable way over unreliable
communication channels. Data sent through these chanmgigetcorrupted and the role of coding theory
is to pre-process the sent data in such a way that it can beeweszbfrom the corrupted data received. The
pre-processing is referred to ascoding while the recovery is referred to decoding

Encoding involves adding redundant information to the ragssbefore it is sent. This means that more
information must be transmitted than would be on a relialblanoel. How much redundancy is needed
depends on how “bad” the channel is, i.e., how much corrogti@dds. This leads to the natural question
of what is the smallest amount of redundancy we can get awtyfai a given channel. The answer was
given in Shannon’s 1948 paper “A mathematical theory of camication”, which laid down the basis for all
digital communication. However, although his proof guéeas the existence of coding schemes that achieve
the limits given in the paper, it gives no clue as to how suatesaan be constructed.

It has henceforth been a major aim of coding theory to coosttades whose structural properties ensure
reliable transmission, using as little redundancy as ptessiWe will consider onlyblock codesin which
data is divided into pieces which are processed indepelydenhe length of a code describes how much
data is sent in each block. Theinimum distancef a code can be important in assessing its error correction
ability, in the sense that it being large guarantees a minmiradeptness to correct errors. Tiaée measures
how much real information a block contains. These last twampa&ters pull against each other (improving
one tends to worsen the other), and it is a fundamental probiecoding theory to find the best trade-off
between the two. Another important issue to consider istmplexityof the code, referring to the running
times of the encoding and decoding algorithms. Even wheesade studied only as combinatorial objects
it is an interesting property to possess efficient algorthand it becomes essential in the context of data
transmission.

Different tools have been developed to construct such co®eg major tool isalgebraic whereby known
results from often rather abstract fields have been appi@dtain codes that can be proved to meet certain
requirements. Although mathematically pleasing, theesampects of these more traditional codes that can
be improved upon. Graph theory is another such tool, whegelyhs with certain desirable properties can
lead to codes with very effective decoding algorithms thatkaparticularly well on common transmission
channels.

Low Density Parity CheckL.DPC-) codes are graph-based constructions that haatt a lot of attention
in recent years, due to their impressive performance uneletive decoding. Although first invented in 1963



by Gallager, they were later independently rediscoveredifferent flavors by Tanner [83], MacKay [48],
Luby et al. [47]. They were shown to contain sequences thatoagh the capacity of a given symmetric
channel, with very fast encoding and decoding algorithmsgliffierent research direction has been the study
of more combinatorial properties such as the weight distioin of these codes, mostly to obtain bounds on
their performance under Maximum Likelihood decoding. Titithe aspect we will consider in the first part of
this work. More precisely we will construct i@hapter 3 ensembles of graph-based codes that approach the
Gilbert-Varshamov (GV-) bound with high probability, arigit can be encoded in near linear time (essentially
O(n'*e) for anye > 0).

The second part of our work involves more practical apglicest While the graph-based codes like those
mentioned above do indeed have excellent performancdstbanditioned on their lengths being reasonably
large. There are however applications requiring very dhloxks for whichalgebraiccodes have distinct ad-
vantages. The most ubiquitous are Reed-Solomon (RS-) catiesh are widely used in diverse applications.
On the other hand, practical uses of the more general Alge@aometric (AG-) codes are almost non-
existent. This is despite the fact that AG-codes have reatdekproperties in that they enable the construc-
tion of codes with excellent rate/distance trade-off (imsacases beating the asymptotic Gilbert-Varshamov
bound).

RS-codes have the drawback that their length is boundedgsizb of the field on which they are constructed.
This means first of all RS-codes cannot be studied asymaligtidout even for finite lengths, long codes
require large fields. AG-codes do not have this restricémradvantage that can be interpreted in two different
ways. The most straightforward is that for a given field sime oan construct longer codes, so that bigger
pieces of data can be protected in each block. On the othel; fama givenn, an AG-code of length will
require a smaller field than an RS-code, which in turn meaausttie encoding and decoding algorithms can
be made to run faster. This second interpretation becomgsretevant for applications that require short
blocks (i.e., anything that needs to be decoded in real tif@thermore, this is exactly the situation in which
these algebraic codes can still outperform graph-baseelscod

We explore inChapter 4 the use of very short AG-codes for transmissions over theuegachannel. We
present their advantages over RS-codes in terms of endededer running time, and also quantify their
drawbacks by developing an efficient algorithm to compugeeiror probabilities of the short AG-codes we
consider. The contents of this chapter were motivated bstiegi practical needs, and we use a specific
transmission problem to obtain some data illustrating ltlkeettetical speed-ups. The work was done in collab-
oration with the company Digital Fountain and the codesgresd are being used in some of their commercial
products. Itis interesting that although AG-codes are kesivn for their asymptotic properties, it is for these
very short lengths that they appear to offer the best praosgecpractical exploitation.

The third part of our work deals with the topic of expanderpips Graphs and codes can be related in
different ways. With the LDPC codes mentioned above the \ials provided by th@anner graphof the
code. A different relationship can be established by taldngn, k]-code with generator matrig, and
looking at the Cayley graph df% with respect to the columns @f. In both cases, the graph being a good
expanderguarantees that the corresponding code will be good.

We will be concerned in the last two chapters with graph petgland their expansion properties. Rozenman
and Vadhan introduced a modified version of the graph squanioduct calledlerandomized squarin@5].

This led to a graph of smaller degree, at the cost of slightyse expansion. We extend these ideas to another
graph product (the tensor product) and a code product (codeatenation). After introducing expander
graphs and some useful tools @hapter 5, we describe and analyze our productsChapter 6. More
precisely we obtain a bound on the expansion of the derarmahiensor product (measured by the second



eigenvalue), as a function of the second eigenvalues ofahstituent graphs.



Chapter 2

Coding Theory Background

2.1 Introduction

In this chapter we review the basic notions of coding thebay will be used in subsequent chapters. We give
the standard definitions from the area of block codes befarsenting the Gilbert-Varshamov bound which
features prominently in Chapter 3.

2.2 Error Correcting Codes

All the following material can be found in standard textbsdfor example [89][51][41]), and will therefore
not be expanded upon.

Definition 2.1. We have:

e An (n, M) block codeC over an alphabeX is a subset oE" of size M. n is referred to as thkengthof the
code. All our codes will be block-codes, and we refer to thenply ascodes

e An [n, k] linear codeC over a finite fieldF, is a subspace df; of dimensionk. n andk are respectively
referred to as thiengthanddimensionof the linear code.

In this work we will deal exclusively with linear codes, so wg&sume from now on that all codes are linear.
An [n, k]-code oveilF, can also be referred to as an k|,-code.

Definition 2.2. Let € be an[n, k],-code.

e Therate of C is defined as?(€) = £.

e Amatrix G € F’;X” whose rows form a basis ¢fis called agenerator matrixor C.

e Amatrix H € Fé"*k)m for which C = rker(H) is called aparity check matrixor C (rker(H ) denotes the
right kernel of H).

Notice that ifG is a generator matrix anf a parity check matrix fo€ then

C = {Gu|ueF;} = {ceF}|Hc=0}.



Definition 2.3. Let € be an[n, k],-code.

e Thehamming weighof a vectorz € Fy is the number of non-zero componentsrin

wgt(z) = ‘{i | 2; # 0}‘.
The hamming weight of a vector will simply be referred to asieight

e Thehamming distanceetween two vectors, y € Iy is the number of components in which they differ:
d(l’, y) = Wgt(ZL' - y)

e Thezero codewords the zero vector i’y It is always an element of the code.
e Theball aroundz € Fy of radiusr is defined as
By(z) = {y € Fg | d(z,y) <r}.

e Theminimum distancef C is defined as

dmin(e) = min {d(.’E,y) ‘ T,y € 67 €z 7é y)}
Since we are assumin@ to be linear,dmin(C) is also equal to the smallest hamming weight of a non-zero
codeword.

e Therelative distanceof C is defined as
dmin(e)
Y

5(€) =

e Theweight distributionof € is the histogram of the weights of all the codewords. Moretalty it consists
of the integersAy, . .., A,, whereA; is the number of codewords of weight

An [n, k],-code of minimum distancé can also be referred to as an &, d],-code.

Although codes are interesting combinatorial objects emtkelves, to study them in the context of reliable
data transmission it is important to consider émeodinganddecodingprocedures.

Definition 2.4. Let C be an[n, k],-code. Anencoding functioris an injective map
.k n
E:F, — Fy
with Im(E) = C.

A Family of codes is a sequence of codes of increasing length. Begauséten do not know beforehand
the length of the code we will need, it will be convenient afetjant to construct families in which all codes
have a set of desired properties. Furthermore, we will lerésted imsymptotigoroperties of codes, which

require us to work with families.

Definition 2.5. A family of codesover[F, is a sequenc¢C; },cn-, whereC; is an(n;, k;, d;], code, and

lim n; = oo.
1—00

Therate R andrelative distancey of the family are defined as

R = lim ki and 0 = lim %,

1—00 My 1—00 1;

if these limits exist (and are said to be undefined otherwise)



2.3 The Gilbert-Varshamov Bound

The rate and minimum distance are fundamental parametarsarfe. In the context of data transmission it is

desirable to have both large minimum distance and large Adbéy minimum distance often means that more

corruption in the transmission can be overcome, whereadaaiarger rate will require less redundant bits

and therefore less bandwidth in the transmission. Howéaeset two parameters pull against each other, in
the sense that increasing one of them tends to decreasehtreoote. This leads to the natural question of
finding the best possible trade-off between the two.

One of the fundamental problems of coding theory is to comhg following function:
Aq(n,d) = max {k | there exists afn, k, d],-code}. (2.1)

This is a difficult problem, and for each field sizethe values of4,(n, d) are known only for smath andd.
There are however many upper and lower boundslgin, d) (see for example chapter 5 of [89]).

Another major question in coding theory concernsasgmptotiozersion of this problem, namely determining
for which pairsR, ¢ € [0, 1] there exist families of codes of raieand relative distanc& Formally we define
an asymptotic version of (2.1)
A o

ay(8) = limsup M, (2.2)
and are concerned with evaluating this functiog(d) is not known for any values @fother than 0 and 1, but
again there are many upper and lower bounds. In particllaGiibert-Varshamov boundescribed below
will be important to us.

We will need the following function:

Definition 2.6. Theg-ary entropy functiorh,, : [0, %] — [0, 1] defined as

0 ifx=0
ha@) =9 _plog, () - (1=2)log, (1 -2) ifo<w< it

Theorem 2.7. The asymptotic Gilbert-Varshamov bound.
For anyd < % we have
ag(6) > 1 — hy(9). (2.3)

Proof: This is a standard result. See for example [89], Theorend m1.

Notice that this is equivalent to saying that given a figldfor anys < % andR < 1 — h(J) there exists a
family of codes with rateg? and relative distance ¢.

In the next chapter we will be interested in the bound (2.3)leéorem 2.7 for the binary case € 2). Al-
though its proof is very simple, it has been conjecturedttiiatbound is tight for; = 2. Perhaps surprisingly,
almost all families of binary codes approach this bound gugtitally. It is however an open problem to find
explicit constructions that do so.



Chapter 3

Repeat-Accumulate Codes that Approach
the Gilbert-Varshamov Bound

3.1 Introduction

Graph based codes have attracted a lot of attention in rgeans. For the most part, their renaissance has
been due to the fact that they allow for fast encoding anddiagaalgorithms with which suitably designed
codes approach the capacity of a given memoryless symncatitnel [48] [75] [35] [58] [21] [46] [62].

A different line of research has concentrated on the weigttildution of graph based codes (see, e.g., [42]).
Mostly, these results are used to obtain bounds on the peafure of the Maximum-Likelihood decoder for
the codes in question. In this chapter, we study a specisg dibgraph based codes and show that they contain
sequences which approach the Gilbert-Varshamov (GV) hotihis bound says that for any < 1/2 and
any R < 1 — h(d), there is a family of codes with relative distaneeé and rateR (whereh is the binary
entropy function).

The codes that we concentrate on are the Repeat-Accumutakes@22]. These have generator matrices of
the formG = M - A, whereM is a matrix in which the columns are constructed indepeg@ttrandom

to have approximately the same weid#t and A is theaccumulatomatrix, i.e., the upper triangular matrix
having ones on and above the main diagonal. We will showgusiprobabilistic argument, that there exist
codes from this class that approach the Gilbert-Varsharoowd, if 17 is not too small. More precisely, if
andk denote the block length and the dimension of the code rasplctthen we show that for any > 0,

if W = 6(k¥) then for anyd < nh~'(1 — R) the probability that a code chosen from this ensemble has
minimum distance< nd converges to zero astends to infinity.

One of the applications of this result is that there are cdldasapproach the Gilbert-Varshamov bound and
have fast encoding algorithms. This result in itself is rewn(see, e.g., Section 11.1 of [89]) but the derivation
is interesting and the fact that the codes are Repeat-Adabencodes with a simple combinatorial structure
may suggest that there are asymptotically very good exliepeat-Accumulate codes.

After establishing some background we describe the cartgiruand show that the corresponding codes
approach the GV-bound with high probability. This is essdiyt done in two parts. We first obtain an
expression for the probability that< nh~1(1 — R), and then show that this expression converges to zero as
n tends to infinity. The second part is unfortunately rathehigcal, but can be broken up into different cases



which we treat separately.

3.2 Background

3.2.1 Ensembles of Codes

This chapter deals with codes constructed usirapdom componenso we start by formalizing this concept.
An ensembléd of codes is a finite set of codes with a probability distribatassigning non-zero probabilities
to the codes. Choosing a code frdins equivalent to sampling from this distribution. We alsppose that
all codes in a given ensemble have the same length (callddniéh of the ensembleWhen we refer to the
probability that an ensembl@ has a certain property, we mean the probability that a coopleal fromE
has this property. So, for example,

Pr[E has rate> R|

refers to the probability that a code sampled frBrhas rate at leagt. Likewise if we say that the ensemble
E has a certain property we mean that all codeB have this property.

Recall that gamily of codess a sequencé€y, C,, . . ., whereC; is an[n;, k;, d;], code, and

lim n; = oo.
1—00

Therate R andrelative distance of the family are defined as

R = lim &, and 6 = lim %,

1—00 T; 1—00 N
if these limits exist (and are undefined otherwise).
We can also haviamilies of ensemblés; , E,, .. ., whereE; has length,; and
lim n; = oo.
1— 00

The family is said to have a certain propeféywith high probabilityif

lim Pr|[E; has property?| = 1.

1— 00

3.2.2 Standard Bounds for the Binomial Function

We start by recalling the definition of the binary entropydtion:

Definition 3.1. Thebinary entropy functiorh : [0, 3] — [0, 1] is defined as

h(z) = 0 ifz=0
YT~z logy(x) — (1 — 2) - logy(1 — z)  otherwise



Unless specified otherwise, all logarithms in this chapiéhave base, solog(x) = log,(z). The following
standard results will be used throughout the chapter:

Theorem 3.2. Let h denote the binary entropy function. For anye NandA € Rwith0 < A < % we have:

[An]

> (”) < 2mh, (3.1)
1=0
and N
Jim M = h(\). (3.2)

Proof: See [89], Theorem 1.4.&.

Whena, b € R>(, we will use the following notational convention:
b K
S Fi)y =Y f).
i=a i=[a]

3.3 Random Codes and the Gilbert-Varshamov Bound

Uniformly random binary linear codes are produced by pigkime entries of & x n generator matrix uni-
formly at random. More formally, for any € N* and0 < R < 1, we call Cang(n, R) the ensemble of
uniformly random binary linear codes of lengthrand of design raté:. The procedure of sampling from this
ensemble can be described by the following algorithm:

Algorithm: UNIFORM-RANDOM-LINEAR(n, R)
1: Setk «— [nR]
2: Choose a matrixs uniformly at random fron¥5 <™.
3 Let@ « {u-G | u € F5} be the code whose generator matrixiis
4: return C.

Notice that this is equivalent to picking each entry@findependently and uniformly froffi;. A code in
Crand(, R) will have lengthn, but its rate will not necessarily b (for exampleG could be the zero matrix
with probability 2%7). R is referred to as thdesign rateof the ensemble.

When we speak of “random codes” without further specificati@ actually mean “uniformly random codes”.
We will sometimes abuse notation by referring to the famflgrmsembles

{erand(na R) }nEN*

simply asCrand(n, R).
We recall the asymptotic Gilbert-Varshamov bound for binawdes:



Theorem 3.3. The asymptotic Gilbert-Varshamov (GV) bound.
Foranyd < 1 andR < 1 — h(6), there exists a family of binary codes with rateand relative distance> 4.

Notice that this is not saying we can find families with?) onthe R = 1 — h(6) curve, butarbitrarily close
to it. It turns out that random binary codes (the family ofembles{Crand(n, R) } nen+) approach this bound
with high probability:

Theorem 3.4. For any$ < 3 andR < 1 — h(6), if k = [nR] thenCrana(n, R) is an[n, k, > né]-code with
high probability.

Proof: Let C be a code sampled fro@and(n, R), and letdmin be the minimum distance &. We will show
that the probability that there is a non-zero codeword inctbeed ball B0, nd) converges to zero asgets
large. This will imply first of all thatdyi, > nd (with high probability), and secondly that the kernel of the
generator matrixz of € consists only of the zero vector, and therefore tHatas full rank, which means that
C has dimensiork (with high probability). Let

e =1—h(0) —R.
SinceR < 1 — h(d), we havee; > 0. Now the volume of B0, nd) is

Lnd]

vol(nd,n) = (7;)

1=0
From (3.1) of Theorem 3.2, we have

Lnd]

Vol (nd,n) < 2”'h( ) < gnh(d)

For a fixed non-zero message vectoe F%, the corresponding codeword= uG' is uniformly distributed
over[F%. So the probability that is in B(0, nd) is
Vol
P= Pr[c c B(O,m;)} = w < on(h(6)=1)
Recall thatk was defined a8 = [nR]. Now letes = k — nR, so that) < e; < 1. We havek = nR + es.
By makingn large enough we can ensure thais as small as we like. In particular there is&rfor which
€9 €1

n>N —= =< —. (3.3)
n 2

10



Since there ar@* message vectors, by the union bound we can deduce that ifV then

Prl3ce C:c#0andc e B(0,nd)| < 2¢.P

ok . Qn-(h(é)—l)

IN

— 9nk+te .2n~(h(6)—1)
_ 2n-(R+h(5)+eg/n—1)

< on(RE+h(®)+a/2-1)  (ysing (3.3))

wl,ﬂ

= 2727 (sincee; =1 — h(d) — R).

We can therefore deduce that with high probabiliy0, nd) does not contain a non-zero codewaud.

We see in this proof of Theorem 3.4 th&tng(n, R) approaches the GV bound with a probability that con-
verges tol exponentiallyfast asn tends to infinity.

3.4 RA Codes that Approach the GV Bound

3.4.1 Code Construction

Ouridea is to construct a code in which the distances betageressive columns of the<n generator matrix
G are approximately the same. We construct each colunt by taking the previous column, pickinig”
components uniformly at randowmith repetitionfrom {1, ...k}, and each time flipping the corresponding
bit. Notice that the distance between successive columulsl & less thaV if a component got picked
more than once (though this happens with very low probghiliEnsuring that the distance is exactly
would require the flipped components to be pickéthout repetition which makes the analysis substantially
more complicated.

We will show instead that picking them with repetition sugdo obtain families that approach the GV-bound.
Indeed, asymptotically the probability of getting any rens converges to zero. We start by expressing this
construction as a Repeat-Accumulate (RA) code.

Theaccumulator matrixs a square matrix with ones on and above the diagonal, and egerywhere else:

Definition 3.5. Then x n accumulator matrix4,, is defined as

(1 ifi<y
(An)y; = { 0 otherwise (34)

When the dimensions are clear from the context we will witmstead ofA4,,.

Definition 3.6. For anyn € N*, 0 < y < 1 and0 < R < 1, we callCra(n, R,y) the ensemble whose
sampling procedure is the following:

11



Algorithm: Goob-RA(n, R, y)
1: Initialize ak x n matrix M to the all zero matrix
Setk — [nR|
forj=1,...,ndo
fora=1,...,|kY| do
picki € {1,...,k} uniformly at random
SetMZ‘j — Mij XOR 1
end for
end for
LetG — M - A,
LetC « {u-G | u € F5} be the code whose generator matrixis
return C.

el =
= Qo

Informally, we construct a random matr{ as follows: each column is constructed independently bipic

| kY| entries from{1,. .., k} uniformly at random with repetition (artl= [nR]). Each component picked
an even number of times is set@peach component picked an odd number of times is sét fthis matrix
M is then multiplied by the accumulator matrix to obtain thegmtor matrix of our code.

Note that fori = 2,...,n, columni of M is the difference between columis- 1 andi of GG, and so the
weights of the columns a¥/ represent the distances between successive coluntis of

The expected number of ones M is at mostn - k¥ = O(n'*Y) (assuming the raté/n is constant). So
multiplication by M can be done in sub-quadratic timeulfc F is a message vector, the encoding process
(i.e., computing the codewokd= « - G) can be decomposed into two stages:

1. Computev = u - M. This requiresO(n'*Y) operations.

2. Compute: = v - A. This requireD(n) operations.

So the whole encoding process is sub-quadi@tia! ).

As above, we will abuse notation by referring to the familyeabembles

{GRA(n7 R7 y)}nGN*
simply asCra(n, R, y).

Our aim is to show tha€ra(n, R,y) approaches the asymptotic Gilbert-Varshamov bound. Mamadlly
we want to show that for any < % and R < 1 — h(d), a code chosen fromBra(n, R, y) will be an
[n,nR, > nd]-code with high probability (with a probability that congess tol asn tends to infinity).

3.4.2 Input/Output Weight Distribution

Our goal in this section is to get an expression upper bogitha probability

Pr dmin((‘fRA(n,R,y)) <nd (3.5

12



as a function of, R, y andé (see Theorem 3.14). We will then use this in the next sect@how that when
R < 1 — h(0) this probability will converge to zero as tends to infinity. Our approach to obtaining this
upper bound is to compute theput/Output weight distributionf the generator matrix d@ra(n, R, y).

Suppose we have valuese N*, 0 < R < 1and0 < y < 1. Setk = [nR]. We consider the following
experiment:

Sample a code (along with iksx n generator matrix; = M A) from Cra(n, R, y).
Sample a message vectouniformly at random fronF5.

Computey = uM.

A w0 np P

Computer = vA (soc = uM A = u( is the encoding ofi).

To eachu € F% there corresponds a distributidb, onv. We now make two observations. Firstly, the
distribution is the same for all’s of a given weight, i.e., if wdi) = wgt(v’) thenD,, = D,,. Secondly,
for a fixedu € F% the probabilities are the same for twis of a given weight (since each componentaé
independent of the others), so if wgi = wgt(v') thenPrg (v) = Pro, (V).

Definition 3.7. We define theé: x n matrix M as follows:

My = Pr[wgt(uM) =/ ‘ wgt(u) = w]. (3.6)

Notice that the probability in (3.6) involves two differestiurces of randomness: On the one hand the random
construction ofM (described in Definition 3.6), and on the other hand the @oicthe message vectar
(picked uniformly at random).

Definition 3.8. We define thex x n matrix A as follows:

Ayg = Pr[wgt(qu) =d ‘ wgt(v) = E]. (3.7)

Because the matrid is not random, the probability in (3.7) has a single sourceantiomness, namely the
choice ofv. We call M and A theinput/output weight distributiondOWD) of the matrices\/ and A.

Lemma 3.9. Let € be a code sampled fro@iz4(n, R, y), and letk = [nR]. Then

néd k n
Pr[dmin(e) < nfﬂ < Z Z (Z) 'Zﬁwe - Agq. (3.8)
=1

d=1w=1

Proof: If we let G be the generator matrix @f, thenG is a random matrix whose IOWD is thex n matrix
B defined as

Bya = Pr[wgt(uG) =d ' wgt(u) = w}

As in (3.6), there are two sources of randomness for thisaglitity: the construction oy (sampling from
the ensemble), and the uniform choicewofFor the rest of this proof we suppose that we have a vector
chosen uniformly at random frofi;, and we let

v=uM, and c="vA, (3.9

13



so thatc = uG is the codeword obtained from We have:
Bya = Z Pr[wgt(v) =/ ‘ wot(u) = w] : Pr[wgt(c) =d ‘ wot(v) = 6],
(=0

which using Definitions 3.7 and 3.8 leads to
Ewd = Mw@ : Zéd'
=0
Let W, be the probability that a codeword picked uniformly at ramdeas weightd. This is equal to the

probability that a message vectopicked uniformly fromF% gets encoded to a codeword of weightvhich
gives us

ko(k
Wy = Z%”—k) Bya = 2kz< >ZMwe Aga. (3.10)

£=0

So since there are at ma¥t codewords ire, by the union bound the probability that there exists a caddw
of weightd is at most2* - ,:

k n
Pr|:E|C eC: Wgt(C) = d:| < Z <k> ng : ng. (3.11)
w
w=0 /=0

Since s
[dm.n((?) < né} < ZP[EIC € C:wgt(c) = d], (3.12)

d=1

we obtain

Pr[dm.n ) < né} Z Z ( ) ;%Mw A (3.13)

d=1 w=0
Because all the terms are non-negative, this inequalityhstds if we start the sums at = 1 and/ = 1:

Pr[dm.n ) < né} Z Z ( ) ;:Mw Ay, (3.14)

d=1w=1

which is the required resulia

So to get the bound on (3.5) we are looking for, we need exjoressor M ,,, and A,;. The IOWD of the
accumulator matrix is given in [22] without proof, so we indé a proof below.

Theorem 3.10. L i
y (LZ/QJ)(M/Q}—l).
()

Proof: We would like to count how many vectorse F5 of weight/ have the property that= v - A has
weightd. Lets; < ... < s, € {1,...,n} be the/ indices such that;, = 1. For convenience we also define
so=1.Forallj =0,...,¢ —1we defineS; = {sj,...,sj41 — 1}, andSy, = {s¢,...,n}. Notice thatS, is

(3.15)

14



the only set that may be empty, all other sets will contaireast one elemengy, . .., .S, form a partition of
{1,...,n}. We call.S; aneven setvhenj is even (includingj = 0), and arodd settherwise.

If ¢is even then there a®/2 + 1 even sets, and/2 odd sets. I¥ is odd, there ar¢/ + 1)/2 even sets, and
(¢+1)/2 odd sets. So in both cases there [@& | + 1 even sets, anf¥/2] odd sets.

By looking closely at the accumulator matrix, we can see that

. 0 if 4€S; whereS;isaneven set
‘ 1 if ieS; whereS;isan odd set

Observe that by deciding on the size of eachSetve are uniquely determining the values .. ., sy, and
therefore the vectar. So to count how many vectotdead toc having weightd we need to count how many
ways we can construd, . . ., S, such that the odd sets contain a totatl@lements, and the even sets a total
of (n — d) elements.

Our problem is now reduced to one of balls and bins: we needateg ones (balls) intg ¢/2] odd sets
(bins), and(n — d) zeros into /2| + 1 even sets. We recall that in general for b there are(} | ) ways of
placinga balls intob bins in such a way that no bin is empty (we write out thelements one after the other
and pick(b — 1) dividing lines in between two elements).

n

The number of ways of putting the: — d) zeros into thel¢/2] + 1 even sets is{WQ‘j) (we have(n — d)
instead of(n — d — 1) because we also allo to be empty). Likewise, the number of ways of putting the
ones into the/2] odd sets i, j1" ;)

So the total number of ways of placing the ones and zeroshetsetsets is

GZQT) ' (Miﬁi 1)’ (3.16)

and this is therefore the number of vectorsf weight/ that lead to a codewordof weightd. Since the total
number of vectors of weight/ is (’g) the result followsm

Theorem 3.11. .
_ n Y, n=

M = -(P,) - (1—-P 17

wl <£> ( w) < w) ) (3 )

where P, denotes the probability that a fixed entry:ois equal tol, given that the weight af is w:

[kY]
P, — % _ % . <1 _ 2%”) , Where k = [nR]. (3.18)

Proof: Letu € F5 be a message vector of weight First note that a fixed entry; of v depends only on
u and column; of M, which is generated independently of all other columsis= 0 if and only if among
the | k¥ | components chosen frofd, ..., k} to construct columr, an even number are in supp. So the
distribution on the possible values@©flepends on wgt:), but not onu itself (all u's of weightw lead to the
same distribution).

Each time a component is chosen, it will hit s@ppwith probability ¥. So

15



Pil=0] = SEP D ("0

\—/
—
o
@
[t

_ (_Tw

We therefore see from the definition Bf, in (3.18) t
P,=1- PI’|:’UZ‘ = 0:| = Pr[vi = 1:| . (319)

Since the components are independent, constructimg= (v1, ..., v,) consists ofr Bernoulli trials, where
v; = 1 with probability P,,, so (3.17) followsm

Now the binomial function(t) is a map

() :mxn—n

We extend it to be defined over all non negative real numbers:
<> : Rzo X REO — Rzo.
This is done using the gamma function (which is an extensfdheofactorial function to real numbers), the

details are given in Appendix A. This extension has all theeexed properties, in particular the following
bound on(}) still holds:

Proposition 3.12. For anya,b € Rwith 1 < b < a we have
a
< 2a-h(b/a) )
(0)=
Proof: See Appendix Am

We also have the following proposition:

Proposition 3.13. Foranyn, ¢ € N*,0 < § < % with 1 < ¢ < 2nd, lettingd = 1 — § we have

S (i) () = GG
Proof: See Appendix Am

Throughout we will sef = 1 — 5. We are now ready to compute the bound we set out to find at tiarbag
of this section:

16



Theorem 3.14.1f C is a code sampled from the ensemBles (n, R, y), then

R 2 5/—’8(71&) f(n,tw) _/_g(n,é)
n T

Pr[dmin((?) < n5] < 053 Y <”f> .PL.(1-p,)" " (Z;) @Z) (3.21)

w=1 (=1

where _—
Pw:%—1~<1—2—w> . (3.22)

Proof: Let dmin = dmin(C). We saw in Lemma 3.9 that

ndé nR n

Pr|:dmin < né} < Z Z <nj> -;Mwe - Agg.

d=1w=1

Now plugging in the expressions we computed in Theorems&ti03.11 ford,, andM ,,, (and moving the
sums around), we obtain

i o S8 () 0 £ (L) e

w=1 (=1 d=1

whereP,, is defined in (3.18). Therefore applying Proposition 3.XIkto:

nR n <
nR , n—t nd no
in < < E E .pPto(1— ) ‘
Pr[d”"””é} = wleﬂ(w) Fo- (1= Fo) (6/2) (m)
Finally notice that since
£ s — (M) o
2 7" 02) =

in our sum we only need to consider valued oip to2nd, and therefore the required result (3.21) follows.

3.4.3 Proof Outline

Our aim is to show tha®r4(n, R, y) approaches the Gilbert-Varshamov bounchasnds to infinity. So if
we leth denote the binary entropy function, then we want to showw@n R < 1 — h(J), the probability
in (3.21) tends t® asn tends to infinity. Indeed, in this case (3.21) is an upper daamthe probability that
the GV-bound imot achieved.

Let )
(n,w) g(n,
N A f(n,lw) —_—

s (B} ()7

be the term inside the double sum in (3.21). Our goal is togtbe following theorem:
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Theorem 3.15. Suppose we are givén< R, 0 <y < 1 and0 < § < % with R < 1 — h(d). Then there are
N, 7 > 0 (depending only ok, 6 andy) for which

n>N = Yl=1,...,[2n0]| ,Yw=1,...,|nR] : m(n,ﬂ,w)gexp(—T'ny). (3.24)

From this theorem we deduce that each teum, ¢, w) in the double sum (3.21) is superpolynomially small
in n, and since there is only a polynomial humber of terms, thelevhom will converge td asn tends to
infinity.

Outline of the Proof: The proof of Theorem 3.15 below is very long and techniea(n, ¢, w) is a compli-
cated expression, and which ones of its terms dominaterige tadepends on the sizes 6&ndw relative to
n. To measure these we define

Notice that for the values of andw that interest us we have € [1,26] andy € [, R - n¥]. We will

show that there are constamtsI’, andI’,, (depending only or?, § andy) that enable us to divide the proof
into four cases:

e Case 1:v > I',, and any. For each: large enough this will cover all pai(g, w) with ¢ = 1,..., |26n|

andw = [I’u . nl_y-‘ ooy [RR].

e Case 2:v < I';, a < A. For eachn large enough this will cover all pair@, w) with £ = 1, ..., {AnJ
andw =1,..., Lfg-nlny.

e Case 3:y < Iy, a > A. For each large enough this will cover all paitg, w) with £ = [Anw vy [20m]
andw =1,..., Lfg . nl_yJ.

e Case 4: Ty < v < I',, and anya. For eachn large enough this will cover all pairg,w) with
¢=1,...,[20n| andw = {I’Au-nlfy—‘ e {fg-nlny.

The following diagram illustrates the splitting of the pkeim into our four cases:

o A
20
case 3
A case 4 case 1
case 2
0 - - .
0 I, T, RnY 7

18



3.4.4 Case 1: Largey, Any .

Outline: Recall that we view the encoding as a two stage process. Givesdewordu € F5 we first
computev = wu - M, and then the codeword = v - A. The idea in Case 1 is that gsgets large,P, =

1 1. (1 — 2u)™ il get close tol. Recall thatP,, represents the probability that a fixed entryof

v is equal tol, see (3.19). S@&,, being close t(% means that is close to being a (uniform) random vector.
Since the codeword can be expressed asv - A and A is bijective, this means thatis also close to being a
(uniform) random vector. So asgets large our code resembles a uniform random code, wddheproceed

in a similar way to the proof of Theorem 3.4.

The next lemma formalizes the idea that gets close to} when~y gets large.
Lemma 3.16. For anye; > 0, there areNy, '} with

1
Py — —‘ <e. (3.26)

N> Nyj,v2>2T'1 = 2

Proof: See Appendix Ca
Lemma 3.17. For anyes > 0, there areNs, I's with
n> N5,y >T5 = (P,) - (1-P,)" <27l
Proof: From Lemma 3.16 we see that for any if n and~ are large enough then
(P) - (1=P,)" " < (% + q>n. (3.27)

So givenes, by choosings; so thatl + ¢; = 271, the right hand side of (3.27) becomzss™!~<) and so
the result followsm

Recall that) is defined a® = 1 — §.
Lemma3.18.Vn € N*,§ < 3, =0,...,[2nd] :

0 - i
5-h(%> +5-h(ﬁ> < h(5). (3.28)

Proof: First note that the derivative of the binary entropy functtois

%h(m) — log, (% - 1). (3.29)
Let
g(z) =5 h(%) 45 h(%) (3.30)



We want to upper bound the functigiiz) over the rang® < x < § (identifying = with %). We have

d ) 5 86 6+0
—q(x) = log; (; . 1) + log, (; . 1) — log, (ﬁ -+ 1), (3.31)
so that _
1 _
iq(:c):0<:>®——+1:1<:>3::55. (3.32)
dx 2

It can then easily be checked that= §6 is a maximum fory(x). Therefore
q(z) < q(66) = - h(8) +6 - h(5) = h(9), (3.33)
where the last equality follows from the fact thg®) = 2.(5). m

Let us summarize the situation so far. We want to show thaafyrR andd < 1 — h(R), the following
expression (see (3.21))

s(n,w) g(n,0)
R A\ f(nvsz) ,—/ﬁ
e /R / nt [ nod no
"5;;@)'”“‘&) () ()

tends to zero as tends to infinity. Our approach is to show that each term @i double sum is super-
polynomially small inn, and so since there are only a polynomial number of termsytizde sum will go to
zero asn tends to infinity. We defined

m(nvng) = s(n,w) ' f(n,ﬁ,w) g(n7£)7 (334)
to be the expression inside the double sum.
Proposition 3.19. There areNg, I's, 76 > 0 with

n > Ng,v > T = m(n,l,w) < exp(—76-n?). (3.35)

Proof: Using the inequality(}) < 227(*/%) (see Proposition 3.12), we obtain:

s(n, w) = <”R> < onBh(GR), (3.36)
w
and by Lemma 3.18

We also know from Lemma 3.17 that for aey > 0, there are@Vs, I's with
n>Ns,y>T5 = f(n,lw) <2075 (3.38)

Sincem(n, £, w) is the product ok(n,w), f(n,¢,w) andg(n,¢) (see (3.34)), combining (3.36), (3.37) and
(3.38), we see that for arey, > 0, there areVs, I's with

n> Ny y>T5 = mn lw) < 2EMGE @) nh@®) < g=n[1-ho)-R-c] (3.39)
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Settinges = % - (1 — h(5) — R), we see that
m(n,l, w) < exp ( —T6 n),
wherers = 1 - (1 — h(6) — R) - In(2). Furthermore sinc& < 1 — h(5), we haverg > 0.

It is clear that—7¢ - n < —7¢ - nY (sincers > 0 and0 < y < 1). So we have actually shown a stronger
statement than the required result. WeSgt= N5 andl's = I'; to complete the proom

The value ofl's is what we will use for our constaiit,:

Definition 3.20. We setl’, to be some arbitrary value df; that satisfies (3.35) (such a value exists by
Proposition 3.19).

It is important to note thak,, is aconstant in the sense that it depends only Bné andy (which we have
fixed throughout). In particular it doe®t depend om. Throughout, a value written asz indicates that it

depends only o, § andy. All variables written this way depend only d&, § andy, but the converse will
not be true.

This result of Case 1 is summarized in the following theorem:

Theorem 3.21. Suppose we are givéh< R < 1 and0 < § < % with R < 1 — h(9). LetI’, be defined as in
Definition 3.20. Then there a&, 74 > 0 (depending only o, 6 andy) for which

n>Ng = Y=1,...,|2n6], YVw = [fu-nl_y-‘,...,LnRJ: m(n,é,w)gexp(—m'ny).

3.4.5 Case 2: Smalk, Small ~.

We recall once more the definitions @fand~:

l
a = —, Y=
n

(3.40)

Outline: For this case we will show that there exist constatit§', 7 > 0 (depending only o, § andy) for
which for alln large enough the statement

m(n,l,w) <exp (—7-nY)

holds foralll =1,...,[A-n] andw =1,...,|T - n'7¥] (i.e. for all/,w with o« < Aandy <T).

We will make use of the following theorem:

Theorem 3.22.For anyb, x withb > 1 and0 < z < 1 we have

1—xg(1—%f. (3.41)
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Proof: See Appendix Ca

We start with the following lemma:

Lemma3.23.Forall 0 < R< 1,n e N w=0,...,nR,ifnR > 1then

w
P, < —. 42
w = (nR)l_y (3 )
Proof: We start by recalling the definition @, (see (3.18)):
11 2w\ (R 1 2w/(nR)1Y\ (nR)
Po=3-53(1-75) —2'(1 (1 (nR)Y ) )
Now setting
2w
- — Y
x WR)’ (nR)Y, (3.43)
from Theorem 3.22 we obtain
1 z\b 1 w
Py=7 (1 (1 b) ) <3 (1 (1 :c)) R (3.44)

as requiredm

Lemma 3.24. For anya > 1, there isX > 0 with
xr

0<z<X = e <1——.
a

Proof: The curve ofe~* is convex and goes through the po{t 1), where its derivative is-1. The line
1 — £ also goes througtn, 1), and its derivative is-1 > —1. So it will intersect the curve of ~* at some
other point(xg, yo), with o > 0. We letX = z¢. m

Lemma 3.25. For anya > 1, there isI", with

y<I'y = nln(l—Pw)ﬁ—é';Uﬁyy
Proof: We first recall thaty is defined as
N = n;””_y (3.45)
and 1 1 2w\mRY 1 1 —2w
Po=5-5(1-2%) 25‘5'6@(@)’ (3.46)

since for anyz € R we havel + = < exp(x). Suppose we have a fixed> 1. Using Lemma 3.24 with
x = R?Zy (and recalling thaR andy are fixed), we deduce that therelis> 0 for which

27y 1 2y
y<I' = exp(—Rl_y> gl—a-Rl_y (3.47)

22



We also know that'z < 1 we haveln(1 — z) < —z, and so

y<I = nln(1-P,) < —nP,

< 3 < — 1+ exp (1{1—2_1)> (using (3.46))
< %( —1+1-1- R?ﬁ,) (using (3.47), since < I)
= —u Y (using (3.45)).

Settingl’, = I' then gives us the required resuit.

Definition 3.26. We define .

0 = 2\/5+Z(1—2\/§) . (3.48)

This choice fora will become clear later in the section. Notice tlaatlepends only o@a. A straightforward
inspection shows thdt > 1. Therefore applying Lemma 3.25 we obtain:

Corollary 3.27. Leta be defined as in (3.48). Then therdis > 0 with

wnY

y<Ty = nln(l—P,) < — =Tk

(3.49)

Q| =

Definition 3.28. LetI', be a fixed value that satisfies (3.49).

Recall that we are trying to show that the expression
m(nu & ’U)) = 8(”7 w) : f(n7£7 w) : g(na 6)

from (3.21) is superpolynomially small im. Settingm(n, ¢, w) = In (m(n,é, w)), we will show that there
are constant®V andr > 0 for whichn > N implies that for all appropriate values 6&ndw we have:

my(n,l,w) < —7-nY. (3.50)
Definition 3.29. We define
si(n,w) = In(s(n,w)).
filn,l,w) = In (f(n,ﬁ,w)).
g1(n,?) = In (g(n,ﬁ)).

Note that
m(n,l,w) = s1(n,w) + fi(n,,w) + g1(n,£).

Propositions 3.30, 3.31 and 3.32, will provide upper boumis; (n, w), f1(n,¢,w) andg;(n,£). We will
then use these to prove (3.50).
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Proposition 3.30. We can upper bounsl (n, w) in the following ways:

si(n,w) < —wln (ﬁ) — nRIn (1— ﬁ%) (3.51)

In{%) -1
si(nyw) < —w'%. (3.52)

Proof:
e Using the inequality(}) < 2*"(/%) we obtain:

S(H,w) — <7’LR> < QHR-h(%) — e*wln (%)‘F(’UJ*HR) In (177:“7)'
Note thatl — -% < 1, sowln (1 — %) < 0. Sinces; (n, w) = In (s(n,w)), (3.51) then follows.

e We have the following general bound on the binomial coeffitse

() < (59,

which directly leads to (3.52

Proposition 3.31. Leta andI’, be taken from Definitions 3.26 and 3.28.4f< I', andnR > 1 then

w wnY w
filn,l,w) < {ln <W> - R — /ln <1 - W)

Proof: Recall from (3.14) thaf (n, ¢, w) is defined as
—0

SN

f(nvng) = (Pw)e ’ (1 B Pw)n

This means that

filn,l,w) =£In(Py) + nln(1 — P,) — £In(1 — P,). (3.53)
Now Lemma 3.23 (which applies, since we are assumingritiat- 1) tells us that
w
<
Fu < (nR)—v’

and Corollary 3.27 (which applies, since we are assumingthal’,) tells us that

1 wnY
nln(l — P,) < oy
Combining these with (3.53) we deduce:
w wn?y 1 w
< - - S — )
fi(n,6,w) < /ln <(nR)1—y> e an (1 (nR)l—y>’ (3.54)

as requiredm
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Proposition 3.32. We can upper boundg (n, ¢) in the following ways:

n(n0) < _gln(W@ . %ln<2_£6>

(3.55)
—né'ln(l—%) — ng'ln(l—%).
gi(n,0) < §n <2775 — ) + fln <2775 -~ )
(3.56)
—né'ln(l—Q—fbé) — ng'ln(l—Q—ﬁg).
Proof: Recall the definition ofj(n, ¢) (see (3.14)):
no nd
o0.0= (772) (1)
Again using the inequality) < 22(/) we obtain:
() < 2o(zw)
< 9 5logs (55) ~(5-nd)logs (1—%)’
and a similar bound foQ”/i). Sinceg; (n,£) = In (g(n, £)), we obtain
gi(n,0) < —£-In (%(5) ~(né—4%) - In (1 — W%)
(3.57)

e 1) Becausén (1 — 55) < 0 andln (1 — %) < 0, we can remove terms to obtain (3.55):

l L L l l = L
< —= — ) - - ) == — ) - - — ).

e 2) In general, for any: > 0 we have

—g-ln(:c)—i—g-ln(l—x):§'1H(1;x>:g'ln(%—l)a

so applying this withe = Tﬁa and thenz = 2—7‘;3 (3.57) can be rewritten as (3.5@).

We summarize the bounds obtained by the last three theore(8s58) below: Let andI’, be taken from
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Definitions 3.26 and 3.28. Ify < T', andn > % then
t

In (%) -1
In(2) '

31(n>w) < —w-

filn, bw) < mn<(nlgly> - gl—i % ¢In (1_(nRu)}1?/>' .
ts te
g1(n,0) < —gln <%> - gln (%)
tr tg
— (- g) (- o)
Recall that

my(n,,w) = s1(n,w) + f1(n,,w) + g1(n,£).

So using these we obtain a boundmn(n, ¢, w) consisting in a sum of eight terms, . . . , ts. Letma(n, ¢, w)
be obtained by removing terms andt, from m;(n, ¢, w):

mao(n,l,iw) = Kln(ﬁ) — ,;%’Zyy% — %ln(%) — %ln<%>
(3.59)

—né-ln(l—%) — ng-ln(l—%).

Outline for the rest of Case 2: We will first show (Lemma 3.34) that fott, ¥ small enough, we have
ma(n,f,w) = 6( —wn¥). We will then show (Lemma 3.35) that the remaining tetmandt, areo(n?).
We then can deduce that; (n, £, w) = 6( — wn¥).

The following lemma will be useful:

Lemma 3.33. For all x,b € R+ we have
—zln(bx) < 1
rin(ox) < b

Proof: See Appendix Ca
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Lemma 3.34. Leta andI', be taken from Definitions 3.26 and 3.28. Then thereyer; > 0 with

a< A7 = mo(n,lyw) < —77 - w-nY.

Proof: mgq(m, ¢,w) was defined in (3.59) as

mbu) = (s ) - e - () - gm(s)

- n(51n<1—2%5> — n51n<1—%>.

First note that the third and fourth terms can be expressed as

(Y (Y (BN (Lt
2 "\ans) T2\ o) T T2 ") T T M\ n )

where we let; = 2V/85. Sinced < § < % ands = 1 — ¢ (by definition), we havé < 56 < i, and therefore

(3.60)

0<ec <1 (3.61)

Next, recalling thaty = £, we can express the last two terms of (3.60) as

n?

4 S 4 _ 49 %
—nd In <1—m> —ndln <1_ﬁ> = —on <1—§‘—5> -5 n (1—%)

:_“«@_%W”U—%Wﬂ.

(3.62)

Now, if we let 3 be defined as in (3.62) then

mao(m, l,w) = Eln(ﬁ) — }é"l’lyy% —6.1n<cf'n> — Eln(ﬂ)

Rl_y n
— o (OB ) - gy

b
1
= ¥ |- L1 L.R y.ﬁ _ w1
- nv n¥ wey R'-v a |°

From Lemma 3.33 we know that for anyb € R~y we have

1

—xln(xb) < —.
xn(:c)ibe
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Applying this withz = - andb =

Rl—y .
oo, 3 we obtain
mo(m,l,w) = nY-

— zIn(xb)

IN
S
<
|
)
TIE
<
S
1

wey |
e RI-U

Il
S
<
=l
|
=y
TE
<
SHL
[ I

=)
)
<
—
o |8

Recall thats was defined as

(3.63)
-]

ﬁ_ <1 a)ﬁ/a <1 a>g/a . a)QS/a :|1/2
N 20 29 2 )
In general we have

. B 1/z 1

Jing (1 =) ™ = 2
and so applying this to our case with= 55 and thenr = 2% we can deduce
' o 26/ a 25/ 11/2 11 1/2 1
lim 11— — 1 -—= = Z.Z - Z
a—0 20 20 e e e

and so

9

We can write this formally by saying that for aay > 0 there isAg > 0 for which

1
a< Ay = 'B —e
Going back to (3.63), we have

1
Sﬁg — Ege—i-ﬁg.

(3.64)
vy, W a
S >0, (3.65)
and therefore combining (3.65) and (3.64) we obtain
w c1 1 w c
aSAS — ny.ley';'Bény.ley'
So using this with (3.63), we now have

;1' (6+68).

a< Ay = ma(n,l,w) <nY-

w c1 1
RI-v [? H(etes) }

(3.66)
We now show that itg is close enough t0 anda close enough ta, then the following term from (3.66)

1 1
. (e +€g)

(3.67)
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iS negative. Set
= (1=c). (3.68)

Sincec; < 1 (see (3.61)), we havg > 0. Next, recall (see Definition 3.26) that we had set the vafueto

0 = [2\/54%(1—2\/5)}_1 = [(:1+§(1—c1)y1 (3.69)

4

(andc; = 2V/50 by definition). It now becomes clear why this value was chdseia. Plugging (3.68) and
(3.69) into (3.67) we deduce that

9.(e+e)—1 = <. <e—|—%~%~(1—cl)> - <cl—i—%(1—cl)>
= a+i(1l-c) — a-201-a)
= —;-(1-a)
< 0
Therefore setting
. 1 C1 1
= Ry ;-(e—l-e)—a ,
we haver; > 0, and (3.66) leads to
a < Ag = may(n,l,w) <nY- v C—l-(e—l—e)—l =—77-w-nY (3.70)
> /AR PAUZESD) =~ Rl_y e 8 a 7 . .
SettingA; = Ag gives us the required resui.
Lemma 3.35. There areNy, Ag, T'g, 79 > 0 with
n > Ng,a < Ag,y <T'g = my(n,l,w) < —19-n". (3.71)
Proof: Recall that we had a bound en, (n, ¢, w) consisting of eight terms, . .., ts, see (3.58). We then

chose six of these terms to makemp(n, ¢, w), see (3.59). In Lemma 3.34 we showed that there was some
7 > 0 for which
ma(n, l,w) < —77 - w - n? (3.72)

for o small enough. We fix; so be some value that satisfies (3.72).

In this proof we will show that the two remaining termssef; (n, ¢, w) (namelyt; andt,) are dominated
by (3.72) asn gets large. More formally we will show that for each of thesertst;, given anye there are
N, A, T for which
n>Na<A~v<I = Lge.
T7 - W - nY
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e 1) ¢ is dominated by-77 - w - nY.
First recall that

So using the definitioy = —+%; we have
t 1 [ 1“(%) 1]_ 1 [ 111(3%) 1]

Trow-nY 77 In(2) 77 - In(2) ny n¥

ny nYy

which we can write as

v ) w1 (3.73)
Tr-w-nY 77 1n(2) ny ny ny |’ '
Recall thatk andy are fixed, and that
. In(x)
lim = 0.

T—00 €T
So settingr = n¥ we see that ify is upper bounded then (3.73) will tend to zeronagets large. Formally,
for anyeiog > 0 there areNyg, I'1¢ with

t
n> Nig,y <T1p = ——— < e10. (3.74)
T7 - w - nY

e 2)t4 is dominated by-77 - w - nY.
We start by recalling that

ty = —{In (1— #)

Using the definitiongx = % andy = -4+ we obtain

nl-v
ty lln (I—W) a-n'7Y.In (1—%) o In (1—%) 5.75)
T7"LU'TLy__ T7 - w - nY T T7 - W __7_7 7 ’
Since@ — —1 whengz tends to zero, by making bothand~ small enough we can bring (3.75) as close
to zero as we need. Formally, for aay > 0, there ared,, "1 with
t
a<Ap,y<Ty — —— <ep. (3.76)
T7 - W - ny
e 3) Combining it all.
We have
mi(n, b, w) < mo(n, b, w) +t1 + t4.
From Lemma 3.34 we know that thereds for which o < A7 implies
my(n,l,w) < —71r-w-nY 41t +ty
t t
— rwen? <1+ 1 n 4 ) (3.77)
—T7-w-nY =17 w-nY
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Now letejg = €19 = % (in fact anything< % would do). PickNyg, ' from (3.74),A15, 1o from (3.76).
Now set

N9 = Ny,

I'y = min(T'1p,I2),

Ag = Ap,

€ = 1/3 (= €10 = €12).

Combining (3.74), (3.76) and (3.77), we can deduce thatif Ng, o < Ag,v < I'g then

T7 W T7
.nyg__.ny

mi(n, €, w) < —77-w-n¥- (1 —eg—€g) = —— 3"

where the last inequality holds because> 1. So settingrg = - gives us the required resus.

Definition 3.36. Let A be a value ford, that satisfies (3.71) (we know that such a value exists by Le®8b).

The result of Case 2 is summarized in the following theorem:
Theorem 3.37. Suppose we are givén< R < 1and0 < § < % Let A be taken from Definition 3.36. Then
there areNy, I'g, 79 > 0 (depending only o2, § andy) for which

n> Ny — VE:L...,LAnJ,szl,...,tfg'nlfyj : m(n,ﬁ,w)gexp(—Tg-ny).

3.4.6 Case 3: Smally, a > A.

We will make use of some of the work done in Case Z.Q_andfa be taken from Definitions 3.26 and 3.28.
We will assume throughout this section (Case 3) that I',. Recall from (3.25) that. and~ are defined as

14 w

a=— = —.
n’ R

(3.78)

Propositions 3.30, 3.31 and 3.32 still hold. We rewrite thmsow after some algebraic manipulations:

u1 u9
[y 7y ¥
si(n,w) < n'__ﬁ'ln<—Rny> —R1n<1——Rnyﬂ.
u3 u4q us
i 1 (3.79)
ot Y o )
fl(nﬂgﬂw) S n- -O[hl (m) —aln (1_ Rl*?/) —ma]

g1(n,?) < n- [%111(2—5—1) —5ln<1—%>+%ln<§—1) —Sln(l—g_)}



Outline of Case 3:Intuitively, whenA < o < 1 andv — 0, the terms in (3.79) behave as follows;, us, us
andus tend to zeroy is upper bounded by some positive value that depends, andus — —oco. Therefore
the sum of alk;’s will tend to —oco, and so we can certainly upper bound it-by for somer > 0 (any value
will do). This means that we can upper bound(n, ¢, w) by

_T.n’

with 7 > 0. This is actually a stronger statement than is required @esronly—r - n¥).

Proposition 3.38. If « > A then there is a value}; > 0 depending only od and A for which

g1(n,0) < cx-n.

Proof: We know that
gl(nvg) <n- Uﬁ(Oé),

uﬁ(a):%hl(%(j—l) —51n<1—%> —i—%ln(%s—l) —51n<1—%>.

Now becaus® < A < o < 26 < 1, we study the functiom(c) over the rangd,, = [A, 26]. We note that
ug () is differentiable and therefore continuous oYgr Soug(«) is a continuous real function over a closed
bounded interval, it is therefore bounded. In particularéhexists an upper bounrd (depending only o
andA). We sety = max(cs,0) (to ensure thaty > 0) and obtain

where

g1(n,0) <wug(a) -n <y n.

Lemma 3.39. Letuz = o In(4=;) be taken from (3.79). i > A then for anyr;4 > 0 there isI';4 with

vy<T'y = uz3 < —74.

Proof: First notice that ify < R'~¥ thenln(+) < 0. Therefore

a>Ay< R = a-ln(Rly) < A-m(Rly), (3.80)

and

'lyiLI%)A'ln<Rly> = —o0.

So formally for anyr;5 > 0 there isI'15 > 0 with

Rly) < —ms. (3.81)

’)/Srlg, — Aln(

Sowe setr;5 = 714, take some valug; that satisfies (3.81). Lettinig;, = min (I';5, R*~¥), and combining
this with (3.80) we obtain:

a2A7’Y§P14 — a.ln(RY—y) SAIH(%) S_Tl4,
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as requiredm

We will show that the terma, us, u4 andus in (3.79) are dominated by; = o - In (%)

Proposition 3.40. If o > A then for anye s > 0 there areNyg, '15 > 0 with

n> Nig,y <Tig = s1(n,0) + fi(n, ,w) < n- [ug+ €]

Proof: We know from (3.79) that
s1(n, 0) + fi(n, f,w) < n- [ug + ug + ug + ug + us). (3.82)

Recalling that

liIr%)a: In(z) =0,

we can deduce (by setting= %) that asy gets small and. gets large,

. e S
ny RnY

will tend to zero. Similarly, using the fact that
lim In(1 — z) =0,

z—0

we can show that ag gets small andh gets largeyus, uq4 andus all tend to zero. So formally this means that
given anyeg > 0, there areVig, 116 > 0 with

n > Nig,y <I'ie = w1 +ug +ug +us < €6.

The required statement then follows immediataly.

We can now combine all this to obtain the following:

Proposition 3.41. If o > A there areNy;, ['a1, 721 > 0 with

n > Nop,y < T = mi(n,l,w) < —791 - nY. (3.83)

Proof: We are supposing throughout this proof that A. Recall that
ml(n7£7 w) = Sl(”v w) + fl(n7 gu ’U)) + gl(n7£)

We first sefe14 = % in Proposition 3.40, and get valu@ég; andI' ¢ with
1
n> Nig,y < T = s1(n,0) + fi(n,{,w) <n- [uz+ 5]- (3.84)

Next, we know from Proposition 3.38 that there is some value> 0 (depending only ork and A) with

g1(n,0) < cx-n. (3.85)
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We now setr4 = ¢4 + 1 in Lemma 3.39. This gives us some valtig with

v<Tyy = ug < —(ca+1). (3.86)

So settingVa; = Ny andl’y; = min(I'14, '14) we combine (3.84), (3.85) and (3.86) to deduce thatif A

then
nZNQD’YSFQl - ml(nugulw) S Sl(nuw)+f1(n7£7w)+ gl(nug)
——

n-[u;),—i-%] + n-cap

IN

= n-[us+1+4cal
< n-[—(Ga+1)+ 5+ ca)

— e [-4)

SO settingry; = % we have shown a stronger statement than the required résidted because,; > 0 and
0<y<l,wehave—191 - n < —791-nY. m

Definition 3.42. LetI'g andrg be values that satisfy (3.71) (such values exists by Lemﬁ@),sin Case 2.
LetT'5; and7o; be values that satisfy (3.83) (such values exist by Prapas&41). We definé’, as

f@ = min (Fg,rgl).

Our three constantd, I'; andI’, have now all been defined. Once more, these values dependmily
andy. Letting 792 = min(7g, 791) and Nogy = max(Ng, No1), we summarize the result for Cases 2 and 3
below:

Theorem 3.43. Suppose we are givén< R < 1 and0 < 6 < % LetI’, be taken from Definition 3.42. Then
there areNss, 199 > 0 (depending only ok, § andy) for which

n> Nog = Yl=1,...,[20n], szl,...,{fg'nlny : m(n,l,w) < exp ((— 722 - nY).

3.4.7 Cased: Anyy, [, <~ <T,.

Outline: We will first show that for large enough we havg (n, ¢, w) + gi1(n,f) < n - [v + €|, wherev is
some function okx and~, ande can be made as small as necessary. Then, we will show thatitheome
7 > 0 for whichv < —7 (for all valuesca, v we are considering in Case 4). Finally we will show tﬁ%{ﬁﬂ
tends to zero when gets large, and therefore is dominatedfpyn, ¢, w) + g1 (n, £).
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We start by giving a reminder of the definitions@find~:

o = — = .
n ) Y nlfy

Recall thatP,, was defined in (3.18) as follows:

(nR)Y
b L L (20O
2 2 nRk

Definition 3.44. We defines as

ﬁ:eXp(_ R%?y)'

I\Jotice that3 depends ony, and therefore om. We are assuming in this section that< ~ < I',,. (I',, and
I, are constants depending only &nd andy taken from Definitions 3.20 and 3.42). So because —x) is
a decreasing function we have

By B

e e
or,, or,
exp ( — ley) < B <exp ( — ley) . (3.87)
Furthermore notice that sinqél%, % > 0, we have
0< By,By < 1. (3.88)

We know that for any constante R,

lim (1 — %)x = exp(—c).

Tr—00

The following lemma essentially states thatcitlepends orx but is boundedthen we have an equivalent
result:

Lemma 3.45. Let f : R — R be a bounded function. Then for any 0 there isX with
N f(@)ye
r>X = exp(— f(z)) —€e< 1—7 <exp(— f(z)) +e
Proof: See Appendix Ca

Intuitively the fact thaty € [fg, fu] (in Case 4) enables us to treptike a constant. More precisely we use
the fact that it can get neither arbitrarily large nor adbity close to zero as gets large. From Lemma 3.45
we deduce the following:

Corollary 3.46. Let3 be taken from Definition 3.44. 4f < T',, (which we assume throughout case 4), then
for anye > 0 there isNV with

[a—

nzN:>%-(1_5)_egpwg§-(1—ﬁ)+e. (3.89)
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Proof: Recall that

p o 1 1 [ 2w 1 /R o (3.90)
Y22 nR 2 2 (nR)Y ' '

So applying Lemma 3.45 with = (nR)Y and f(z) = R?Zy (v depends om) leads to the required result,
since =exp (— f(z)). =

Now recall thatf (n, ¢, w) was defined in (3.21) as
f(n,L,w) = (Py)"- (1 - P,)" ", (3.91)
and sincef (n, £, w) = In (f(n, ¢, w)) we obtain
filn, t,w) = tIn (Py) + (n—¢) -In (1 — P,). (3.92)
We now give an upper bound gi(n, ¢, w):

Proposition 3.47. For anyess > 0, there isNo3 > 0 with

n > Nz = fi(n,l,w) <n- [—ln(Q)-i—aln (%) +In (1+ﬂ) + €o3 . (3.93)

Proof: From Corollary 3.46 we have that for amy; > 0, there isN»3 with
1
n > Nog — ln(Pw) <In (5 . (1 — ﬂ)) + €93, (394)

and
n > Nog — ln(l — Pw) <In <% : (1 + ﬁ)) + €93. (395)
Therefore because= « - n, n > Nog implies that

filn,Lbw) = {In(P,)+ (n—¢)-In(1-P,)

IN

‘- <ln (3(1-0)) + 623) + (n—=1¢)-In <%(1 +B3) + 623> (using (3.94) and (3.95))

IN

n- [—aln@) +aln(l —p) +a-ex3
—In(2) +In(1 +B) + aln(2) —aln(l+5) + (1 — «a) - 623:|

= n- [—ln(2)—|—aln<%> +1H(1+ﬁ)+623:|,

as requiredm
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Now, we define 3
1+

so that the bound in (3.93) can be written as

n > Nog = fi(n,l,w) <n- [— In(2) + aln (%) In <ci—cl> + 623:|. (3.97)

Notice that becaus{e}ﬁ is a strictly increasing function, i < Bl <pB< Bg < 1then

Ch Co
—— ——
1+ B 1+ B
1<( +}>gcg( +?>. (3.98)
1-—B; 1— By

Next, the bound ony; (n, w) from Proposition 3.32 still holds, we rewrite it below (aftsome algebraic
manipulations, see (3.79)):

gi(n,6) <n- [%m (%‘5 - 1> —5ln (1— 2%) —l—%ln <§ - 1> 3 (1— %)] (3.99)

We combine (3.97) and (3.99) to obtain the following defaoniti

Definition 3.48. Let v(«, ¢) be the following function:

v(a,e) = —In(2) +aln(l)+ ln(%)
~ (3.100)
+5I(2 - 1) - 6In(l — ) + (2 - 1) = 5In(1 - &).
(6 is a parameter with < 6 < % ands =1 — §).
So using this with Proposition 3.47, we see that for any> 0, there isN»3 with
n> Noz = fi(n, £, w) + gi(n,£) <n- [v(a,c) + e3]. (3.101)

Proposition 3.49. There is7», > 0 (depending only o2, and y) for which for any0 < a < 1 and
C1 < ¢ < Cywe have
v(a,c) < —Tog.

Proof: We will proceed by carefully analyzing the functiofx, ¢). We divide the proof into steps:

e 1) For fixedc we find whicha maximizesv(a, c).
We start by differentiating («, ¢) with respect tax. We define

v (a,c) = %v(a,c).
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This gives us

Vo) = W)+ i (E 1) #3217 (- 2) -l - 5] (~ &)

Now,

— (1-c)-a®>—-2-a+450=0.

We solve this quadratic equationdnto obtain

12\ /1-405-(1- ) 14/14485- (1)
1—c2 N 1—c2 '

V(,e) =0 &= a=

Clearly we haved + \/1 +460 - (c2 — 1) > 0andl — ¢? < 0 (sincec > 1). This means that the first solution

1+\/1+453-(c2—1)

- (3.102)

aq

is negative. So since we are considering the rangea < 24, the only extremal point we need to look at is
the other solution

1—\/1+455.(c2—1) \/14-4(55-(02—1)—1

Q9
1—¢2 2 -1

We write this as a function af, so we define

V14405 (2—1) -1
CcC) = .

u(c) o (3.103)

Now because’(«, ¢) is continuous for €]0, 24, and

lim v/ (o, ¢) = o0, lim v'(a,c) = —o0,
a—0 a—20
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we can deduce that(a,¢) > 0 whena < u(c) andv’(a, ¢) < 0 (otherwisea = u(c) is the only zero of
v'(a, ¢)). Thereforen = u(c) is @ maximal point ob)(«, ¢). So if we let

t(c) = v(u(c), ),
then for anya, ¢ with 0 < o < 26 andC; < ¢ < Cy, we have:

v(a, ¢) < t(e). (3.104)

So we can achieve our goal by upper boundiftg. We are considering values ofin the rangel < Cy <
¢ < (Cs (see (3.98)). Our strategy is to show thas sErictIy increasing, and that it tends to zerocagets
large, and therefore thafc) < ¢(Cs) < 0, so—7a4 = t(C2) will be a suitable value (see Figusel).

v(a, ) t(c)

u(c) Cy

t(C) « —T924 C

Figure 3.1: v(«, ¢) andt(c).

e 2) We show that(c) is strictly increasing for: > 1.
First of all, using the definition of(«, ¢), we have:

tle) = w(u(c),c)
= —In(2) + u(e)In (1) + In ()

+HP 0 (5 1) — ol (1 - 452) + P (G5 - 1) —FIn (1- )

X
— <) _ _uwy_3 _ul) . LA 262
= (s) — 60 (1— %)~ Fhn (1 - H2) + (o) [m (5)+ 3 (G5 - 0G5 - V)|
We will now show thatX = 0. Recall from (3.103) that(c) was defined as
u(e) = \/27 _11, where V =1+ 446 - (¢* — 1). (3.105)
2 —
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We start with the conclusion we are trying to reach and use/aigmces all along:

_ 1 1 458 20+25 _

AR u%ii) o u(2c) +1= c?
— WE-) 2AS-l) 2 g (from (3.105))

Vv-12  VV-1

466(c*=1) 2
VV-1)2 V-1

=1 (we can divide by:?> — 1 because: > 1)

466(c> —=1) =2V +2 = (VV = 1)?

450(c2 —1) =2V +2=V -2V +1

[ A

466(c> = 1) +1=V.

The last line is true from (3.105), and so since we used etpneas all along we deduce th&t = 0. This
means that

t(c) = In <:"1> —5ln <1 - %) ~3n <1 - %?) (3.106)
We let
a =460 - (2 = 1), (3.107)
and so
a = 2a = 88dc. (3.108)
Oc

Recalling thatu(c) was defined in (3.103) as

\/1+4<55-(c2—1)—1 Vita-—1
c) = =

u(c) 21 S P (3.109)
we obtain:
W) = Zu(c)
@ (VIFa-)ee
- (@@=1)2

= 465<_;ia1>_2¢m+2}

- (c2E1)2 : /7{14_& —2y1l+a+ 2:|

(3.110)

_ 1+a—1
— e | - 2TFa Y

= ﬁ<2_v1+a_\/11+7a>
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Now, using the expression fofc) in (3.106), we have:

t'(c) = %t(c)

= ctletlog 451+ 9] 7140 4 51+ U]

¢ (ct+1)? 25

_ 1 5 5
= q4D + u/(C) ’ |:25+u(0) + 26+u(c):|

_ 1 465 —u(c)
= c(c+1) + u'(c) ' [465—2u(c)+u(c)2:| ’

Plugging (3.109) and (3.110) into this we obtain

1 1 3a+4—-(4+a)V1+a

t'(c) = g

Now,

1 + 1 . 3a+4—(44a)V/1+a
clc+1) T e(c2-1) a+2—2/1+a

1  3at4—(4+a)V1ta
c(c?-1) a+2—2/1+a

>_C(

c(c+l)  3at+d—(4+a)V1ita

T T areavita . <1

1 3a+4—(4+a)Vita

c—1 2y/1+a—a—2 <1

2a + 2+ ca + 2¢ > (a—|—2c—|—2)- 14+a

(2a+2+ca+20)2> (a+20+2)2-(1+a)

[ A A S A

(a2+4ca+4a—|—4c2+8c+4)'(1+a)
—a3+a2(c2—1) >0

—a+c2—-1>0

1111

1> 4606.
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+
(c+1)  c(c®2—1) a+2—-2y1+a

3a+4—(A+a)Vi+a>(c—1)-2Vl+a—a—2)

3a+4—(c—1)-(—a-2) >(4—|—a)\/1+a+(c—1)2-2\/1+a

4a? + 8a + 4ca® + 12ca + 4 + 8¢ + c2a? + 4c%a + 4 >

?—1>466(c* — 1) (by the definition ofz in (3.107))

(3.111)



Sinced < % it follows that 466 < 1, and therefore the last line is always true. Because we hssd u

equivalences all the way we deduce that the original statehmads, namely’(c¢) > 0 for all ¢ > 1. Sot(c)
is a strictly increasing function over the range we are corex with.

e 3) We show that(c) tends to zero whea — cc.
First recall from (3.103) that

1+460-(c2—-1)—1
u(c):\/ 02(_1 ) .

So we have
lim u(c) = 0. (3.112)

C—00

i o) = J i () —om (1 50) T (1- 22|

Combining this with (3.112) we obtain

Now

. . . _ _i 5 _l _
Cli)r{.lot(c)_ln(l)—l—lltli%[ 5ln<1 25) 51n(1 25)} 0. (3.113)

e 4) Combining2) and3), we deduce that(c) < 0 for any¢ > 1, in particulart(Cs) < 0. Therefore by
setting

A~

Toq = —t(Cy),

we can deduce that R
c < 02 — t(C) < —To4. (3.114)

Notice thatC, depends only oif3; (see (3.98)), which depends only Bp(see (3.87)), which in turn depends
only on R, 0 andy. So as requiredyy4 will depend only onR, § andy.

Combining (3.114) with (3.104), for any, ¢ with 0 < a < 26 andC; < ¢ < Cs, we have:
v(a,c) <t(c) < —7o4,

as required.

Finally we show that; (n,w) is dominated by:, and will therefore be negligible.

Proposition 3.50. If I’y < v < I',,, then there are; > 0 and Nos with

n > N25 — ml(n,ﬁ,w) < —To5 - M.

Proof: First recall that
my(n,,w) = s1(n,w) + f1(n,,w) + g1(n,£).
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e 1) We show that fom large enoughy; (n, ¢, w) 4+ g1(n, ) < —796 - n for someryg.
Recall from (3.101) that for angs3 > 0, there isNo3 with

n> Nozg = fi(n,,w) + gi(n,£) <n-[v(a, B) + €], (3.115)
Furthermore, Proposition 3.49 tells us that therg,js> 0 with
v(a, B) < —7o4,
and so by settings3 = “2* andrys = * we can ensure that

n > Nog = fi(n,l,w) + g1(n,l) < —% SN = —Tog - M.

e 2) We show that (n,w) is dominated by-74 - n.
We know from Lemma 3.30 that

w w
< - — ) - — ). .
s1(n,f) < —wln (n ) nR1n <1 - ) (3.116)

Sincey = —%;, this means that

s1(n,0) ~ 1 v 1 v
S In ( ny> R1n <1 "y (3.117)

Now because < I, 7 tends to zero as gets large. So because

lim zln(z) = lim In(1 —z) =0,

z—0 r—

we can deduce théf% tends to zero as gets large. So formally for arspg > 0 there isNog with

Sl(n, E, ’U))

n > Nog —> < €99. (3118)

_T26 -n

3) We put all this together.
We need to be a little careful about using (3.118) to make thednequalities are in the right direction.
(3.118) tells us that

n > Nyg = —€99 < s1(n, b w)
—T926 * N
and since-my4 - n < 0, this leads to
51(n7£7w)
n > Nog — (—Tgﬁ'n)' - S(—Tgﬁ'n)'(—egg). (3119)
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Settingezg = 1 we obtain

nZNQQ — 81(n>w)+fl(nagaw)+gl(n>£) < 31(n>w) — T26 M

= —To " N-" (]. + 751(m,w)>

—T26N
< —7y6-m- (1 — ) (using (3.119))

. 1
= —Z.p (sinceezg = 3),

and therefore setting/os = Nag, andry; = ¢ gives us the required resul.

Once more this is a stronger result than was required, siegastneeded to show that; (n, £, w) < 795-nY.
We summarize the result for Case 4 below:

Theorem 3.51. Suppose we are giveh< R < 1 and0 < § < % LetT; andT', be taken from Defini-

tions 3.42 and 3.20. Then there ak&5, 725 > 0 (depending only ok, 6 andy) for which

n>Noyy = Vl=1,...,n, Yw= {fg'nl_y—‘,...{fg-nl_yj : m(n, l,w) Sexp(—T%-ny).

3.4.8 Conclusion

Now that we have covered all four cases presented in subseg#.3, we can deduce the result we had set
out to prove, namely Theorem 3.15, which we restate below:

Theorem 3.15.Suppose we are givén< R, 0 < y < 1 and0 < § < 3 with R < 1 — h(d). Then there are
N, 7 > 0 (depending only oz, § andy) for which

n>N = Vl=1,...,|2n8] Vw=1,...,|[nR| : m(n,l,w) <exp(—7-nY). (3.120)

We can now complete the proof that our family of codes appreathe Gilbert-Varshamov bound with high
probability. From Theorem 3.14 we know that

nR 2nd

Pr[dmin(@) < né] < nd- Z Zm(n,ﬁ,w).
w=1 (=1
Theorem 3.15 then tells us thatf < 1 — h(J) then there aréV, 7 > 0 for which N > n implies that
nR 2né
Pr[dmin(e) < né} < né- Z Zexp ( -7 ny) < (252R) -n3 - exp ( -7 ny).
w=1 /=1

So clearly we have
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It would be interesting to determine the smallest columngiveof M for which the resulting family still
approaches the GV-bound. Our construction above had a coleight ofO(n?), and we see that this value
appears in the bound (3.120):

n>N = V{=1,...,[2nd] ,Yw=1,...,[nR| : m(n,,w) <exp(—7-nY).

This leads to the question of whether a similar analysis oonatcuction using some other weight would
yield the modified bound

n>N = Yl=1,...,[2n0| ,Yw =1,...,|nR] : m(n,@,w)gexp(—T'W).

If this were the case whél = log(n)- f(n), wheref (n) is any function for whichf (n) — co whenn — oo,
then the corresponding family would approach the GV-boand, be encodable in tin@(n log(n) f(n)).
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Chapter 4

Short Algebraic-Geometric Codes for
Transmission over the Erasure Channel

4.1 Introduction

Algebraic-Geometric (AG) codes are arguably the most pfulelass of algebraic codes in existence. They
contain the Reed-Solomon (RS) codes as a subclass, bue lR$kcodes, they allow for the construction
of arbitrarily long codes over a fixed alphabet, with asyrtiptdly good performance. In fact it was shown
[87] that for a squarg > 49 it is possible to construct infinite families of AG-codes bW that beat the
asymptotic Gilbert-Varshamov bound.

Despite their excellent properties, and despite the dlgoit advances regarding their encoding and decod-
ing, there are very few practical uses of AG-codes, wheréas®les have been and are being used in many
applications. One possible reason is that RS-codes aer betlerstood, and have somewhat better hardware
implementations.

Nevertheless, AG-codes are better than RS-codes sincealiogy the construction of much longer codes
over the same alphabet, while enabling a similarly strectwncoding and decoding process. This advantage
can be interpreted in different ways. The straightforwantgripretation is that larger pieces of data can be
protected using the same field operations as RS-codes. &atiffinterpretation is that if a piece of data is
to be protected using a code of some given lengtthen an AG-code allows this to be done with a smaller
finite field, which in turn means that the encoding and deapdigorithms will run faster.

The latter interpretation could be a major insight into acpcal exploitation of AG-codes. The reason is that
in many applications the size of the data to be encoded istreamsd by outer applications, such as those
that do not allow an unreasonably long delay. Moreover, lisegractical implementations of encoding and
decoding algorithms for AG-codes scale quadratically whith block-length, having an AG-code of large
block-length may be unfeasible in many situations. Howefarapplications requiring very short blocks
(such as video streaming), AG-codes can be made to run v&ry fa

This chapter is concerned with illustrating and quantifythe performance of very short AG-codes over the
Erasure Channel, and more specifically of comparing thenS@édes. A number of codes have been sug-
gested to protect the data in this transmission model, th& prominent of which are Tornado codes [46],

RA-codes [22], LT-codes [45], and Raptor codes [76]. WHilese have been shown to have excellent perfor-
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mance on the Erasure Channel, the lengths of the codes nbed@asonably large. When very short blocks
are required, AG and RS-codes become competitve solutions.

We compare the performances of AG and RS-codes for blockHeng to64. The smaller field size enables
faster encoding and decoding, but the drawback is an inedeaisor probability due to the larger minimum
distance. We measure this by developing an efficient algorib compute these exact error probabilities.

Finally, this work has been motivated by practical needsclvlieads us to focus on a specific transmission

problem. We obtain some practical data to illustrate thednes predicted in theory. The work was done

in collaboration with the company Digital Fountain and tleeles presented are being used in some of their
commercial products. This is, as far as we know, the firsttimalause of AG-codes.

4.2 The Erasure Channel

We will be concerned in this chapter with transmissions dherQ-ary erasure channel. Informally, an
alphabet element sent over this channel is either recemtadti(with some probability—p) or lost completely
(with probability p). In the latter case it it said to have besiased

Definition 4.1. The Q-ary erasure channel over an alphabetf size@ has input sek, output set= U {?}
(where ? meanerasurg and transition matrix\/ = (M;;);es jesu(r}, Where

D ifj =72
0 otherwise

Decoding a linear code over this channel is particularlypsém Given a generator matrix, decoding can be
reduced to solving a system of linear equationgs ldenotes thé x n generator matrixy a message vector
andc the corresponding codeword then we know that

uG = c. (4.2)

Given only G and ¢, recoveringu amounts to solving a system eflinear equations itk variables. Each
erasure removes one component.ofn other words it removes one equation (corresponding &acmtumn

of G). If I C [n] denotes the set of indices of the positions thatrareerased (we call thedatact), then

decoding reduces to solving the system of equations

uG =c (4.3)

whereG’ is thek x |I| submatrix of G consisting of those columns whose indices ard,imnd¢’ is the
subvector of: containing the indices ii. We say that the decodirgyicceeds this submatrixG’ has rankk
(i.e. we can solve the system), diiadls otherwise. Itis clear that i | < k then the decoding will always fail.

Proposition 4.2. If a codeword of ann, k, d]g-code is transmitted over th@-ary erasure channel, and
> n — d + 1 positions are intact (equivalentlf d — 1 position are erased), then the decoding will succeed.

Proof: Clearly the system (4.3) has at least one solution (namelattual message vectoy. So we need
to show that this solution is unique. If there was anotheutsmh v € F’gg then the codewordG € Ff, would
have the same entries aat the positions if (and|/| = n — d + 1). Therefore

dvG,e) <n—(n—-d+1)=d—1, 4.4)
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leading to a contradiction (sine&s andc are both codewordsi

Although very simple thé)-ary erasure channel has been very relevant, in large patiodihe Internet. Data

is divided into packets to which are appended checksum$eAeceiver side packets are either assumed to be
intact or simply discarded. The latter can happen for vari@asons, for example if the checksum verification
fails, or the packet might simply not arrive if a router rung of buffer memory somewhere along the way.

4.3 Algebraic-Geometric Codes

In this section we describe the construction and propediesG-codes. We start by looking at RS-codes,
which are in fact special cases of AG-codes.

4.3.1 Reed-Solomon Codes

Throughout this chaptéf, will denote the finite field of sizg. We first note that there is a bijection between
F’; and the set of polynomials i, [x] of degree< k:

Definition 4.3. Foru = (uy,...u;) € IF’; we define the corresponding polynomial
k—1 4
fulz) = ZUi+1 A (4.5)
i=0

We will define Reed-Solomon codes through their encoding. map

Definition 4.4. LetIF, be a finite field, lett < n < ¢, and letay, ..., «, be distinct elements df,. The
[n, k], Reed-Solomo(RS) code corresponding to these field elements has encodipg : F’; — [y with

So RS-codes are obtained by evaluating polynomials of bedinkégrees at field elements. The Singleton
bound states that for ariy, k, d|-code
d<n—k+1, (4.7)

and codes for which we have equality in (4.7) are said tombgimum distance separallglDS). This is the
case for RS-codes:

Theorem 4.5. Reed-Solomon codes are MDS.

Proof: See for example [82)m

This means that over the erasure charnigtact (non-erased) elements are sufficient to guarantamessful
decoding (the code can recover fratn- 1 = n — k erasures). Sinck intact elements are also necessary (or
else there is not enough information), MDS codes are sorestaiso calledptimal
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4.3.2 Algebraic-Geometric Codes

AG-codes are a natural generalization of RS-codes. Forl anfubduction to AG-codes, see [60] or [81].
We will assume knowledge of elementary algebraic geometnich can be found in [70][72][81]. RS-codes
are constructed by evaluating polynomials of bounded d@egteertain field elements. As explained in the
introduction, their big drawback is the fact that the lenigtbounded by the field size (since the polynomials
must be evaluated distinctelements), so long codes require large fields. The most obvi@y around this
would be to evaluate multivariate polynomials at point&ff, this is the principle oReed-Muller codegso
RS-codes would be the special cage= 1). However, while this does indeed increase the lengthsit al
incurs a large cost in the decrease of the minimum distance.

There is a more efficient way of improving the length. Inste&dvaluating all multivariate polynomials up
to a certain degree at randomly chosen elemeniofve evaluate certain functions at well chosen points of
this space. These well chosen points are the elementsaifjabraic curve and the functions will be taken
from somelinear spaceof this curve.

Definition 4.6. Let X be a smooth nonsingular curve of gegusverF,, let P, ..., P,, Q ben-+1distinctF,-
rational points ofX, leta < n be a positive integer, let («Q) be the linear space of the divisary. A (one-
point) Algebraic-Geometric (AG) code is obtained as the image of the evaluation mapL(aQ) — Fy
with

o(f) = (f(P1),- o F(Pn)) (4.8)

We will denote such a code WYX, (Py,..., P,),aQ]. Thegenus of the codeefers to the genus of the
underlying curve.

Explicitly constructing these codes (for example by findingenerator matrix) is somewhat more difficult
than RS-codes. We essentially need to know the points onutive &, and a basis of th&,-spacel (aQ).
Fortunately, this can be computed using the algorithm of ti&fd [31].

The resulting dimension and minimum distance are desciib#t following proposition [72]:

Proposition 4.7. Let C be an AG-code defined as above. TRda an|n, k, d]-code with

a+1l—g (4.9)

>
> n-—a. (4.10)

k
d
Furthermore if2g — 2 < « then we have equality in (4.9).

Proof: We will start by showing that the evaluation mapulefined in (4.8) is injective. Suppose there is some
f € L(aQ) with o(f) = 0. This means that for all € [n]

f(P) =0, (4.11)

and therefore thaf has at least zeros. But sincegf € L(aQ) it has only one pole of degree, and so
becausex < n, we must have’ = 0 (f must have as many zeros as poles).¢Ss injective, and therefore
k = dim(a@). Now the Theorem of Riemann [72] tells us that

dim(aQ) > deg(aQ) +1—g=a+1—g, (4.12)

with equality if2g — 2 < a. So (4.9) follows immediately.
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Next, suppose there is a non-zero codeword of weight — . This means that there s L(aQ) which

has at leastv + 1 zeros. However once agafnmust have as many zeros as poles, so cannot have more than
« zeros, so we must have = 0. We deduce that all non-zero codewords have weight at teasty, from

which (4.10) follows =

We will assume for the rest of this chapter tBat— 2 < o < n. We can deduce from Proposition 4.7 that
n—k+1l—g < d<n—-k+1, (4.13)

where the second inequality follows from the Singleton lwbuSo the genug represents the “gap” to the
Singleton bound, and it is therefore desirable to choose\eauhose genus is as small as possible.

In Definition 4.6, constructing a code of lengihrequiredn + 1 distinct points on the curv&’, which means
that X needs to have at least+ 1 points. It turns out that over a given field, a curve must havgd genus
to have many points. We therefore have a trade-off betwestetigth of the code (we would liKE to have

many points) and its distance (we would liKeo have a small genus). For a given field sjz¢he maximum
number of points on a curve ovéy, of genusg is denotedV,(g), and a curve oveF, of genusg having

N,(g) points is called anaximal curve

4.4 The Specific Codes

We will be concerned only with very short codes (with lengibgo 64). As explained in the introduction, the
work in this chapter was motivated by certain practical seedd for this reason we use only finite fields in
the formF,., where/ is a power of. Indeed it has been established that working with such figklds very
large practical advantages (essentially due to the repiasen of field elements by bytes rather than uneven
fractions thereof). Were we to use RS-codes, we could woek By for length of up tol6, then overFosg

for lengths between 17 and 64. However with AG-codes we carfysfor any length. The cost of doing
this is that we need to use a curve with more points, and thierefith higher genus, which decreases the
minimum distance.

Since a larger genus means a smaller minimum distance (k) &or a given lengtm we would like to

use a curve with genus as small as possible. This means tddrggnallesy for which Nig(g) > n + 1 (see
Section 4.3.2), and then using a maximal curve of genuBetermining/NV, and finding maximal curves is

a well studied problem, partly motivated by the constructiid good AG-codes. The best known upper and
lower bounds oV, (g) for many values off andg are regularly updated in [88]. The following table (see [88]
[67] [68] [69] [55] [66]) gives the value ofV14(g) (or the best known bounds), and a corresponding maximal
curve:
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9| Nislg) maximal curve

1 25 :CQ +x = y3 +vy

2| 33 =y +y

3 38 2yt + 2%y =wad + 1

4 45 y? + oy + 2% + 3+ xyd + 2ty
2y + ot 4 23y 4oty + 25 =0

5| € [49, 53] —

6 65 2 =ytty

Table 4.1: Maximal curves oveF ¢ for genera 1 to 6.

(for the genus 3 curvey denotes a third root of unity if16). We will not use a genus curve, partly because
is it not known whether the best known curves are maximal,raaimly because we make only a small gain
in length compared to the genus 4 curve.

For a givenn, we choose the curve of smallest genus with which we can icartst code of length:

n which curve
n <16 Reed-Solomong(= 0)
17<n<24 g=1
25 <n <32 g=72
33 <n <37 g=3
38<n<44 g=4
45 <n <64 g==6

Table 4.2: Curves used in our application.

We will see in section 4.6 that the encoding technique we egqairres on average only half as many basic
operations for codes ovéhg as for codes oveFsss (which would be the standard method for these sorts of
lengths). On top of these theoretical advantages, a snii@léralso means that in practical implementations
more machine dependent optimizations are possible.

As seen in the previous section, the price we pay for thisdpgeis a decrease in the minimum distance of
the code (by an additive factor g}, which in turn means that for a fixed erasure channel thegtitity of
unsuccessful decoding (referred to as ¢ner probability) will increase. To quantify this we derive in the
next section an efficient algorithm for computing the exadreprobabilities.

4.5 Computing the Error Probabilities

Recall that we are considering transmission over@@hary erasure channel, in which each alphabet element
is either received intact (with probability — p) or lost completely (with probability). So for a given code

C, we transmitn elements, some of which might get erased. L&t [n] denote the indices of the elements
that arenot erased (we call thesatact).

We say that/ is goodif we can recover our codeword from the elementd irmandbad otherwise. So ifG
is the generator matrix of our code théns good if and only if thek x |I| submatrix ofG constructed by
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taking only the columns with indices ihhas full rank. So clearly all setswith |I| < k are bad. Likewise,
as seen in section 4.3, an AG-code of gepbsis minimum distance at least- k£ + 1 — g. So all setd with
|I| > k + g are good (in particular with RS-codes, of gefusll sets of size> k are good).

Definition 4.8. For a given|n, k]-codeC, we defineB, to be the number of bad subsets of size

Notice thatB, depends only on the cod® Since there are in totd[") subsetd C [n] of sizer (i.e., the
number of erasure patterns), the fraction of subsets ofrsizat are bad i3, /(). Furthermore for a fixed
number of erasures — r, all erasure patterns are equally likely, so we obtain thHeviing proposition:

Proposition 4.9. The error probability with arin, k| AG-code over th&)-ary erasure channel with erasure
probability p is given by

z”: fi_) I =7 ZB o (4.14)

r=0

With an RS-code (genus Q) ,is bad if and only iflI| < k, so we have

Br:{ M ifr<k

0 otherwise.
We can therefore deduce:
Corollary 4.10. The error probability with ann, k| RS-code over th&-ary erasure channel with erasure
probability p is given by
k—1
n T
> <7~) S(L=p)-p"
r=0

With AG-codes of genus greater than 0, the situation is morapticated. As above, decoding will fail
wheneverI| < k, but on top of that it will also sometimes fail whén< |I| < k 4+ g — 1 (see Figurel.1
below). So we need to determine how often it fails in thesegase., to find the values @,..

Number of intact indices

0 k-1 Kk k+g-1 k+g n
can never decode can sometimes decode can always de

Figure 4.1: The overhead of an AG-code of genus

4.5.1 Reduction to an Abelian Group Problem

We will show that for an AG-code, the problem of determinihg humber of bad subsets of a given size
reduces to an abelian group problem.

52



Definition 4.11. Let G be a finite abelian group. Suppose we have two sulisdisC G, and an integer.
We denote by(G, S, T, r) the number of--subsetdV C S for which

Zw eT.

weW

Now we suppose throughout that we have fixed AG-00(§, (P4, ..., P,), aQ)].

We denote byD(X) the divisor group ofX, and byD°(X) its subgroup consisting in the divisors of degree
0. Recalling that the principal divisors P¢ifi) form a subgroup oD%(X), Pig(X) (the Picard group and
Pic’(X) are defined as

Pic(X) = D(X) /Prin(X), and Pi€(X) = DY(X)/Prin(X). (4.15)

Definition 4.12. For a divisorD € D(X), we will denote byD the image of the divisofD — deg(D) - Q) in
Pic ().

Note that sinceD — deg(D) - Q has degree 0, its image modulo RbiH is indeed in the group PI€X).
The following Theorem establishes the link between our jerobof determining error probabilities, and the
function d from Definition 4.11:

Theorem 4.13. Suppose we have an AG-co@EX, (P, ..., P,),aQ]. The number of bad subsetsC [n]
with [I| = r is given by
0(Pic’(X), S, T,r),

where S = {Py,...,P,},and T = {—D | D is a positive divisor of degree — r}.

Proof: Let I be a subset dfz] of sizer. Let K be the function field of(. We have:

Iisbad < there is acodeword that is zero at all entries ]
— Ifel(aQ): f(P)=0Viel
= FEeK: (N> (T P)-aQ
— 3feKDeDX):D>0, (f)= (T P) — aQ + D.
= 3EKDEDX): D=0, (f)= (Tis (P~ Q) +D - (a=1)-Q

Notice that sinceleg ((f)) = 0, any D that satisfies the last line will have degree- r. Now if we take the
projection onto Pi&(X), then we get:

Iisbad <= 3fe€eK,DeD(X):D>0,and(f)=(>,; ) +D
< 3dDebX):D>0,and0= (Y ,.; ) +D
<~ 3dDeDX):D>0,and ¥, ., P,=-D
= YigPeT,
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whereT = {—D | D € D(X) andD > 0}.

Once more, the only candidates frthat can verify this property must have degeee r. m

4.5.2 The Group AlgebraC[G]

We now look at how to comput®G, S, T', ). The brute force approach would be to conside(8llr-subsets
W of S and count how many of them have the property that_,;, w € T'. This would requirgr — 1) - (:f)
group operations id:, and (:}) tests of whether an elemegtc G belongs tal’ (namely) " ;- w). So this
is exponential im = |G| if r is a constant fraction of, which makes the method highly impractical.

A better approach is to consider the group algebj@).

Definition 4.14. Let G = ({gl, ceesGmbs +) be a finite abelian group and I€tdenote the field of complex
numbers. Thgroup algebraC[G] is a vector space ovér of dimensionm with basis elementsy], . . ., [gm].
There is a product on the basis elemedj&’]

[9i] - [95] = 9i + 95,

that extends naturally to the whole vector spdCg=| forms a ring under this product and the standard vector
space addition.

Letw € C[G]. We can writew as anm-components vector (in bas{g1], . . ., [gm] }):
C1 m
w=| 1 | =) ¢yl
Cm j=1

We then callc; € C the ji* componenbf w. Notice that while addition irC[G] is done component by
component, multiplication is more complicated:

m

(gai[mO(gbﬂgﬂ):Z( > aby)lod

=1 “ijlgit+g;=ge
So multiplying two elements of [G] requiresm? multiplications andn - (m — 1) additions inC.
We will now look at elements of the polynomial rififG][x| (polynomials whose coefficients are@jG]).

Definition 4.15. Let G = {g1, ..., g} be a finite abelian group, and 16tC G. We define the polynomial
ps(z) € C[G]|z] as follows:

ps(@) = ] (=+19:)-

gi€S

Note thatps(z) has degreeS|. This polynomial will be of great interest to us because dl@sely linked to
0(G,S,T,r), as established by the following theorem:
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Theorem 4.16.LetG = {g1, ..., gm } be afinite abelian group and I&t be a subset af, with |S| = n. Let
vo, - - -, Up, € C[G] be the coefficients gfs(x), so that

n

ps(z) = Zvi -t

=0

Foreachi =0,...,n, leta;; € Cbe the;j*» component of;:

v = Zai]’ . [gj] S C[G]

j=1
Then foranyT C G,r =0,...,n we have
0(G.S,T.r) = > ap_r);-

ilg;€T

So Theorem 4.16 is saying that th& coefficienty; € C[G] of ps(z) holds all the information we need about
(n — i)-subsets of. Its j'* component;; is a positive integer and represents the numbér.of i)-subsets
of S whose elements sum up §oin G.

Proof: Theelementary symmetric polynomig@2] in n variables are defined as
oi(x1,...,xp) = Z H T, for 1 =0,...,n. (4.16)
WCn],|W|=n—i (eW
They have the property that for any, ..., a,:

n n

H(:c—l—ai) = Zai(al,...,an) -zt (4.17)

=1 =0
Sincepg(x) is in the same form as the left hand side of (4.17), its coefiisiv; can be written as
WC[nl,|W|=n—i £eW WC[n),|W|=n—i £eW

from which the result followsa

Example 4.17.1t is perhaps more intuitive to see why this theorem holdé wihall examples. i = 3 and
S ={g1, 92, g3} then it can easily be checked that

ps(x) =2 + ([o1] + [g2] + [95]) - 2 + ([g1 + 9] + [g1 + 93] + [g2 + g3]) - @ + ([91 + g2 + g3]). (4.19)

Now S has three 1-subset$q }, {g1} and{gs}), which all appear in the coefficient af. Likewise S has
three 2-subsets( {1, g2}, {91, 93} and{g2, g3}), which all appear in the coefficient af (more precisely the
sum of whose elements all appear). Finaflyhas of course a single 3-subdet, g2, g3}, the sum of whose
elements appears in the constant coefficient.

Recall that our aim is to determing,, the number of bad subsets of sizéor r = k,...,k + g — 1. From
Theorem 4.13 we know that this can be reduced to computing
0, =0(G,S,T,r), (4.20)

whereG = PicO(DC), andS,T C G (see Theorem 4.13). Now Theorem 4.16 tells us that we candlieted,.
for anyr from pg(z) € C[G][x]. Our next step is to efficiently compute this polynomial.
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4.5.3 Efficiently Computing the Polynomialps(x)

Throughout we suppose thét| = m and|S| = n. Computingpgs () requires% multiplications inC|[G]

(and the same number of additionsGfi7]). While adding two vectors, v € C[G] is done component-wise
(and so requires: additions inC), multiplying « andv is more complicated and requireg’ multiplications
andm - (m — 1) additions inC.

However, usingrFast Fourier Transforms (FFT)17], two vectors inC[G] can be multiplied much faster.
Multiplication in the algebraA = C[G] = (C™,) is slow (namelyO(m?) operations inC), while in the

algebraB = (C™, x) (wherex denotes component-wise multiplication), we can multighp £lements using
only m multiplications inC. The algebras! andB can be linked througDiscrete Fourier Transforms (DFT)

Definition 4.18. Given a cyclic groug’;, the corresponding DFT matriR, € C**¢ is defined as

(Dy)ij = wl=HU=D, (4.21)
wherew = ¢°7* is a primitive ¢** root unity inC.
It can easily be checked thal is invertible, with

(Df_l)lj — .w_(i_l)(j_l)' (422)

Proposition 4.19. LetG = Cj, x ... x Cy, be an abelian group withG| = m. LetA = C[G] = (C™,")
and B = (C™, ), wherex denotes component-wise multiplication. &t be them x m matrix defined as
follows:

Dqa = Dgl R...Q ng. (423)

Then there are bases dfand B for which the mapping : A — B given by
o(u) =Dg-u (4.24)

is a C-algebra isomorphism.

Directly computingy(u) would requireO(m?) operations inC. However we can make use of (4.23), and
successively multiply appropriate subvectors.dfy eachD,,, which will require onIyO( Zle E?) opera-
tions.

Note: This can actually be further reduced(tk( Ele l; log(&)) operations using Fast Fourier Transforms
(see for example [17], Chapter 13), but will not be necesBarthe codes in which we are interested.

Corollary 4.20. LetG = C;, x ... x C;, be an abelian group of size.. Let A and B be the two algebras
as above. Then the DR : A — B can be computed usingfz1 2 multiplications ande:1 il — 1)
additions inC, i.e. a total of

k k
2 302 — ¢, = O(ZT e%) (4.25)

operations inC.
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So we can compute the polynomial

n

ps(@) =[] (= +la:)) (4.26)

i=1
by first using the Fourier transfornis = ¢([g;]) to obtain the polynomialis(z) € B|z] defined as

n

ps(z) = H (a: + hi) = Zwi -t (4.27)
=0

i=1

and then taking the inverse transforms= ¢! (w;) to get the coefficients ofs(z) = > 1 ,v; - z*. The
algorithm is given below in pseudo-code:

Algorithm 4.1: COMPUTE ps(x)
Input: An abelian groug, and a subset = {¢1,...,9,} C G.
Output: The coefficientguvy, . .., v,) of the polynomialps(z) = [T\, (= + [g:])
1: for d = 1ton do
2:  computehy «— ©(gq)
for i = 1tom do
wd[i] — 1
for j=1tod—1do
wq—j[i] <= wq—;[i] - hali] + wa—j11i]
end for
woli] — hali]
end for
10: end for
11: for k =0ton — 1 do
12:  computevy «— ¢ (wy,)
13: end for
14: return (vg,...,vp—1,1)

To evaluate the running time of this algorithm we firstdet >, ¢? be the number of operations required for
the DFTs (see Proposition 4.19). We decompose the opesa®follows:

1. n DFTs (line 2). This require®(nt) operations irC.
2. O(mn?) multiplications inC (line 6).
3. O(mn?) additions inC (line 6).

4. ninverse DFTSs (line 12). This requiré€$(nt) operations irC.

This gives us a total of (mn? + nt) operations irC.
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4.5.4 The Final Algorithm

We can now combine all the work above to obtain the followilygpathm for computing the error probabilities
of our codes:

Algorithm 4.2: ERROR PROBABILITY OF ANAG-CODE
Input: An AG-codeC|[X, (Pi,..., P,),aQ], and a channel erasure probability
Output: The probability of a decoding failure
. g < genusX)
k—a+1l-—g
G — Pid(X)
S« {P,...,P,}
compute the coefficients, . .., v, € C[G] of pg(x) (Wherev; = 3 0%, a;;-[g;])
forr =ktok+ gdo
T — {-D | D is apositive divisor of degree — r }.
By =3 j1g,er Onr)j
end for
creturn S0 (1) pt T (L—p)" + S B pn T (1= p)”

© NGO N R

=
o

Notes: e In step 3 we use the software package Magma [19] to computédpic

e ComputingT (step 7) can be done for example by brute force search simce th only a finite
number of positive divisors of degree— r in D(X) (we can enumerate the prime divisors of degrees at most
a — r, and look at all appropriate combinations).

e ps(x) only needs to be computed once to obtain the error prolabilior codes of length of all
dimensionsk (sincePy, ..., P, stay the same in the construction, oalychanges). Furthermore, assuming
that for each the set of pointd’; we use for our codes of lengthis contained in the set we use for our codes
of lengthn + 1, then we can construct the (x) of degreen + 1 from that of degree: (see the algorithm for

generatingPs (x)).

4.5.5 The Error Probabilities for our Specific Codes

The Pi¢(X) groups of the curves in which we are interested (see Taleare given in Tablel.3 below,
along with the corresponding value of= Y, /2. These were computed with the Magma software package
[19].

Genus G = Pid(X) m = |G] t
1 C5 X C5 25 50
2 05 X 05 X C5 X C5 525 100
3 | (C3) x (Cg)? 13,824 || 219
4 (C3)* x (Cg)* 331,776 || 292
6 (C5)'? 244,140,625 || 300

Table 4.3: Pic” groups of our curves
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We implemented in C++ the algorithm above on these groupdtairothe appropriate error probabilities
for all codes that interest us. To assess their impact, we that in practice for a given message of size
(i.e. a given code dimension), a target error probabitiyis set, and the length (equivalently the overhead)
is chosen to be the smallest value for which the actual emavgbility stays below”r. So the cost of the
speed-up obtained by AG-codes over RS-codes can be medsuhesv much extra overhead is required to
obtain a certain target error probabilify; (or equivalently how much smaller the rate of the code needs t
be).

Below are some graphs giving the required overhead forrdiffechannel erasure probabilitipsand target
error probabilitiesPr. We use RS-codes ovEbs, and AG-codes ovél4, each time choosing the code with
the smallest genus enabling us to achieve the requiredhengt
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Figure 4.2: Required length to achieve a target error probability’pf= 10~3 on a channel with erasure
probability p = 0.1.

The graph below presents the same data as Figréut in terms of rate rather than length.
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Figure 4.3: Required rate to achieve a target error probability’pf= 10~2 on a channel with erasure
probability p = 0.1.
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Figure 4.4: Required length whefr = 10~¢ andp = 0.01.
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Figure 4.5: Required length whefr = 102 andp = 0.01.

We observe that the AG-code does not require us to transnmy mare elements than the RS-code in order
to achieve the target error probability, and in fact in m@ses requires the same amount. So in this sense
we can argue that the drawback of higher error probabiliie®t a large one. As explained earlier, we were
motivated by specific transmission problems and the paemé@ the graphs above are chosen to reflect
these.

4.6 Interleaved Vector-Matrix Multiplication

Since we are considering applications of AG-codes, we Mslb gresent some implementation properties
quantifying the theoretical speed-ups that smaller fieltsbke. The aim of this section is to describe the
interleaving technique of [10]. This makes the encoding dadoding processes fdft,.-codes faster, by
making use of the fact that computers can perform many bitadio&s in a single cycle. This parallelism is
utilized to encode many message vectors concurrently.

It is important to note that this does not improve the compjefi.e. the asymptotic behavior), but does
nonetheless make things faster for the lengths in which eénterested.

4.6.1 The Regular Representation

The aim in this subsection is to reduce additions and midépbns inF,. to additions and multiplications
of binary vectors and matrices. Throughout weglet 2¢. First recall thatf, is a vector space of dimension
¢ overF,. Throughout this section we fix an arbitrary bagis= {v,...,v,} of F, overF,. V establishes a
canonical bijection betweeR, andF5:

Definition 4.21. Given a basid/ of F, overF,, we leto : F, — Fg be the bijection defined as follows: If
v = Zle a; - v; then
o(v) = (ay,...,ap). (4.28)
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Notice thatr is additive with respect to component-wise additioii'n So addition irif, is reduced to adding
binary vectors. To deal with multiplication i, we can also express field elementd as¢ matrices:

Definition 4.22. Given a basi§’ of F, overFy, we letr : F, — F5** be the mapping defined as follows:

o(vi )
T(y) = : : (4.29)
a(ve-7)

It can then easily be checked that this reduces multipboatinF, to binary vector-matrix multiplications,
i.e., the following proposition holds:

Proposition 4.23. For any~, ;. € I, we have

o(y-u) =7(v) ow). (4.30)

4.6.2 Interleaving

We are studying the problem of transmitting a file over a padetwork modeled as an erasure channel.
We suppose that the packet sizds fixed (soL bit packets correspond to thig-ary erasure channel with
Q@ = 2). The most obvious way to send a file over such a channel ise¢@nf, k];-code (so that each
packet can be identified with a field element). Therefore aiilesisting oft packets would be identified with

a message vector and encoded to a codewordpaickets, which would then be transmitted. This is however
highly impractical for large) since performing the additions and multiplicationsFig becomes extremely
slow.

Instead we use a smaller figl andinterleavemany codewords within the packets. More precisely, suppose
thatq = 2¢ and@Q = 2” and also suppose for simplicity thawivides L, with L = b¢. We then use an
[n, k],-codeC.

One packet consists di = bf bits. We can arrange these inbax ¢ matrix, each row of which can be
interpreted as an elementBf (using the bijectiorv defined above):

g .- gue o 4!
1 packet— | D | eyt | e (4.31)

gb1 .- Gbe Yo

Now k packets can be concatenated, leading to the followinggre&ation:

o

k packets— M e Fpk == M e Foxk (4.32)
2 q

(each packet corresponds to a columméf. M is the “binary version” ofM, obtained by replacing each
entryy by o(v). Throughout this section, for any matrx overF, we will write its binary version a® (the
two can be linked either throughor 7).

We compute the encoding by interpreting each rowlbfas a message vector for our codewhich will
get post-multiplied byG to obtain a codeword. So the encoding of theessage vectors il consists of
computing thé x n matrix C' with

C=M -G, (4.33)
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so each row o€ is a codeword. This matrix multiplication could be done vdtandard finite field arithmetic,
but the idea in [10] is to perform this as a multiplicationbfiary matrices.

The data to be encoded is given binary form (i.eM&s Rather than converting it to elementsif (to M)
which we would then multiply by the generator matéix € F’;X”, instead we storé€/ in its binary formG
and then perform the binary multiplication.

We constructG € F5**" by replacing each entry of G € F*¥*™ with the ¢ x ¢ matrix 7(v). We then

compute the matri’ € F5*"* as follows:
C-M-G. (4.34)

Just as\/ was identified with: packets, we interpref asn packets which can then be transmitted. Likewise,
just ash message vectors were interleaved into thgackets of)M, b codewords are interleaved into the
packets ofC. Notice that the link between tH&,-matrix and its binary version is established throwgfor

M andC, and throughr for G.

Multiplying binary matrices can be done by XOR'’ing entirdusans. The key point for practical applications
is that many bits can be XOR’ed in a single CPU cycle (how mapedds on how big the registers of the
specific machine are). So while this does not improve the ptytin running time (the number of bits that
can be XOR’ed in a single operation is of course constantgritnonetheless make things much faster for a
fixed set of parameters. We will refer to one such column éireelement of}) as asymbol

The algorithm can be described as follows:

Algorithm 4.3: BINARY MULTIPLY BY XOR’ING COLUMNS
Input: A binary b x k¢ matrix M, a binaryk? x nf matrix G.
Output: C =M -G.

1: SetC to theb x n/ zero matrix

2. fori=1,...,kfdo

3 forj=1,...,nédo

4 if (Gm = 1) then

5: ( Columnj of C') « ( Columnj of C') XOR ( Columni of M )
6 end if

7 end for

8: end for

9: return C.

The number of XORs of symbols (i.e. columns) that needs tcelpned is equal to the number of ones in
G.

So the interleaving technique for multiplying two matriaeerF, involves interpreting them in their binary
forms, which can then be multiplied using Algorithh8 by XOR’ing symbols.

To summarize the encoding process:

1. The generator matrix is stored in its binary foffne F}“<.

2. We interpret ouk packets (consisting dfL, = kbl bits) as a matrix\ € F5***

3. Computel’ = M -G using the algorithm above (so this is done exclusively throdORs of symbols).
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4. C e F5*" then contains the encoded packets to be transmitted.

4.6.3 Encoding Time

We assess the running time of this algorithm in terms of thaber of XORs of symbols per output symbol
produced. We assume that our code is systematic (indeedderycan be brought into systematic form [51]),
S0 its generator matrig can be written as

G=(Ix]A), (4.35)

whereA is ak x (n — k) matrix in[F,. We let A be the binary version ofl (replacing each field element
by the/ x ¢ binary matrixr(~y)).

The systematic packets (the fikgtof course do not need to be computed, though we still cowmbtas output
packets. We need only computé - A4, and so the number of XORs of symbols that needs to be perébisne
equal to the number of ones in thé x (n — k)¢ matrix A (see the algorithm above). We expect about half

of its entries to be which leads to an expectation M XORs of symbols. Since the total number of
symbols produced is¢, the number of XORs per output symbol is

kl(n — k)

» (4.36)

Notice that this is proportional t6, so a smaller field size yields an improvement in the themaktunning
time (the field size ig = 29).

For comparison, encoding without this XOR'’ing techniqueuldoinvolve working with operations ovef,.

More precisely we would need to multiply the messddec FZX’“ by A € F';”X("*k) from (4.35). So this
would requirebk(n — k) multiplications and(k — 1)(n — k) additions ovei,.

4.6.4 Decoding Time

The decoding time depends not only on the parameters of ties bat also on how many systematic packets
were erased. The decoding process can be described assfol®wppose that the encoded packets were
transmitted, and thatof the systematic positions were erased. We consider thaatulx D of A whose rows
correspond to the positions of the erased systematic gaaked whose columns correspond to the positions
of the intact (non-erased) redundant packets. The decdslisgccessful if and only if the rank @ is e. If

so, there columns ofD are calculated such that the submatthbof D formed by these columns is invertible,
and the corresponding intact redundant packets are mattkeske¢ marked packets form & x e matrix .S
overFF,, or equivalently, througlr, ab x e/ binary matrixS).

We then letl" denote the x (k — e) F,-matrix formed by the intact systematic packets. We/ldie the

(k — e) x e submatrix of A whose rows correspond to the intact systematic packetswaide columns
correspond to the marked redundant packets. We then useténkeaving technique (Algorithr.3) a first

time to computeél’.J, and a second time to computé — 7'.J)E~ 1.

The decoding therefore consists of the following steps:

1. ComputeE~!. We call this theequation solving step
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2. ComputeT'J. FindingT and.J does not require any work since they are just submatricen@ivi
matrices. We multiply the matrices in their binary formsngsAlgorithm4.3. We consider thé x (k —
e)¢ binary versionT of T (througho), and the(k — e)¢ x el binary versionJ of J (throughT), and
computeT - J.

3. Compute thé x el binary matrixR = S — T - J.

4. Perform the multiplicatior? - £~ to obtain the: systematic packets that were erased.

Step 1 is done through Gaussian elimination, which requirgs) field operations. As a rule of thumb, if
the symbols are large, then the running time of this step isrémed over the computation of the XORs.
However, ife is large, or if the symbols are small, then this step may agitifstantly to the decoding time.

As for the encoding, we assess the running time of the rem@steps as the number of XORs of symbols to
produce an output symbol. The number of XORs for step 2 isléquhe number of ones id. Again since
we expect half of the entries of thig — e¢)¢ x e/ matrix to be ones, we obtain a total b’“gf)—d? XORs for
step 2. Step 3 involves adding tWwo ef matrices, which requires us to simply XOR the columns oner®y; 0
leading toe/ XORs. Finally step 4 involves another matrix multiplicatioWe expect half of the entries of
theel x ef matrix E—1 to be ones, which leads us to a total%%ﬁ?*E XORs.

The (successful) decoder produdegackets, i.ek¢ symbols, so combining everything, we need

(k — e)el? e*?\ 1 ekl+2e
(e ) e (4.37)
XORs per output symbol, to which we must add the time takernbyetjuation solving step.

4.7 Implementations

As explained in the introduction, the work in this chaptersvmaotivated by practical needs, so we include
some implementations to illustrate the speed-ups pretinttheory.

We will focus in this section on the following transmissioroplem: a given file of size up to 64 kB is to
be transmitted over an impaired packet network, where eackep has a payload of 1 kB. We compare the
performances of RS and AG-codes, which in both cases aremgrited using the interleaving technique of
Section 4.6.

Our RS-codes are constructed over the figlgl, and our AG-codes ovél,g. We implemented the encoding
and decoding algorithms in C (compiled wigcc , andgcc -O3 ) and ran them on an AMD Athlon MP
2400+ 2 Ghz processor with 1GB of RAM and 256 kB of cache.

4.7.1 Encoding Bit Rates

We saw in the previous section that there is a theoreticadspe factor of 2 for the encoding. However we
found that in practice the speed-ups were in fact largers &htrue with no optimization, and the effect is
amplified even more when optimization optioge¢ -O3 ) are set on the compiler (see the graphs below).

This could be due to many reasons, such as more efficientrgadcs larger symbols are XOR’ed together,
but less often. These bit rates and ratios could of coursegehdepending on implementation and on which
machine they are run. The results were nonetheless usefig@ontext in which we were interested.
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4.7.2 Decoding Bit Rates

The theoretical decoding bit rates are a little more comapdid. We showed in section 4.6.4 that we expected

the decoder to need
ekl + 2e

2k

XORs of symbols per output symbol produced (wheis the number of erased systematic packets and the
field size is2%), plus time taken by the equation solving step (see sectib)4 The latter is essentially

(4.38)
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O(e?), and since the smaller field size does not lead to the samevements for this step as for the matrix
multiplications, we expect the gap between AG and RS codbs &maller whem is large.

In our experiments we supposed a “worst-case scenario’glyatimat there are. — k erasures, of which as
many as possible occur in the systematic packets. Forntadlyrieans that

e =min(n — k, k). (4.39)

We then make the erasures occur uniformly at random amongpih®priate sets of packets.

The graphs below show the decoding bit rates under theseticorsdfor AG and RS-codes.
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Figure 4.10: Decoding bit rates of RS and AG codes, with no optimization.
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We see that the ratio in Figure10 is smaller when the rate gets closel{®. This is probably due to the
fact that these are the rates for whicls largest, and so as explained above the equation sohapgakes a
bigger share of the running time which reduces the diffezdretween the two codes.

As for the encoding bit rate, th€©3 optimization amplifies the gains that AG make over RS codeshawn
in the graphs below:
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Figure 4.12: Decoding bit rates of RS and AG codes of length 64, Wit -O3 optimization.
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The generator matrix of an RS-code can actually be expreasedCauchy matrix, which means that the
equation solving step can be done faste(d?)). This is the principle ofCauchy Codessee [10]. With this
improved decoding for RS-codes we obtain the following aies:
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As expected the gains are not quite as good, but we still gatamements for all dimensions, which get quite
large where moves aways from its maximum value.

4.8 Conclusion

For applications requiring very short blocks, AG and RSesodecome competitive solutions to protect data
against packet loss. There is a strong argument to be madA®iaodes are in many cases the preferable
option. Their key advantage is the use of smaller fields favarglength, which translates to faster encoding
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and decoding times. Furthermore, the speed-ups predittbeary seem to actually be amplified in practice.
Although AG-codes do have higher error probabilities, weettgped an algorithm to compute these and found
that in many situations the consequences are in fact minor.

We conclude by saying that although AG-codes are most faifoouiseir asymptotic properties, it seems that
it is for very short lengths that they offer the greatest peass for practical exploitations. The short AG-codes
presented in this chapter are being used commercially é@ovdelivery.
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Chapter 5

Expander graphs

5.1 Introduction

Expander graphs and their constructions have been inaéstigince the 1970’s. Their remarkable properties
have led to applications in very diverse areas of computiense and discrete mathematics (coding theory,
network design, cryptography, complexity and others).

There are different ways to define graph expansion, all otiwlsan be shown to be related. Intuitively, a
graph is a good expander if it is highly connected, meaniag dh not-too-large sets of vertices have many
neighbors. This is clearly easier to achieve with graphargfdr degree, and the challenge is to construct good
expander®f a given constant degre®erhaps surprisingly, it was shown [59] that a randomlysehograph
will have these properties with high probability. Expliciinstructions are however more difficult to achieve.

In this work we will mainly be concerned with the algebrai@cddcterization calledpectral expansigrwhich
measures the expansion of a graph by looking at its spectnore(specifically the second largest eigenvalue).
This will enable us to use standard tools from linear algebrstudy expansion properties. It also directly
governs themixing rateof a graph, namely the speed at which a random walk on the gvdptonverge to

its stationary distribution.

In 1986 Alon [2] gave an upper bound on the spectral expartb@incan be achieved by an infinite family of
graphs. Graphs reaching this bound are referred Reasanujan graphsand were first explicitly constructed
by Margulis [54] and independently by Lubotzky, Phillipsda®arnak [44].

More recently, Reingold, Vadhan and Wigderson [61] intimetlithezig-zag productwhich enables an ele-
gant recursive construction. Although the resulting gsagfe not Ramanujan, the construction is remarkable
in that its analysis effectively relies only on linear algelvhich makes it not only easier to follow but also
somewhat more intuitive than any of the previous consiousti

The aim of this chapter is to introduce the necessary baakgrdor Chapter 6. Sections 5.2 to 5.5 will
present some preliminaries, definitions and standardtsesalexpander graphs. In Section 5.6 we describe
some graph products and operations which will be used in éxe chapter. Section 5.7 gives some results
on the spectral expansion of biregular bipartite graphschytalthough straightforward adaptations of their
non-bipartite counterparts, do not appear to feature prently in the literature.
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5.2 Background

Definition 5.1. We will use the following graph theory conventions:

e An undirected graph= is a pair(V, E') whereV is a finite set (the set of vertices) addlC V x V is a
symmetric relation oV (the set of edges). Note that self loops are allowed.

e An undirected multigraplz is a pair(V, E') whereV is a finite set (the set of vertices) aRdC V' x V' is
a multiset (the set of edges) such that

(x,y) € E = (y,z) € E, with the same multiplicity

Note that multiples edges and multiple self loops are altbwe

e Thesizeof a graphG = (V, E) is defined as the number of verticigs|.

e For any subset C V of vertices, theset of neighborsf S, denotedV (.5), is defined as

N(S)={veV|3seS:(s,v) € E}.

e Thedegreeof a vertex is the number of incident edges (each self loopusited as a single edge).
e A graph is said to be-regular if all its vertices have degreé

e A graphG = (V, E) is said to bebipartite if there are two disjoint subsefs " C V with V' = S U T and
foranysy, s € S, t1,to € T we have

(s1,82) ¢ E, and(ty,t2) ¢ E.

We will refer to the element§ andT as theleft andright vertices.

e LetG = (V| E) be a bipartite graph with left and right vertex s8tand7'. G is said to beviregular if there
are/, r for which all left vertices have degréeand all right vertices have degree

¢ andr are called théeft degreeandright degreerespectively. Notice that

018 = r-|1). (5.1)

e A path of lengthn is a sequence,, . . . , v, of vertices, with(v;,_1,v;) € E foreachi = 1,...,n.
e A cycle of lengthn is a path of lengt in which vy = v,,.

e Thedistancebetween two vertices, v is the length of the shortest path framto v.
In this work we will be dealing mostly with regular undiredteultigraphs. Unless otherwise statedyraph

will refer to an undirected multigraph. We will refer talaregular graph of size as an[n, d|-graph. We will
also be dealing withiregular bipartite graphswhose properties are described in Section 5.7.
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Definition 5.2. We will also use the following linear algebra notation:

e For anyn € N, we define the seh| as

[n] ={1,...,n}.

e A vectorz € R" is aprobability distribution(or probability vectoy if Vi € [n] : z; > 0, and
Z T; = 1.
=1

e Theinner product
() :R"xR" - R

is defined as

n
=1

e Thenormof a vectorz € R" is defined as

2]l =/ (z, 2).

e Two vectorse, y € R™ are said to berthogonal(or perpendicula, if
(z,y) = 0.
We write this asr L y.
e Two vectorse, y € R™ are said to bgarallel if there isO # 3 € R such that
y = Px.
We write this ase || y.

e A set of vectors{vy,...,v,} is said to beorthonormalif they are pairwise orthogonal, ania;|| = 1 for
eachi = 1,...,n.

e © € R" is said to be arigenvectonof a matrix A/ € R™*"™ if there is an element € R for which
Mx = Ax.

A is then called theigenvalueof M corresponding ta:.

e The set of eigenvalues of a matil is called itsspectrumand is denoted by Spet/).

e A matrix is said to bestochastidf all its columns are probability vectors. It doubly stochastidf all its
rows and all its columns are probability vectors.
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e [, € R™" denotes ther x n identity matrix.
e 1,, denotes the vector IR"™ whose entries are all

° 1|7L denotes the space of vectorsRff generated by,,:
1 ={8-1,| B €R}.

e 1> denotes the space of vectorsRii that are orthogonal b, :

It ={weR"|(v,1,) =0}

Notice thatllL and 1} have respective dimensioisandn — 1, and that they have only the zero vector in

common. We will use the terminology from [94] and call eleitseof 1','1 uniformand elements of;- anti-
uniform We have
R* =1 &1y,

which means that any vectar € R™ can be uniquely decomposedas= w! + w' wherewl! is uniform
andw' is anti-uniform.

Proposition 5.3. We have the following standard results:
e The Cauchy-Schwarzinequality: For anyu, v € R™:

[ (u, )] < [Jull - [Jv]l- (5.2)

e The triangle inequality: For anyu,v € R™:

lu+ ol < fJull + vl (5.3)

The adjacency matrixs a very natural way to represent a graph, and providesrikéo&tween graph theory
and linear algebra.

Definition 5.4. Theadjacency matriAdj(A) of a graphA with vertex sefn] is then x n matrix such that
Adj(A);; is equal to the number of edges between verticasd ;.

Notice that wher is undirected, AdjA) is symmetric. When a graph is regular, thenormalized adjacency

matrix (defined below) will be a very important tool to representin fact, we will often identify a regular
graph with its normalized adjacency matrix.

Definition 5.5. Thenormalized adjacency matrdf ad-regular grapM with vertex sefn| is then x n matrix
1 .
My = 3 -Adj(A). (5.4)

Notice that since Adj4) is symmetric, so iS\/4. Furthermore, since each vertex has degree have
Vieln]: Y Adj(A); =d,
j=1
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and therefore for each row

n

> (Ma)ij=1.

j=1
Furthermore sincé/4 is symmetric, we can deduce that it is a doubly stochasticixnad/e now give some
more properties oM 4.

Theorem 5.6. Anyn x n real symmetric matrix has real eigenvalues and orthonormal eigenvectors.

Proof: This is a standard result, see for example #7].

So in particular, since the normalized adjacency matrix gifegoh is real and symmetric, it hasreal eigen-
values which we write (in decreasing ordey) > ... > \,_1, and to which correspond respectively
eigenvectorsy, . .. v,_1 With

(viy v5) = 0y
For a graph4, when we refer to thepectrum ofA we will mean the spectrum af/ 4.

Proposition 5.7. Let A be a regular graph and led/4 be its nhormalized adjacency matrix. Afy > ... >

An_1 are its (ordered) eigenvalues with corresponding orthonak eigenvectorsy, . .., v,_1, then
A =1 and vy = 1—”.
vn
Furthermore, foralli = 1,...,n — 1 we have
Al < 1.

Proof: This is a standard result, we take the proof from [94]. We stdrt by showing the second part, namely
that|)\;| < 1 Vi. Let A be any eigenvalue with corresponding eigenveetoFor any;j € [n], we denote by
(v); the ;" component ob. Letk € [n] be an index for which(v)y| is maximal:

|(0)e] = max(v);].

Now sinceM 4 - v = v, we have in particular that\ 4 - v), = (A\v)g, and thereforé(M4 - v)i| = [(Av)k].
Letting a;; = Adj(A);;, this leads to

1> ans - ()] = Al [()x],
j=1

and therefore
| >0 any-),

Al = ]

> 7=1 lawsl|(v);]

On (by the triangle inequality)

< Y0 lal  (sincel(v);] < |(v)i| forall j € [n])

= 1 (sinceM 4 is doubly stochastic)
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It now just remains to be shown thats an eigenvalue. This follows immediately from the facttthé, is
doubly stochastic: Taking the uniform vectigy we see that for ali

(Ma-1n)i = aij =1=(1,);,
=1

and therefore\l 4 - 1,, = 1,,. Normalizing this eigenvector gives us

)\0:1, vy =

Lo
v

The spectrum of a graph can tell us about its expansion pgiepel hesecond eigenvaluwill be of particular
interest:

Definition 5.8. Let A be a non-bipartite graph and I& > ... > \,_; be its eigenvalues. Thsecond
eigenvalueof A is defined as
A =max (A, [An—1]).

So )4 is the second largest eigenvalue in absolute value. Ndieteftom proposition 5.7, for any graph

we have0 < A4 < 1. Definition 5.8 applies only tmon-bipartite graphs. We will see in Section 5.7 the
corresponding definition for bipartite graphs.

Proposition 5.9. Let A be a regular graph and leky, > ... > \,_1 be its eigenvalues. Then

e Ais connected if and only X; < 1.

e A s bipartite if and only if\,_; = —1.
Proof: See for example [94m

The following characterization of the second eigenvalua gfaph will be very useful in the next chapter:

Theorem 5.10. For any non-bipartite grapM we have

|<MA . x,x}‘
A4 = max — "1,
0£zelt  (x,x)

Proof: See for example [94
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5.3 Expander Graphs

As explained in the introduction, there are different walymeasuring graph expansion. The most intuitive
ways are combinatorial, and we start wétige expansionFor a graphd = (V, E') and a subse$ C V' of
vertices, we lefS denote the complement 6fin V, and define thedge boundargf S as the set of outgoing
edges fromS:

9S=EN (S x5).

Definition 5.11. A graph A = (V, E) is said to be ai-edge expandeif

V]

VSCV:IS|S o = [0S h-|s].

We also define thedge expansion parametef A as
h(A) := min {h | Ais anh-edge expandér

So edge expansion requires that sets have many outgoing. €lige is closely related to the conceptveftex
expansion

Definition 5.12. A graph A = (V, E) is said to be ari, 3)-vertex expandeif

VSCV:|S|<a-|V] = |[N(S)|>3-]S|

This is saying that any set of vertices that is not too large “expands” into its neightwad (i.e. N(S) >
- |S|). Oftena is set tol which leads to the following common definition:

Definition 5.13. A graph A = (V, E) is said to be g-vertex expandeif

V]

VSCViIS|S o = IN(S)| 2 8- ISl.

We also define
B(A) := max {8 | Ais a 3-vertex expande.

Expander graphs are sometimes said to be “highly conneatefdtring to the fact that sets of vertices have
many neighbors. Although this definition has a clear visa&rpretation (and goes well with the word
expandey, it is sometimes difficult to prove results relating to thgp@nsion of specific graphs using edge or
vertex expansion. Instead we will be mostly concerned viighfollowing algebraic characterization of graph
expansion:

Definition 5.14. A regular graphA = (V, E) is said to be a\-spectral expandeif its second eigenvalug 4
has the property that
A < A

Recall from Theorem 5.7, that< A4 < 1. The valuel — )\ 4 is referred to as thepectral gap A larger gap
means better expansion. We will referdaegular\-spectral expander of sizeas an[n, d, A\]-graph. When
we say that a graph is)aexpandemwe mean that it is a-spectral expander.
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The definitions above are all essentially measuring the ghing. The relationships between them are im-
portant, in the sense that it is often easier to analyze ansti@t graphs based on their spectral expansion,
while some applications make direct use of their combinatexpansion properties.

The relationship between edge and spectral expansiontigredgn the following theorem [33]:

Theorem 5.15. For any [n, d, A 4]-graph A we have
w < h(A) < d\/2(1 = X\y). (5.5)

This was proved by Dodziuk [23] and independently by Alorxvin [6] (see [33]). We can also relate vertex
and spectral expansion as follows:

Theorem 5.16. For any [n, d, A 4]-graph A we have

(B(4) = 1)
(8 +4(8(4) — 1)?)’

1_25(A)§/\A§\/1—d2' (5.6)

The second inequality of (5.6) was proved by Alon in [2]. Thstfinequality follows from the fact that
h(a) < d-[(A)and Theorem 5.15.

5.4 Random Walks

The behavior of a random walk on a given graph is stronglytedl#o its expansion properties. Although we
have at our disposal a wide range of algebraic tools to stuelgpectral expansion of a graph, random walks
have the advantage of having a very appealing intuition. Winelook at graph products it is often convenient
to conceptualize a product of two grapAsand B in terms of how one step of a random walk on this product
is constructed from steps of walks dnand 5. In our proofs we will often supplement the calculationshnat

a description of what we are doing in terms of random walkstHfewumore, many of the practical applications
of expander graphs in computer science explicitly use thaéngiproperties of expander graphs.

Using the normalized adjacency matfix4, we can analyze random walks in algebraic terms. When we star
with an initial distributionzy € R™ on the vertices ofi, after one step of a random walk ehnthe distribution
will be
T = MA - XQ.
Likewise aftert steps it will be
Tt = (MA)t - ZQ-
We will also refer tolM 4 as thetransition matrixof A.

In any connected non-bipartit@regular graph4, taking a random walk on its vertices starting from any
initial distribution will converge to the uniform distrition 17" The spectral expansioky determines the
speed of this convergence. The better the expansion piepeitA, the faster a walk will converge to the
uniform distribution. This is written more formally in thelfowing theorem (see for example [33]):

Theorem 5.17.Let A be a non-bipartite\ 4-spectral expander. Starting with any initial distributia:y € R"™
on the vertices ofl, the distributionz; aftert steps of a random walk will satisfy:

1
e — 22 < X
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So we can say that the distribution converges exponenfedlyto the uniform distribution, with basey.

Proof: Let\g > ... > \,_1 be the eigenvalues of, with corresponding normalized eigenvectogs. . . , v, —1.
We know from Theorem 5.6 that these eigenvectors form amodimal basis oR™. We can writez in this

basis as
n—1
xTro = Z [0 73RV
1=0

We have:
x = Al-x

. t n—1
= A 'Zi:o Q- U

o n—1 t )
= Dico @i A Ui

(5.7)
= Q- )\6 UO"‘ZZ 1 Q4 - /\va
= Qg v+ Zz 10 )\;f - U; (sincerg = 0).
Recall from Proposition 5.7 that) = 1,,/y/n. This means that
n
ap = (x,v9) = % = 7 (sincex is a distribution) (5.8)
so that )
Qo - Vg = _n' (59)
n
Continuing with (5.7), we have
lze =32l = lwe = a0 - vo
= 125 i A
= /a2 A (since they;'s are orthonormal)
PV Z?;f af
< Ay ol
< Ay (sincex is a distribution).
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5.5 Families of Expander Graphs

As we have previously seen with codes, there are many apiplisaof expanders in which we do not know

beforehand the size of the required graph. So just as we hddked/éamilies of codes in Chapter 3, we can
define families of graphs. It is much more convenient (andaei® to construct families of graphs that display
the desired properties, rather than ad-hoc constructibgean graphs of different sizes. Furthermore, when
expanders are employed to show asymptotic results it oftenrnes necessary to work with infinite families

of graphs.

Definition 5.18. A (fixed degree) family of graphs of degrées a sequencéA; };cn, whereA; is an|n;, d|-
graph and

lim n; = oo.

1— 00
A family of graphs is said to be &expander familyf each 4; is a A-spectral expander. A family is said to be
anexpander familyf itis a A-expander family for somg < 1. Recall that a smaller second eigenvalue means
better expansion, so it is desirable to consti&xpander families foh as small as possible. We have the
intuition that it is easier to construct expanders of ladggree (the “high connectivity” can be more readily
achieved with many edges), so the challenge is to build tkefdmssible expandeos a given degred.

The following theorem (stated in [2]) gives a lower bound lo@ best\ that can be achieved, and its relation-
ship to the degree.

Theorem 5.19. (Alon-Boppana). Lef A; };en be a family of graphs of degree Then
lim A(4;) > 2Y4=L

71— 00 d

This is sometimes referred to as tAn-Boppana boundlt provided a benchmark against which one can
measure how good a given family of expander graphs is. Graphving this bound are referred to as
Ramanujan graphs

Example 5.20. For anyi € N* we defineZ; as the ring of integers moduifo
Zi; =1]iZ. (5.10)

Some examples of explicit expander family constructions:

1. LetV; = Z; x Z;. Each verteXz, y) € V; has the following! neighbors:

(:C"i'yay)» (:C_yay)> ($,$+y), (l’,x—y)-
ThenA; = (V;, E;) is an[i?, 4]-graph, and 4; };en+ is an expander family [78].

2. LetV; = Z; x Z;. Each verteXz, y) € V; has the following eight neighbors:
(‘T—i_yvy)? (1’—?/7?/)7 (l’ay‘f‘l’), (1’7?/—33)7
(:C"i_y"i' lay)> (:C _y+ 173/)7 (x,y—i—a:—l— 1)7 (ZC,@/—.I‘—F 1)
ThenA; = (V;, E;) is an[i?, 8]-graph, and 4; };en+ is an expander family [33] [78].
This was the first construction of an explicit expander fgjrahd is due to Margulis [52] (1973). His

proof was existential in the sense that it did not providexaulieit bound on the expansion of the family.
This was obtained later by Gabber and Galil [27].

(5.11)
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3. Letp; denote the™ prime. We letV; = Z,., and the edge séi; C V; x V; is defined as
Ei = {(.1‘,.2?_1), (ZC,ZL‘ + 1)7 (ZC,ZL‘ - 1) | T e VYZ\{O}} U {(070)7 (07 1)7 (07 _1)} (512)
ThenA; = (V;, E;) is a[p;, 3]-graph, and A; };cn+ is an expander family [33].

4. Letp andq be distinct primes, witlh = ¢ = 1 mod4, and letu be an integer for whick?> = —1 modg
(such au always exists). It can be shown [44] that there are exdgthy 1) 4-tuples(ag, a1, as, as)
with

ag + af + a3 + a3 = p, (5.13)
and for whichag > 0 is odd, andzy, as, ag are even. To each such tuple we associate the matrix

ap + uaq as + uasg
—ag +uaz ag — uay

) € PGL(2,F,), (5.14)

and letS be the set of these+ 1 matrices. The Cayley graph,, of PGL(2,F,) with respect toS is
then an[V, p + 1]-graph, where

N = |PGL(2,F,)| = q(¢* — 1). (5.15)
It can be shown [44] that
_ 2P
Ay, = PERE (5.16)

So if we fixp = 1 mod4, take an infinite sequeneg < ¢» < ... of primes for whichg; = 1 mod4,
and let4; = A,,,, then{A;};cn~ is a family of Ramanujan graphs of degrge+ 1).

This construction is due to Lubotzky, Phillips and Sarna¥ [44] (1988). The ternRamanujan graph
comes from this family whose analysis uses the Ramanujajectaone. This was later extended by
Morgenstern [56] to obtain constructions(gf+ 1)-regular Ramanujan graphs for all prime powers

5.6 Graph Products and Operations

Because we are working with multigraphs, the edfies V' x V form amultiset(a set in which elements can
appear multiple times). It is often inconvenient to refeetiyes as elements of this multiset. Instead, having
alabeling of the edges allows for more concise notation.

We start this section by introducing labelings and the immtathat follows, which we will then use to present
some graph products.

5.6.1 Edge Labelings

A labelingof an[n, d]-graph A consists of assigning distinct labels to the edges leavach gertex ofd. The
labels will be elements of a sétof sized. We often havel. = [d]. In this case for a vertex € [n], if the
edge labeled € L connects: to v then we can say thatis thei! neighbor ofu.

Each edge has two labels (one corresponding to each onewefriises), and these labels may be different.
This is saying that it is the:™ neighbor ofu thenu may not be the™ neighbor ofv. We write this formally
as follows:
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Definition 5.21. Let A = (V, E)) be an[n, d]-graph on vertex sét]. A labelingin L (so|L| = d) for a vertex
u € [n] is a bijection
fy 2 L — N(u). (5.17)

A labeling i for the whole grapM consists of a labeling for each one of theertices
= {pu | uenl} (5.18)

All our graphs will either have some arbitrary (but fixed)dtibg, or an implicit labeling from their construc-
tion. This enables us to employ the following notation:

Definition 5.22. Let A be an[n, d]-graph on vertex s€t|, and with a labeling ifd]. Foru,v € [n] and
i € [d] we use the notation
v = ulfi] (5.19)

to denote the fact thatis the:™ neighbor ofu (i.e. thaty, (i) = v).

Definition 5.23. A labeling of an[n, d]-graph A is said to be @-edge-coloringf for each edge its two labels
are identical. More formally:
Yu € [n], i € [d] : uli][i] = u. (5.20)

Not all d-regular graphs havé-colorings. Finding al-edge-coloring is equivalent to partitioning the vertices
of A into d perfect matchings. So for exampleiifis odd thenA does not have d-edge-coloring. It turns out
that determining whether a given graph lklasdge-coloring is NP-complete [32]. In this work when weeref
to acoloring we mean an edge-coloring.

Definition 5.24. A labeling is said to be half-coloringif for each color: € [d] there is a corresponding color
p(i) € [d] for which any edge coloredlat one end will be coloreg(i) at the other end. More formally, there
is a mapping : [d] — [d] that satisfies

Vu € [n], i € [d] : ulp(d)][i] = uli][p(i)] = u. (5.21)

We refer top as thepartner mapping Notice thatp is an involution. So al-edge-coloring is a special case
of a half-coloring, in whichp is the identity map. When a labeling is a half-coloring, thkedls will also be
referred to agolors

Half-colorings will be of interest to us because for our geel of the expansion properties of the deran-
domized tensor product in Chapter 6 it will be necessary aifficient for the graphs involved to have half-
colorings. They are also interesting because some of thphgrneoducts we will see preserve half-colorings,
but not colorings.

Non-regular graphs can also be labeled in a natural way. dabr eertex:, the edges adjacent toare labeled
with elements from a set of sizkg(u).

5.6.2 Graph Squaring

We use the notation from Definition 5.22 to describe our pctslu
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Definition 5.25. Let A be an[n, d]-graph with a labeling. The squar€ of A is the[n, d*]-graph with vertex
set[n] and a labeling ind] x [d]. For anya € [n] and(i, j) € [d] x [d], we have

ali, j] = ali[j]. (5.22)

More intuitively, this can be interpreted as taking all atii length2 in A. So A% has the same vertex set as
A, and we put an edge id? between two vertices, v for each path of length betweens andw in A. In
terms of random walks, taking one stepAd can be decomposed into takiAgsubsteps imd. For each of
these substeps we hadehoices which gives us a total df choices (as expected since the degredfs
d?).

Notice that the labeling ofi? (with [d] x [d] as its set of labels) is implicit to its construction frafn It can
also be checked that graph squaring preserves half-cgtohiat not colorings.

SinceA? has the same size asbut has more edges, we expect it to be a better expander. Merisgly, the
second eigenvalue gets squared:

Proposition 5.26. If A has second eigenvalugy thenA? has second eigenvalue

Aaz) = A3
Proof: If we let \g > ... > \,_; be the spectrum af/4, then the spectrum af/3 will be \3,... \2_,.
By definition we have
Aa=max{|\],....[Ac1l},  and A2y =max {\],... A2} (5.23)

Squaring positive numbers preserves their ordering, secqasred:

Aaz) = A% (5.24)

5.6.3 Graph Tensoring

Definition 5.27. Let A be an[n, d,]-graph, and leB be an[m, dz]-graph. Their tensor produet @ B is
an [nm, d;ds]-graph with vertex sefin] x [m] and a labeling ifd;] x [d2]. For any(a,b) € [n] x [m] and
(1,7) € [d1] x [d2], we have

(a,b)[i, 5] = (ali], blj))- (5.25)

Throughout this work, we will interpret the vertex $et x [m] asn copies of[m]. We will also follow the
convention of [61] and refer to these copieschsids So for a vertexa, b) € [n] x [m], a describes which
cloud it belongs to, and describes its position within cloud

In the context of random walks, we can interpret a step) in A ® B from the vertex(a, b) as follows:

1. Take one stepetween cloudsThe different possibilities are given by the edgesdofThe positionb
within the cloud does not change:
(a,b) — (ali], b).

Notice that there are exacttyf possible choices for this step.
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2. Take one steithin the new cloud:[:]. We view the cloud as a copy @f, and take one step along an
edge of this copy (so we stay in the same cloud):

(ald],b) — (ald], bl]).

Notice that there are exacttiy possible choices for this step.

So the total number of choices for both stepé;ig>, which as expected is equal to the degreelod B. The
labeling of A ® B (with [d;] x [d2] as its set of labels) is implicit to its construction frofnand B. The two
subsets into which stef, j) were decomposed above are commutative, we could just ahiavepresented
them the other way round.

It can also be checked that graph tensoring preserves blattings and half-colorings. Graph tensoring can
also be interpreted as an operation on the correspondingjtican matrices. We conveniently have

Magp = Mg ® Mp. (5.26)

The expansion ofl @ B will be the worse of the two expansions:

Proposition 5.28. If A and B have second eigenvalugg and A\ then A ® B has second eigenvalue
)\A®B = max {)\A, )\B}'

Proof: IfweletAg > ... > A\,_1andug > ... > u,—1 and be the eigenvalues 8f 4 and M g, then
{Nipili=0,...,n—1, j=0,....m—1} (5.27)

is the set of eigenvalues of 4 5. Since)y = 1o = 1, the result followsm

5.6.4 The Zig-Zag Product

The Zig-zag product introduced in 2002 by Reingold, Vadhan and Wigderson [6iHbées the recursive
construction of expander families. In all previous explmbdnstructions of expander families, although the
graphs were easy to describe, the proofs of why they leaddd gepanders were highly algebraic and rather
complex. It was therefore difficult to conceptualize thermegtion between the algebra and the actual graphs,
or to get any intuition as to why the resulting families warddct expanders.

The zig-zag construction however is remarkable in thatritdysis effectively relies on linear algebra, which
makes it not only easier to follow but also somewhat moreitisgs Once the expansion properties of the
product are known, it is very simple to show that the recursioggested in [61] leads to an expander family.

Definition 5.29. Let A be an[n, d;]|-graph, and letB be a|d;, d2]-graph. Their zig-zag product@B is
an [ndy, d3]-graph with vertex sefin] x [d1] and a labeling ifds] x [d2]. For any(a,b) € [n] x [d1] and
(i,7) € [d2] x [d2] we have

(a,b)[i, 5] = (a[bl]], O[] [j])- (5.28)
The zig-zag product has an appealing intuition in terms aksva\We can view the construction as first

replacing each vertex ol by a copy of the vertices aB (which we call acloud), leading to the vertex set
[n] x [d1]. We can then break up one step (labeled)) in A@ B from vertex(a, b) into three substeps:
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1. We take one step within the current clodtd ¢hoices):

(a,b) — (a,bli]).
2. We take one step between clouds (deterministic, only boie).
(@, bli]) — (albld]], bld])-
3. We take one step within the new clout} Choices)
(a[bl2l]; bl]) — (albla]], OLE][4])-

Step 2 is determined by which vertex we are on within the aircéoud. Indeed, this vertex corresponds to
an edge label i, and therefore uniquely defines a neighbor of the currenidcld his leads to a total @f
choices, which as expected is equal to the degre&@5.

The expansion ofi(2 B can be bounded as follows:

Theorem 5.30.1f Aisan[n,d;, A 4]-graph, andB is an[d;, d2, Ag|-graph, thenrA@ B is a[n-d;, da, f(Aa, AB)]-
graph, where

1 1
FOaAB) =5 (1= ) A+ 5 VL= X220 + 43, (5.29)

Furthermore, ifA4, A\p < 1 thenf(A\4,A\p) < 1.

Proof. See [61]m

Although the bound (5.29) is rather complicated, it can @shthat
FOa,AB) < Aa+ g+ 2% (5.30)

As explained earlier, this product leads to recursive cantion of fixed degree expander families.
Let B be a fixed¢®, ¢, \]-graph for some parametetsind\. We define the family{ A; } ;e as follows:

A, = B?
Ay = B®B

Vi>2: A = (A[i_q@AL%J)?@B.

2

It can be checked that; is a[¢®, (2, ji;]-graph, in whichu; = A + O(A\?). So by picking\ small enough
to start with, we can ensure that thereuis< 1 for which p; < p for all ¢, and therefore that4, };cn- is an
expander family.

We see the usual trade-off between degree and expansioe ahtice of the initial grapi3. Getting A; to
have a small second eigenvalue requike® be small, which in turn means that the degfe# B must be
large, and this means that the degféef our family will also be larger.

This method does not enable the construction of a family-dgular Ramanujan graphs (this would require
© = O(d~'/?)). With the normal zig-zag product the best we can hope fosecand eigenvalue 6f(d—1/4),

but through thedlerandomized zig-zag produ@lso in [61]) one can obtain a family d@fregular graph with
= 0(d"1/3).
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5.6.5 Derandomized Squaring

The derandomized squaring operation was first presente@bgrirnan and Vadhan [64]. Recall that squaring
an[n,d, Aa]-graph A consisted in taking all paths of length This led to improved expansion properties
(A4 — A%), but increased the degree considerally{ d2). The idea ofderandomized squarinig to take
only a subset of the paths of leng2h By cleverly choosing which of these paths to include we ceinag
considerably smaller degree thds, at the cost of only slightly worse expansion.

The idea is to use another graphwith parametersd, ¢, \c|. Let (u,v,w) be a path of lengt in A. Let
i,k € [d] be the labels of the edges framto v and fromwv to w respectively. Then id@C we keep only
those paths of length for which i andk are connected id’'. The expansion properties of the resulting graph
will depend on the expansion properties of bdtlandC. Formally:

Definition 5.31. Let A be an|n, d]-graph, and leC be anld, t]-graph. The derandomized squat&®C' of
A with respect taC is the [n, dt]-graph with vertex seftz] and a labeling irfjd;| x [t]. For anya € [n] and
(1,7) € [d] x [t] we have

ali, j] = ali][i[j]]- (5.31)

Notice that if K; is the complete graph ahivertices then we obtain the standard squaring operation:

ASK, = A (5.32)

Derandomized squaring does not preserve half-coloringslorings. The expansion propertiesAB)C' will

be analyzed in Section 6.3. The term “derandomized” conws the fact that performing a random walk
on AQC requires fewer random bits than a random walk4n Indeed since the degree is smaller, there are
fewer choices to be made at each step.

5.6.6 Projection

The concept of graph projection will be essential to our fg@@the next chapter. Whenever we have a graph
whose vertices are divided into clouds, we can “collaps€hedoud into a single vertex, while keeping all
the edges.

Definition 5.32. Suppose we have dnm, d|-graph A with vertex sefn] x [m]. P,[4] is an[n, md]-graph,
with vertex sefn] and a labeling ifm] x [d], in which for anya € [n], (b, k) € [m] x [d]:

alb, k] = u, (5.33)
where(u,v) € [n] x [m] is the unique vertex ofl for which (a, b)[k] = (u,v).
Notice that B[A] has the same number of edgesfasiVe can interpret them x nm transition matrixM 4

of an[nm, d]-graph A as a block matrix, consisting af x n blocks, each of sizex x m. Fori, j € [n] and
k,¢ € [m] we use the notation

(Ma)ir je (5.34)
to refer to entry(k, ¢) of block (4, j). Then x n transition matrix of PA] is then equal to
1 m m
(Mp,a)),; = o DY (Ma)ikje. (5.35)
k=1 (=1



So each block is replaced with a single entry whose valueusaleg the sum of all the entries in the block
divided bym. The factor# ensures thad/p, 4 is stochastic.

Example 5.33. Consider the following18, 2]-graph 4,

J L.

VL NN

Figure 5.1: The graphA.

A has 18 vertices divided into 6 clouds. The projectigd]R= P;[A]) of A is then the following graph:

[ .
Figure 5.2: The graph PA].

So HA] has 6 vertices, and the same number of edges @amely 18).

5.6.7 De-Projection

While projection collapsed each cloud into a single vertise¢projectionis a sort of reverse operation that
expands each vertex into a cloud.

Definition 5.34. Let A be ad-regular graph with vertex sén] and a labeling ind]. We define the de-
projection DRA] of A as the[nd, 1]-graph with vertex sdfn] x [d], in which each vertexi, k) has a unique
neighbor:

(i, k)[1] = (ilK], 0), (5.36)

where/ is the unique element ¢d] for whichi[k][¢] = i.
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Notice that the graph DR] is a matching (i.e. no two edges are adjacent). If the labadinA is a half-
coloring, then for each € [n] and eaclk € [d], the element from (5.36) is equal to the partner colpfk)
of k, so that

V(i k) € [n] x [d] : (i, k)[1] = (i[k], p(k)). (5.37)

Likewise if the labeling is an edge coloring thés= £ so that

V(i k) € [n] x [d: (i, k)[1] = (i[k], k). (5.38)

Notice that DRPA| has the same number of edges/sand that there are no edges within the clouds, only
between clouds. Also, because it has dedreme step along DP] induces a permutation of the vertices (in
fact an involution).

We can write the transition matrix of DR] as follows:

1 if j=i[k] and i = j[{]

(Mopray) iy = { 0 otherwise (5-39)

The de-projection operation is defined for gnyd]-graph, whereas the projection [R] is defined only for
graphs whose vertices have been divided intdouds. The relationship between the two operations can be
described as follows: For any, d]-graph A, we have

P, [DP[4]] = A. (5.40)

Example 5.35. To illustrate the de-projection operation, we consider [th&]-graph A given below. For
simplicity, the labeling in this example is an edge coloring

Y,

Figure 5.3: The graphA.

So the edges ofl are assigned one of three possible colors. Its de-proje€tjA] can then be drawn as:
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Figure 5.4: The graph DPA].

We see that the vertices df are replaced by clouds. Each cloud has one vertex for eaohitaised inA.
We also see that OR] has degreé, and there are edges only between clouds, not within thelslou

5.7 The Spectrum of Biregular Bipartite Graphs

Although the expansion properties of biregular bipartitaptps have been widely used (expander codes, for
example, are based entirely on these), there appears tayktthe mention of the spectrum of such graphs,
and how it can be related to their expansion properties. Mesless, there is a similar link to that found
in non-bipartite regular graphs. For lack of referencesé¢hiinks are derived in this section, along with the
results needed in the next chapter.

We had previously defined theecond eigenvaluenly for non-bipartite graphs. In this section we extend
this definition to cover biregular bipartite graphs, whicti we used for our proofs in the next chapter. Our
aim is then first to prove the results that will be needed, dsd @ establish the relationship between the
second eigenvalue and combinatorial expansion in the ldaegipartite case. We will show that the second
eigenvalue also governs the rate of convergence of randdiks Rroposition 5.45), and that a modified

version of the Expander Mixing Lemma holds (Lemma 5.48).

Throughout this section we will suppose tldats a biregular bipartite graph witlh, left vertices ands right
vertices and of left and right degreéandr.

5.7.1 Notation

Recall that for anyx € N, [n] was defined a$1,...,n}, andl,, € R™ was the all one vector. We will also
have the following:
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Definition 5.36. If d; andd, are the numbers of left and right vertices@fthen

Di = {l,....di}.
Dy = {di+1,....d}. (5.41)
[d] = {1,...,d}:D1|_|D2.

When we consider vectors i they will often have non-zero entries only in those pos#ionD; or only in
D5, and will therefore work with the following spaces:
Definition 5.37. We define the subspac#y and R, of R? as follows:
Ry = {veR?|v;=0Vi€ Dy}.
Ry = {UERd‘UZ'ZOVZ'EDl}.
We therefore hav®? = R, & R..

Definition 5.38. e¢; ande, denote the following vectors R

o 1 ifie Dy

(e1)i —{ 0 if i€ Dy, (5.42)
o 0 ifie Dy

(e2)i = { 1 if i € Dy. (543)

Notice thate; + es = 14, (e1,€1) = di, {e2,e2) = da, and(ey, es) = 0.

Recall that in genera]',L and1;- denote the spaces of vectors respectively parallel ancepdigular tol,,.
We have corresponding definitions farande,, where the spaces will be embedded iitb

Definition 5.39. Fori = 1, 2, we have:

el = {8 | BER}.
(5.44)

ei ={v € R;| (v,e;) = 0}.

5.7.2 Transition Matrix

Let C be a biregular bipartite graph, with left and right vertetsde, , D», and of left and right degre¢sand
r respectively. The number of edges@ican be expressed in two different ways:

|E(C)| = dil = dar, (5.45)
which leads to the following equality
d1 T
- =-. 5.46
57 (5.46)
The adjacency matrix af’ has the form
: 0 | X
Adj(C) = ( <~ 0 ) , (5.47)
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where X is ad; x ds matrix. The rows ofX have weight/, while its columns have weight Adj(C) is
symmetric and therefore hdgeal eigenvalues and an orthonormal set of eigenvectors fifidt problem we
encounter is how to define the normalized adjacency matriX.olndeed since&’ is not regular there is no
degree by which to divide A¢{). Instead we defind/- so that it describes one step of a random walk on
C. This requires it to be stochastic (each column must be aapitily vector), which leads to the following
definition:

Definition 5.40. Let C' be a biregular bipartite graph as describe above, wit{@gps in (5.47). Then the
normalized adjacency matrix (tnansition matrix) M of C'is defined as

0 1. x

T

Mc =

(5.48)

1 T
LXT| o

BecauselM - is stochastic, its eigenvalues are all betweeinand 1. However M is not symmetric, and
therefore many of the properties we showed in the previoasasefor regular graphs no longer hold (for
example its eigenvectors are not necessarily pairwis@gaial).

We start by presenting some characteristics of the spectnesheigenvectors of Adf'), which will then relate
to those ofM . Throughout this section, all vectors of the form

(%) (5.49)

will be elements ofR?, in which z € R% represents the tog, components ang € R% the bottomd,
components. The next proposition states that the eigesrgect Adj(C') with non-zero eigenvalues come in

pairs.
(%) (5.50)

is an eigenvector oAdj(C') with eigenvalue\, then

( = ) (5.51)

is also an eigenvector &dj(C') with eigenvalue-\.

Proposition 5.41. If

Proof: See appendix Ga

Next, we relate the spectrum of Adj) to that of M. We can also deduce a bijection between the sets of
eigenvectors of the two matrices.

Proposition 5.42. Letu, v € R be vectors written as follows:

-(5) )

u is an eigenvector oAdj(C') with eigenvalue\ if and only ifv is an eigenvector o/ with eigenvalu%.

Proof: See appendix Ga
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5.7.3 Eigenvalues and Eigenvectors

The first consequence of Proposition 5.42 is th&t also hasl real eigenvalues. We ley > ... > \;_; be
these eigenvalues, ang, . .., v4_1 be the corresponding normalized eigenvectors. It can bekeldethat

e1 + 162 and er — Ceg (553)
14 l
are eigenvectors af/¢, with respective eigenvaludsand—1. Since—1 < ); < 1 for all 4, we deduce that
Ao = land)\;_; = —1. Normalizing the vectors in (5.53) gives us
\/da/dy - \/dy/dy -
Ao =1, vo = 2/dy - er + 1/dy - e2 (5.54)
Vd
and
\da/dy - ep —+\/dy/ds -
M1 = —1, vy = Y2/ e 1/da- €2 (5.55)
Vd
Next, if we callug,...,us—1 the normalized eigenvectors of Adj) (ordered in the usual way), we know

first of all that they form an orthonormal basis®#. Using Proposition 5.42, we can also deduce from (5.54)
and (5.55) (and after normalizing) that

€1 €2 €1 €2

— —|— 5 — - 9
V2d; | 2d, Y= g 2d,

and their corresponding eigenvalues gf&- and—+/¢r respectively.

(5.56)

Uuo

5.7.4 Random Walks

A random walk on a biregular bipartite graph does not coreséoghe uniform distribution. Indeed it is clear
that if we start our walk on the left side, then aftesteps we will be on the right side for oddnd back on
the left side for even.

For an initial distributionz € R?, let
p1= Z xy, and p2= Z T (5.57)
i€D i€ Do

denote the probabilities of starting on the left and righdesirespectively (sp; + po = 1). Then whert is
even, the distributiom’z will converge to

€1 €2

Weven= P1 ° d_1 + p2 - d—2> (5.58)
and to . .
1 2

— . L .2 5.59

Wodd = P2+ 7 + 1 7 (5.59)

whent is odd. Intuitively this is saying that whenis even it is uniform over the left nodes with probability
p1 and uniform over the right nodes with probabiliy (and vice versa whehis odd).
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5.7.5 The Second Eigenvalue

Because\;,_; = —1, if we used for biregular bipartite graphs Definition 5.8 loé tsecond eigenvalue, then
it would be1 for every such graph. However we know that some bipartitpliggare better expanders than
others, and would like to have a definition that reflects this.

For a non-bipartite grapH with eigenvalues\, > ... > \,_; and corresponding eigenvectass . .., v,_1,
the definition of the second eigenvaluesfis

)\C = Inax (|)‘1|7 |)\n—1|) (560)

was partly motivated in terms of convergence of random walke stationary distribution of a random walk
on A is a multiple ofvy. An initial distributionz € R™ can be expressed in the basis given by the eigenvectors
as

n—1
=0

Under a random walk od it will converge to its first componentyvy, and\s therefore describes the rate at
which the other components get killed.

With a biregular bipartite grapf’ as above the situation is similar, though we must considésaad even or
odd length separately to get convergence. In both casesdinéations to which the walks converge are in
Spartvg, v4_1), and so this time it is

max (|A1|, ‘)\d_g‘) (562)

that describes the rate at which the remaining componentsligel. This leads to to the following definition:

Definition 5.43. Let C' be a biregular bipartite graph with transition mati%-, and let\c > ... > A\;_1 be
its eigenvalues. Theecond eigenvaluef C' is defined as

Ac = max (A1, [Aa_al). (5.63)

Our aim in the rest of this section is to give some propertfels-owe will need, and also to see how it can be
related to the expansion properties(of

5.7.6 Results We Will Need
We saw in previous sections that in an d] non-bipartite graphi, for anyz € 1.
[Ma -zl < Aa- ] (5.64)

The following proposition presents the corresponding prtypof the second eigenvalue of a biregular bipartite
graph.

Proposition 5.44. Let C' be a biregular bipartite graph, with transition matriX/~ and second eigenvalue

A
dq
|Mc - z| < \/d—Q-AC'HxH. (5.65)
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e Foranyr € ey, we have

d
e ol < \/ 2 2 fei. (5.66)

Proof: We will show only the first part (the second part follows by syairy). We know from Proposi-
tion 5.42 thatif\o > ... > \4_; are the eigenvalues af/ thenv/¢r- X, ..., Vlr-A4_; are the eigenvalues
of Adj(C). We also letuy, . .., uqs_1 be the corresponding eigenvectors of &dj. These form an orthonor-
mal basis ofR? (since AdjC) is symmetric). Once again, we decompasaith respect to this basis:

T = % ;. (5.67)
=0
Recall from (5.56) that
uy = \/62171 + \/62272, Ug—1 = \/62171 — \/62272, (5.68)
Now because: € e; we have
ag = (z,ug) =0, ag-1 = {(x,uq_1) = 0. (5.69)
Also recall that
0 |X 0 ‘ 1.x
Adj(C) = , and Mo = (5.70)
XT]o 2-XT| 0
The important thing to notice next is that because R, we have
0o |i.Xx
Mo = . ( % > . (#) . %Adj((]) - (5.71)
|

Since);v/¢r is the eigenvalue of Ad{"') corresponding ta; (see Proposition 5.42) and) = ay_; = 0 (See
(5.69)) this leads to

d—2 d—2
MC'ZC = %AdJ(C)ZOéZuZ = %ZO&Z\/E_T)\ZUZ (572)
=1 =1
Therefore by the definition ofc we have
[l
) 1 d—2 ) Ir d—2 )
i=1 i=1
And so recalling tha = 4L, this gives us
d
IMe 2| < \/gxc'nxu =/ el (5.74)

as requiredm
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5.7.7 Convergence of Random Walks

First of all, we see from the definition df/- (5.48) that

2

0 |1-X ZXXT 0

(5.75)
. XT

1 1 vT
1 LXTX

C? is a regular graph of degrefe with two connected components, and? is its transition matrix. Let
o > ... > ug—1 be its eigenvalues with corresponding eigenvectoss. .., wq_1. Thew;’s form an
orthonormal basis dR?. It can easily be checked that

Mgv c€1 = €1, Mg« c € = €9. (576)

Therefore normalizing these we see that

e1
=1, = — 5.77
Ho wo \/d—l ( )
and .
2 (5.78)

/’l’1:17 Wy = —=-
e

In general, if\ is an eigenvalue of a matri/ then\? is an eigenvalue of/2. So here if\g > ... > \y_;
are the eigenvalues af/~ then

{10, s pa—1} = {5, A5 (5.79)
Sincepy = A§ andpy = A;_;, the remainingu;’s are in{\%,...,A3_,}, and therefore by the definition of
Ao we have
K25y fd—1 < )‘QC (580)

Now letz € R? be an initial distribution on the vertices 6f. We stated above that a random walk of length
t on C will converge to different distributions depending on wiest: is even or odd. In this subsection we
show this formally, and prove that the rate of convergenggvisn by the second eigenvalue: of C'.

Proposition 5.45. Suppose we take an even humbef steps of a random walk afi from an initial distri-
butionz € R%. Then

| Mz — weven| < At (5.81)
where . .
1 2

Weven= P1 - — + P2 —. (5.82)
dq do

Proof: tis even, so we let = 2s. The eigenvectoray, ..., wy_1 Of Mg form an orthonormal basis @&<.

We decompose with respect to this basis as
d—1
r = Z oG W;. (5.83)
1=0
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Recall thatp; andp, were defined in (5.54) as the probabilities of starting orlefteand right vertices of’:

p1= Z T, and D2 = Z T

€Dy i€ Do
We have
ap = (z,up) = (z, =) = 2L,
Vdp Vdp
and likewise
o = P2
Vda
Now recalling that = 2s gives us
Mix = (MZ)*Y) cuw;

= Y aimfw;
= aqwo + cqwy + S5 pagw;.
From the expression faty, a; (5.85), (5.86) and fotwg, wy (5.77), (5.78) we obtain
Mix = pid+peE + S pfow;

d-1
= Weven )iy Mjiw;

Therefore .
HMEJ — Wever| = H Zz;2 ufaiwiH
= I kol
< A/ a2 (using (5.80))
< gDzl
< AL
|

(5.84)

(5.85)

(5.86)

(5.87)

(5.88)

(5.89)

Proposition 5.46. Suppose we take an odd number of steps2s + 1 of a random walk o' from an initial

distribution x.

1. Ifx € Ry then
€9 d1
Mbz — =2|| < /=L
Mo d2||f 3,\C
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2. Ifx € Ry then

d
IMEa — M| < | 2N (5.91)
dq dq

Proof: We will show only the first part, the second part will then ol by symmetry. Recall theM(QJ has
two connected components, so it really is the concatenafidwo separate subgraphs, one on the vertices in
D, and the other on the vertices I,. This is reflected in its eigenvectous which can be divided into two
categoriesd; of them inR; (for the first subgraph) and the remainidgin R, (for the second subgraph). So
if we expresse in basiswy, . .., wq_1 as

d—1
v=3 (5.92)
1=0

then we will haver; = 0 for all w; € Rs.

Recall from (5.57) thap; andp, were defined as

p1 = Z Xi, and P2 = Z X;. (5.93)

€Dy i€ Do

Therefore in this case sinaec R; (andz is a distribution), we have

pP1 = 17 P2 = 0. (594)
It can be checked that
Mg =2 (5.95)
€ T dy :
Now,
Méx = Mgf"'l . Z?;ol o W;
= Mc - (M2)* S cvw
= Mc- <p1% +p2F + S ,ufaiwi> (from (5.87))
(5.96)
= Mg - (% + Z?:}l ufaiwi> (from (5.94))
= £+ Mc- Y paaw; (from (5.95))
Because
d—1
> pogw; € et (5.97)
i=2

Proposition 5.44 tells us that
d—1 p d—1
[Mc -y - o] < \/;;'AC'HZufaiwiH. (5.98)
=2 i=2
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This leads to

IMEz = 21 = [[Mo - i poiwi]
< Ao || X5 o (from (5.98))

— d1 25 2
- E)‘C Zz 2”2 i

5.99
< R NG S a2 (from (5.80)) (5-99)
< Rl
< 3L

5.7.8 The Expander Mixing Lemma

We start by stating thexpander mixing lemm@#due to Alon and Chung [3]):

Theorem 5.47. The Expander Mixing Lemma
Let A be ad-regular graph on vertex sét|. LetS,T C [n]. Then

d-|s|- 71| _
L <

|E(S,T)| - Aa-d-/IS|-|T].

This is saying that the number of edges betwSesndT is close to its expected value in a random setting,
namelyw. The second eigenvalue, of A determines how close. We show below an analogue of the
expander mixing lemma for biregular bipartite graphs. Tihly difference is that one of the sets must contain
only left nodes and the other one only right nodes.

Theorem 5.48. The Bipartite Expander Mixing Lemma
LetC be a biregular bipartite graph, with left and right vertextsé; and D respectively, and left and right
degreed andr. ForanyS C D; andT C D, we have

018 -|T
|E(S,T)| — %' < Ao - Vir-/|S|-|T).
1

Proof: Let ys € R? denote the characteristic vector$f

1 ifieS
(xs)i = { 0 otherwise (5.100)
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and likewise lety denote the characteristic vector’Bf

If \o > ... > \;_ are the eigenvalues déf/, then Proposition 5.42 tells us that

Vir o> ... > Vir Mg (5.101)
are the eigenvalues of Ad}). We then letuy, ..., us_1 be the corresponding normalized eigenvectors of

Adj(C), which form an orthonormal basis Bf’. Once again, we expregs; andyr in this basis:

d—1 d—1
Xs =) uj, Xr =Y Biui
i=0 i=0

A little maniplulation shows that
|B(S,T)| = x5 - Adj(C) - xr, (5.102)

which implies

|E(S,T)] = x&-Adi(C) xr
= (S5 e - AdI(C) - (X050 Brui)
= (X aiw)) - (g Biverauw)

(5.103)
= Vir- Y5 i (since theu;’s are orthonormal)
= Vir- (aBoro + ai—18a-1 a— 1+Zz L aiBiN)
= \/_ (QOﬂO_ad 184 1+ZZ 10@ i Z)7
where the last equality follows from the fact that= 1 and\;_; = —1. Recall from (5.56) that
el €2 €1 €2
R N T g T =109
This means that
S| 5|
= = and 1= 1) = . 5.105
ag = (Xs,uo) ST ag—1 = (X5, Ud—1) ST ( )
Likewise we obtain
By = 7| , and B = — ] ) (5.106)
V2do V2ds
Combining (5.103), (5.105) and (5.106) leads to
_ [S||T] ~|S|I7|
|E(57T)| = Vir- <\/4d1d2 T V4dyda +ZZ 1 @i l)
2|S||T
= Vi 2\‘/d|ld‘ +Vier ZZ 1 Qifbidi (5.107)
= B4 Vo ST aifig (since~ = 1).
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Finally,
|E(S, T)| — 4511

'\/ﬁ S @B

IN

Ver -3 el - 18] - Al
< VAo -2 oy - 18] (by the definition ofA¢)
< Ve -5 il - 18-
Now define the vectors’, 3’ € R? asa; = |a;| and likewise for3’. We obtain
B(S,T)| - T < Vor-de- (o, )
< Ver-do-lld|| - 18] (by the Cauchy-Schwartz inequality)
= Vir-Ao- ol - 18]
= Vir-Ac-lxsll - lxel

as requiredm
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Chapter 6

Derandomization Through Expander
Graphs

6.1 Introduction

The derandomized square introduced by Rozenman and VadHéd]ienabled the derandomization of a
standard graph product, leading to graphs of smaller degjréd®e cost of slightly worsening the expansion
properties. The derandomized square of a graps taken with respect to another graphand the authors
obtained in [64] a bound on its spectral expansion as a fumadif the second eigenvalues 4fandC, which
they then improved in [65]. They also used this product t@ioban alternative proof thef-7T" connectivity

in undirected graphs can be solved in deterministic logspac

In this chapter we introduce derandomized versions of amatandard graph product (tensoring), and of a
code product (concatenation). These are based on the icessnped in [64], and are also taken with respect
to another graph on whose expansion their properties wiledd. We will first derive the improved bound
on the expansion of the derandomized square from [65] usidiffexent method. We can then use these
techniques to analyze and bound the expansion of the deraneid tensor product. This will require some
of the tools introduced in the previous chapter.

The derandomization technique essentially involves takigraph and removing certain edges. Which edges
are removed is determined by another graph. In derandoncizeel concatentaion, we apply an analogous
technique to the world of codes, whereby a code is puncturédanpattern given by an expander graph. This
is interesting in the sense that constructing good codegssentially be reduced to finding good puncturing
patterns, indeed almost any code can be seen as a punctbithmgy dual of a Hamming code. Likewise, an
AG-code is really a puncturing of a product of two or more R&atbmon codes.

We start with some standard definitions and results thatasifistitute the background for the subsequent
proofs. We then obtain in Section 6.3 the bound on the spestpansion of the derandomized square. The
derivation of our bound on the second eigenvalue of the derarzed tensor product is rather technical. We
give only an outline in Section 6.4 and include the full praofAppendix B. The analysis is effectively an
extension of that in Section 6.3, though considerably lang@ally in Section 6.5 we introduce and study
derandomized code concatenation.
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6.2 Background

We will be interacting often with vector spaces, tensor patsl and inner products. We therefore start by
giving some definitions and standard results.

Definition 6.1.
e If u € R" andv € R™ thenu ® v is a vector inR™™ (i.e., we identifyR"™ @ R™ with R™™). If we index its
entries with the se] x [m] then we have

(u®v)ij = Uj * Vj.

o If G € R™™andH € R™*™ thenG ® H is a matrix inR™»>"™ |f we index its rows and columns with
the setn| x [m] then we have
(G & H)ik,jé = Gij . Hkg.

e If U andV are subspaces &, thenU ® V' is the vector space defined as

UV =Spa{u®v|uecl, veV}.

The basic properties of tensor and inner products we willausaiven below:

Proposition 6.2.
e If G e R H € R™*™ 4 € R" andv € R™ then

(G®H) - (u®v) =(Gu) ® (Hv).

e Tensoring is distributive over vector addition:udf, us € R™ andv € R™ then

(up+u)@v = w vV + u Qv
v® (ur Fug) = vRu + v up.
o If {uy,...,u,}isabasis oV and{vy,...,v,} is abasis oV, then

{ui®vj | 1€ [n], j c [m]}
is a basis of/ ® V. As a consequence we have

dim(U ® V) = dim(U) - dim(V).
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e If uy,...,u, form a basis oiR™ then for anyx € R™ we have
T=0o1U1 + ...+ apiy, (6.1)

where for alli € [n]:

a; = éi’ ZZ’; . (6.2)

o If U, U2 € R™ andvl,vg € R™ then
(U1 @ v1,ug ® vg) = (ug,ug) - (v1,v2).

In particular if eitheru; L us or vy L vg then(u; @ v1) L (ug ® vg).

o If uy,...,u; € R™ are pairwise orthogonal then

lui + ... 4+ u)® = [Jur||* + ... + [Jug]

e Supposeq, ..., u, € R™ form an orthonormal basis &", and an element € R" can be expressed as
Tr=oqu + ...+ apiy, (6.3)

whereaq, ..., a, € R. Then we have
|z|> = af + ...+ 2. (6.4)

Proof: These are all standard resulis.

6.3 Derandomized Squaring

6.3.1 Introduction
We described the derandomized squaring operation in Sutnsée6.5. In their original conference paper

[64], Rozenman and Vadhan obtained an upper bound on thegeogenvalue of the derandomized square
by interpreting it as a projection of the zig-zag productd arsing the bound from [61] (Theorem 5.30).
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With a more careful analysis, a tighter bound can be foundyasdone by the same authors in [65], and
independently in [16] using a different method. The latsethie derivation we present in this section.

Recall that for ann,d, A4]-graph A and ald, ¢, \¢]|-graph C, the derandomized squaS)C' is defined
(using the notation from Definition 5.22) as the dt|-graph with

ali, j] = al][i[7]]-

For the rest of this section we suppose that we have two gragirl C' with the parameters above. Our aim
is to find an upper bound ok e as a function of 4 and\¢. Throughout this chapter, we will often abuse
notation and write7 to denote both a graph and its transition maifvi,. Recall from Theorem 5.10 that in
general for a graply on vertex sefn| we have

Ag = max 7‘ (G, :1:>|

e ) (6:5)

so we need to look at the effect of the transition matrix (ariealently, at the effect of one step of a random
walk) on the anti-uniform vectors.

6.3.2 A@®C as a Projection

We will considerAQC' as a projection of a larger graph. The key point about prigjestis that analyzing
P[G] over anti-uniform vectors is the same as conside6ihigself over vectors that are anti-uniform overall,
but uniform over each cloud:

Proposition 6.3. Let G be a graph with vertex sét| x [d] (whose vertices are grouped intoclouds of size
d). Then

max ——————— = max -————. (6.6)
zely (z, ) zeliol (z,z)

From the perspective of random walks, the intuition behirmpBsition 6.3 is that taking a step ir [é7] from
vertex:i involves choosing an edge among all those connected to élauds. This choice can be broken
up into first picking a vertex uniformly from all the verticascloud i, and then choosing an edge from this
vertex. So it is equivalent to taking a stepdhstarting from a uniformly chosen vertex of cloidWe prove
this formally below:

Proof: Let P = P,[G]. Recall that we can view thed x nd matrix G as a block matrix consisting of x n
blocks, each of sizé x d. We use the following indexing: Farj € [n] andk, ¢ € [d],

Gik,je (6.7)
denotes entryk, ¢) of block (i, j). P is then then x n matrix defined as defined as

d
Z Z Gik,je- (6.8)

k=1 ¢=1

P =

[SHN

d

There is a natural bijection : 1;; — (17 ® 1'6‘[) defined as

u— u® lg. (6.9)
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Note thatr is clearly linear and injective, so since both spaces hawewusionn — 1 it must be a bijection.

We will show that for any € 1.}, if we letw = 7(u) = u ® 1,4 then

(Pu,u) _ (Gw,w)
(u, u) (w, w)

9

from which the required result (6.6) follows immediately.
Gw = G(u ® 14) is a vector inR™?, Indexing its entries with the sét] x [d] gives us

n d

(Gw)ik = <G & 1d > ZZG“‘W@ U 1d ZZG““ GO Uje

j=1 ¢=1 j=1 =1
So on the one hand we have:
<Gw,w> = <G(u®1d), u®1d>

= Y Y (Gue 1d)) - (u® 1a),,
= Z?:l Zz:l (G(u ® 1d))zk s Uj
= Yia Eizl E?:l Z?Zl Gik je - uj - u;  (from (6.11))

= d-> 1Zk 1 Pij - uj-u (from (6.8)),

while on the other hand:

n

n d
<Pu,u> = z:(Pu)Z SUy = ZZP” U - U

i=1 i=1 j=1
So combining (6.12) and (6.13) we see that

(Gw,w) =d - (Pu,u).
Furthermore sinces = u ® 1, we have
(wyw) = () - (Lg, 1g) = d - {u, u).
So we can deduce from (6.14) and (6.15) that (6.10) holds:

(Pu, u) _ (Gw,w)
{(u,u) (w,w)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

Next, we define the graphd and C' from which we will construct the large graph of which®C is a

projection.
Definition 6.4. Let C' be the graph with vertex séi] x [d], defined as
C=1,2C.
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C consists ofz clouds, and each cloud is a copy®@f There are no edges between the clouds.

Definition 6.5. Let A be the graph with vertex sgt] x [d] defined as the de-projection df

A =DP[A].

The de-projection operation was introduced in Subsecti6ii75 A is 1-regular, so one step of a random
walk on A is an permutation (in fact an involution). There are edgewé®en clouds, but no edges within the
clouds.

Proposition 6.6. Let A and C' be defined as above. Then

AGC = P,[ACA].

Since the degrees of andC are1 andt respectively, the degree ofC'A is t. There arel nodes in each
cloud, so there ardt edges leaving each cloud. Whgrl a cloud gets collapsed intagke srertex by the
projection, all these edges are kept, which means that®@A| has degredt.

In terms of random walks, we can get an intuition as to why hiisls. A step labeled € ] from a vertex
(a,i) € [n] x [d] iIn AC'A can be decomposed as

1. A substep in between clouds (#): (a,i) — (ali],4). This is deterministic.
2. A substep within the new cloud (ifl): (a[i],7) — (al[i],[¢]). There arg choices for this substep.

3. A substep in between clouds (@#): (ai],i[¢]) — (a[i][i[¢]],[¢]). This is deterministic.

Now an edg€a, i) — (al][i[¢]],i[{]) in AC A will become an edge — «[i][i[¢]] in the projected graph.

Relationship with the zig-zag product

Interestingly, as was shown in the original zig-zag proghagier [61], we have the following equality:

A@C = CAC. (6.17)

This also leads to an interpretation of the following edydtiom the original paper on derandomized squaring
[64]:
& - A®(C?) = P,[(A@C)?]. (6.18)

The multiplication by?? means that each edge is dupIicAa@écAﬂinleAs. The left hand side is equal tg[FiCQA],
while the right hand side is equal t,PCAC)?] = P,[CAC*AC]. But sinceC' has edges only within the
clouds, the first and lagt’ will have no effect on the projected (“collapsed”) graphdao both sides are
equal.

6.3.3 Bounding the Second Eigenvalue

To bound the second eigenvalue4®)C we will apply Proposition 6.3 and analyz&” A. We will be using
the following definition throughout this chapter:
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Definition 6.7. Wheneverw is a vector inR™?, we can vieww as consisting of. blocks of sized. We index
its entries with the sdh] x [d], so thatw;; indexes thg'™ entry in blocki. We define the mapt : R"? — R”
as

d
(Mn(w); = > wij.
j=1

So if we have a graph consisting ofclouds of sizel (i.e., with vertex sefn| x [d]), and ifw is a probability
distribution on the set of vertices, thaii, (w) is the marginal distribution on the set of clouds. This opera
can be seen as a projection for vectors.

The following lemma establishes a useful relationship leetwd and A = DP[A]:

Lemma 6.8. Let A = DP|A] be defined as above. Then for any: R" we have

M, (Ao @ %)) = Ao. (6.19)

Proof: See Appendix Ca

We are now ready to prove the main result of this section.

Theorem 6.9. Let A and C be as above. Then we have

Agce < )\124 + Ao (1— /\124)
Proof: From Proposition 6.3 we know that

Aec = max —————.
velioll  (TT)

Letz € 11 ® 1)), We define
v = Ax, (6.20)
and then let

1

Ed’ and At =y =4l (6.21)
So~ll is uniform over each cloudy* is anti-uniform over each cloud, and= !l + 4. We will use the two
following claims:

'YH =My(7) ®

Claim 1: CHll =4I,
Proof: We have

A 1 1
el = (1,0 0)- Mu(m) ® F) =Ma(r) ® C- . (6.22)
Now becaus€” is doubly stochastia;' - 14 = . Therefore
CAll =4Il (6.23)
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Claim 2: [(Cyh A h)| < Ac - (v, 7).
Proof: We can decomposg- € R™ as

"
=1 |, (6.24)
T
whereni, ..., v+ € 1F. So sincel’ = I,, @ C this gives us
Ot
CAyt = : . (6.25)
Cir
Therefore .
(Cyh D] = [ (O]
< Z?:l |<C%’J_77il>|
< SPiAe || (by the definition of\c) (6.26)
< Ae-(rhh)-
O
Continuing with our proof, we have
(ACAz,z)| = [(CAz,Az)| (sinceA is symmetric)
= [(Cv. )|
0 0
= [(CAL AN + (Gt + (il + (Gt )]
< G AD] + [(Cytiah)]
= (10| + [(Cyhah)| (from Claim 1)
And so we deduce:
[(ACAz,z)| _ IWII> | [(Crtrt)
(m,z)  ~ || ]2
Now A is a permutation, which means that it is length-preservilgerefore||v|| = |A-z| = ||, and
furthermore, from Claim 2 we havéCy+, y1)| < Ac(y+, ). This leads to:
AC A ’ 12 12
[(ACAz, )| 2 ) I 6.27)

(@) = P 12
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If we let 6 be the angle betweenpand~ll, then we have the following diagram

and so (6.27) becomes
‘<Aé:‘i$,$>|

(z,z)

IN

cos?(0) + Ac - sin?(6)
= cos?(0) + Ao - (1 — cos?(0)) (6.28)
= (1=Xg)-cos?(0) + Ac.

Now clearly, sincel — A¢ > 0, this expression will be maximal whe:ns2(0) is maximal.

Claim: cos(0) < A\
Proof: We have:

1 A 1
= Ma(1) ® = = Ma(da) © .
Sincer € 1} ® 12, there isu € 1;- with x = u ® 14
A 1
’y” = Mn(A(u ® 1d)) ® Ed'
Using Lemma 6.8 we obtain:
1
M =d (Au) ® Ed = (Au) ® 1. (6.29)
So this gives us
1
N = | Aul| - [[14]] < A - [Jul| - ==, 6.30
= [lAu]l - [[all < Aa -] II\/E (6.30)

by the definition of\ 4, sinceu € 1.-. Recall thatA is a permutation, it is therefore length preserving

and so we obtain: )
7]l = [[Az|| = [|z|| = lu ® 14]| = [[u]| - —=. (6.31)

S

Combining (6.30) and (6.31) yields

I
cos(f) = Il < A4,

il

as required]

Combining this Claim with (6.28) gives us
Aec < )\124 + Ao (1— )\124)
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6.4 Derandomized Tensoring

6.4.1 The Product

The tensor product of two graplsand B enables the construction of a larger graph with expansiopesties
no worse thaml and B but at the cost of a large increase in the degree.

AQC effectively consisted in takingl? and removing some edges in a clever way. Which edges to remove
was determined by a second grafh In the same way, the idea of derandomized tensoring is t@vem
edges fromA ® B based on a third grapfi, which in this case will be aipartite graph. We will see that the
derandomized tensor product can in some cases reduce ttezdgdghe resulting graph while preserving its
expansion properties.

Let A be an[n, d;|-graph, andB be an|m, ds]-graph. Furthermore lef' be a bipartite graph witld; left
nodes andl; rights nodes. Keeping the notation from Subsection 5.7elhawed = d; + d, and we label
the edges ofd and B with the setsD; and D, respectively, where

Di = {1,....d}
Dy = {dl—l-l,...,d},

so that[d] = D; LI Ds.

The tensor produc ® B has vertex sefin] x [m], which we interpret as clouds of sizen. Recall from

its description in Section 5.6.3 that a stepArn® B can be decomposed into two parts: first a step between
clouds, and then a step within the new cloud (we presented ifiéhis order, though they could also be done
the other way round). The first step has a label D;, while the second step has a laljeE Ds. In the
derandomized tensor produat A and B with respect ta”, denotedA @ B we take only the stepg, j) for
whichi andj are connected .

We can describel @ B as the graph with vertex sgt] x [m], and in which there is an edge frofa, b) to
(u,v) if and only if the following conditions hold:

1. There is an edge fromto u in A: There isi € Dy with a[i] = u.
2. There is an edge fromto v in B: There isj € Dy with b[j] = v.

3. i andj are connected ify.

Notice that if we remove the third condition then we obtair tiormal tensor product. Also, @ is the
complete bipartite graph then whenever the first two comatitiare verified then so is the third one, and so in
this case the product is also equal to the normal tensor ptodu

The degree ofd ®¢ B is equal to the number of edgesah Although this product is defined for any bipartite
graphC' of the right dimensions, we will be concerned only with theesin whichC' is biregular. The
spectrum and expansion properties of such graphs weresdisg¢un Section 5.7.

A biregular bipartite graph of left and right degreeandr respectively can be labeled in the following way:
the edges are labeled with elementg#fat their left ends, and with elements [of at their right ends, in
such a way that the edges adjacent to a given node all hawectligtbels. For a left nodé € D, and a
label k € [¢], i[k] € D, denotes the:™" neighbor ofi (soi[k] is a right node). Because the degree of the
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derandomized tensor product is equal to the number of edgéswe have

deg (A ®¢ B) = dil = dar. (6.32)

We give the formal definition only for the case in whi€his biregular.

Definition 6.10. Let A be an[n, d;]-graph, B be an[n, d2]-graph and”' be a biregular bipartite graph with
dy left nodes,d> right nodes and of left and right degreésind » respectively. The derandomized tensor
productA ®c B of A andB with respect ta” is an[nm, d; ¢]-graph with vertex sdi:] x [m] and a labeling

in Dy x [¢]. Forany(a,b) € [n] x [m] and(i,k) € D; x [¢] we have

(a,b)[i; k] = (ald], b[i[K]]).

We could of course have presented an equivalent definitittmaviabeling inDy x [r]. If the labelings ofA
and B are colorings thel ®¢~ B will be undirected. However, if the labelings are only hedlerings then
to ensure that the product is undirectédalso needs to have the following property: for any D1, j € D,
i andj are connected it if and only if p4(7) andp4(j) are connected ify.

Our aim is to analyze the expansion propertiegsof= A ®c B, more precisely to upper bound its second
eigenvalue\g as a function o\ 4, Ap andA¢.

The main result of this section is the following theorem:

Theorem 6.11.Let A, B and C' be graphs as described above, in which the labelingd ahd B are half-
colorings. Suppose without loss of generality that< A\ 4. If G = A ®¢ B then

Ag < max <)\A,)\B,m()\,4,)\3,)\c)>,

wheref(a,b,c) = ab+ c¢y/(1 — a?)(1 — b2), g(b,c) = \/%, and
.
m(a,b,c) = f( min(a,g(b,c)),b,c) ). (6.33)

Notice that ifC' is the complete bipartite graph, thea = 0, and sog(Ap, \¢) = 1 > A4, and therefore
our bound becomesiax (A4, Ap, AaAp) = max (A4, A), which is the same as that of the normal tensor
product, as would be expected.

Also, if
m()\A, AB, /\0) < max()\A,)\B) = /\A®B (6.34)

then A ®¢ B has expansion properties at least as good as thadexoB, but with a smaller degree.

If A4 = Ap then we always havé, < g(Ap, A\c), and so we obtain the simpler expression:

Theorem 6.12. Suppose thaky = A\g. If G = A ®¢ B then
Aq < max <)\A7 F()\A, /\0)> ,
whereF(a,c) = a®> + ¢ - (1 — a?).
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Interestingly,F'(a, ¢) is the same bound as for derandomized squaring.

The idea behind the analysis is conceptually the same amttied previous section, namely to vievw o B

as the projection of a larger graph, and study this largeptgradowever, while previously we could index
our vertices with a two-dimensional arr@yl x [d], in this case three dimensions will be required, which will
make both the notation and the proofs rather technical.

6.4.2 Notation

All the notations defined in Subsection 5.7.1 will still holle summarize them below:
e If d; andd, are the degrees of and B as above, then we let= d; + d, and define

Dy = {1,....di}
Dy = {di+1,....d} (6.35)
[d] = {1,...,d}:D1UD2.

e We define the subspacés and R, of R¢ as follows:
R, = {’UERd"UZ':OViEDQ}

Ry = {veR?|v;=0Vic Dy} (6.36)
e ¢, ande, denote the following vectors iR%:
o 1 ifie Dy
wm_{OiHED} (6.37)
[0 ifieD
@m_{liHEDg (6.38)
Definition 6.13. Fori = 1, 2, we have:
el ={B-ei| BER)
(6.39)

e ={veER;|(ve) =0}

6.4.3 Definitions

As explained above, we will analyze the expansiomlabo B by viewing it as a projection of a larger graph
H. In this subsection we give the formal definitions requiredthe construction off.

A ®c B has vertex sdin] x [m], andH will have vertex sefn| x [m] x [d]. We will suppose throughout this
section that the labelings of and B are half-colorings, for which

pa: Dy — Dy, and pB : Dy — Do (6.40)

denote the partner mappings fdrand B. p4 andpp are involutions.
We start by defining the graph& B, X andC.
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Definition 6.14. A is a graph with vertex séi] x [m] x [d]. Each vertexa,b,c) has either one or no
neighbors:

o If ¢ € D, then there is an edge fro(m, b, c) to (alc|, b, pa(c)).

e If ¢ € D5 then(a, b, ¢) has no neighbors.
B is defined analogously:

Definition 6.15. B is a graph with vertex sét] x [m] x [d]. Each vertexa, b, ¢) has either one or no neigh-
bors:

o If ¢ € D; then(a, b, c) has no neighbors.

e If ¢ € Dy then there is an edge from, b, ) to (a, blc], pp(c)).

So A and B are not regular graphs. Notice that the two graphs “compté¢hremch other in the sense that
every vertex inn| x [m| x [d] has an edge either i or in B, but not in both. They can be naturally combined
as follows:

Definition 6.16. X is the graph with vertex sét] x [m] x [d] defined as

A~ ~

X =A+B.

SoX isregular, itis dnmd, 1]-graph. SinceX has degreg, one step of a random walk o¥i is an involution.

Definition 6.17. C'is the graph with vertex sét] x [m] x [d] defined as

~

C=1,®1,C.

C can be interpreted asm copies ofC. We are now ready to characteriZex B as a projection:
Proposition 6.18. Suppose we have graphis B, C, X, andC defined as above. Then

A®c B = Pyn[XCX]. (6.41)
The large graphs we are considering have verteXiget [m] x [d]. We can see this asm copies of[d],

which we refer to asC-clouds”. TheC'-clouds get collapsed in the projection, leading to a grajth vertex
set[n] x [m].

Example 6.19. We illustrate these constructions with the following greph B andC'".

=
s

Figure 6.1: The graphs4, B andC.
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So A is an[n,d;] = [6,3]-graph, B an[m, ds] = [4,2]-graph and” a bipartite graph withl; left vertices
andd, right vertices (sal = 5 vertices in total). For this exampl€ is not biregular. We suppose that the
labelings ofA and B are edge colorings to simplify the illustration (so each Veftex ofC' corresponds to a
color of A and each right vertex to a color &f).

Figure 6.2: The graphC'.

Figure 6.3: The graphA.
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Figure 6.4: The graphB.

Figure 6.5: The graphX.
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The graphsi and B are related to the de-projections.4fand B. We explore this relationship by first defining
the following graphs:

Definition 6.20. A is a graph with vertex sét] x [d]. Each vertexa, c) has either one or no neighbors:
o If ¢ € D; then there is an edge fro(n, ¢) to (a[c], pa(c)).
e If ¢ € D5 then(a, ¢) has no neighbors.

Definition 6.21. B is a graph with vertex sétn] x [d]. Each vertexb, c) has either one or no neighbors:
e If ¢ € D; then(b, ¢) has no neighbors.
o If ¢ € Dy then there is an edge fro(h, ¢) to (b[c], pr(c)).

B can be seen as the de-projection|BPof B (which would have vertex sétn] x D) to which are added
some edgeless vertices, namely all thosrinx D;.

It can be checked that )
B=1,%B. (6.42)

Example 6.22. If we use the graph4, B andC from Example 6.19 above the is the following graph:

Figure 6.6: The graphB.

We also see from Figur@4 that B consists of. = 6 copies ofB, so that the equality
B=1,%B (6.43)

is verified. DRB], given below is the same but without the edgeless vertices:

Figure 6.7: The graph DIPBJ.

Biis in a certain sense “two steps away” from [B. The differences are:

1) There are some extra edgeless vertices (this corresportle thifference between DB] and B). See
Figures6.6 and6.7 of Example 6.22 for an illustration

2) There are: copies of this grapiB (since3 = I,, ® B).
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There is a similar relationship betweein 4 and A. However with our current tensor product notation it can
only be expressed after an appropriate permutation of thieda (algebraically this is just a change of basis).
Informally, by indexing the vertices withn| x [n] x [d] instead ofjn] x [m] x [d] we can writeA as

I ® A. (6.44)
The relationship betweeA and DRA] is analogous to that betwedhand DR B].

Change of basis

Although it is intuitively quite clear that the change of Isase require is that in which ® v ® w becomes
vRu®w, writing so formally is a little tedious. We include it netleeless for completeness. Since the change
of basis we need to do is just a permutation of the basis elente basis change matrix is a permutation
matrix.

Definition 6.23. Consider the followingum x nm block matrix
Qu - Qum
L=| @ &
Qni - Qum
whereQ;; € R™*" is defined as

[ 1 ifk=jandl=i
(Qij)re = { 0 otherwise

Let P € Rvmdxnmd ha the matrix defined as

P=L®I,.

Notice thatP is a permutation matrix, so it is invertible, and is therefgalid basis change matrix. the only
basis change fdR™¢ we will do is that given byP.

We will use the notatior ~p y to denote the fact that is the expression of in the new basisy(= Px).
So for example for any € R”, v € R™, w € R? we have

URUVRW~p VR U W. (6.45)

Clearly, ifz ~p 2’ andy ~p 3/ then
(z,y) = (2, ¢). (6.46)

A ®¢c B as aderandomized square

An alternative construction of is to letX = (A ® I,,,) + (I, ® B), and then seK = DP[X]. The graphX
is interesting in that it enables us to express ¢ B as a derandomized squat¥. has vertex sefin] x [m]
and degree; + dy = d. Its edges are given by

L (a[z],b) ifie D
(a,b)li] = { (a,bli]) ifie D;
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Combining our description of the derandomized square agjhgprojection in Section 6.3 and (6.41), we
can deduce that
A®c B=X@C. (6.47)

A first approach to bounding the expansionfof B would be to compute x, and use the bound o\ g
from Theorem 6.9. However, this would not take into accobatdpecial structure of, in terms of how it is
constructed frond and B, and therefore how x depends or\ 4 andAg. A better bound can be obtained by
making more use of the structure &f.

6.4.4 Proof Outline

In this subsection we outline the proof of Theorem 6.11. Thiedetails can be found in Appendix B. Let
G = A®c B. Since

G =P, [ XCX],
we use Proposition 6.3 to deduce that
G XCX
ro = max HGBA| o [(XCXe g (6.48)
€1, <x7‘r> atel#m@lg <$7$>

Recalling thatX was defined asl + B, we obtain:
(XCXz,z)| = |(CXz,Xz) (sinceX is symmetric)

0 0
—_——~— —_—~~

IndeedAz € R, andC Ax € Ry, and likewiseBx € R, andC Bz € Ry, which leads to
(CAz, Az) =0, (CBz, Bz) = 0.

We therefore have o o o
(XCXzx,z)| < |(CAz,Bz)| + [(CBz,Az)|. (6.49)

SinceA and B are symmetric this leads to
(XCXz z)| < [(BCAz,z)| + [(ACBz,z)|. (6.50)
(In fact we haveX CX = ACB + BCA).

Now (6.48) tells us that we must consider vectors in the spaeel;}’, ® 1”, which we can decompose as

s=(telel) o (lethell) ¢ (1toiiell). (6.51)

S1 Sa S3
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This means that for any € S there are unique;, € S1, z2 € Sy, andxzs € Sz with
r=x1 + X2 + 3. (6.52)

Note thatS;, S2 and S; have respective dimensioms— 1, m — 1 and(n — 1)(m — 1). These add up to
nm — 1 = dim(S), as expected.

We will first show (Lemma B.6) that
(ACBu,x) = (ACBxy,21) + (AC By, z3) + (ACBus, x3). (6.53)

The intuition is that the images of the spacgsS» and Ss under the linear transformation defined Ag'B
are also pairwise orthogonal. Therefore when we expandefhéand side of (6.53) only the terms on the
right hand side will remain. Likewise we will have

(BCAx,z) = (BCAxy,21) + (BC Ay, x3) + (BC Axs, x3). (6.54)
Next, lettingm(a, b, c) be the function defined in Theorem 6.11, we will upper boumchsefrom (6.53) and
(6.54) as follows:
(BCAzi,z1)| + [(ACBaxy,z1)| < Aa-{(x1,21).
(BCAzy,23)| + |[(ACBwza,2)| < Ap- (22, 72). (6.55)
(BCAwz,z3)| + |[(ACBwg,as)| < m(Aa,Ag, o) - (w3, 23).
Becausery, x5 andzg are pairwise orthogonal, (see (6.51)) ane: x1 + z2 + x3, we have

(z,2) = (x1,21) + (22,22) + (23,23). (6.56)

We know from (6.50) that
(XCXz,z)| < |(BCAz, z)| + [(ACBz,z)|. (6.57)
So combining (6.53), (6.54) with the inequalities in (6.%gds to
UXCXz,z)| < Aa-{(z1,21) + Mg - (@2, 22) + m(Aa, A, A\o) - (3, 23)

< max <)\A,)\B,m()\A,)\B,)\C)> . <<3;‘1,331> + <$2,ZC2> + <ZC3,ZC3>> (6.58)
= max (/\A, Ag,m(Aa, AB, /\c)> . <a:,a:> (using (6.56)).
The result of Theorem 6.11 then follows immediately:
w < max ()\A,)\B,m(/\A,)\B,)\c)>. (6.59)
T, T

For the full proof, see Appendix B.
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6.5 Derandomized Code Concatenation

6.5.1 Introduction

The operation ofode concatenatiowas first presented by Forney in [25]. Suppose we have a figitelfj,,
and an extensiofi,, of IF,, of degreem. An outer codeC; overF,, can be concatenated with amer code
C1 overlF,, of dimensionm, which will yield a longerfF,, -code.

Concatenated codes are particularly useful for the cocttru of explicit families of good codes. For the
binary case, the constructions of Justesen [37], Zyabld} Rloch-Zyablov [9] (usingnultilevel concatena-
tion) and Katsman-Tsfasman-Vladut [38] are all concatenatidhss last construction, obtained by concate-
nating a very good fixed binary code (the inner code) with alfaaf Algebraic-Geometric codes beyond the
Gilbert-Varshamov bound (the outer code), yields some @bigst known explicit families of binary codes.

An improved version of the concatenation operation is tloeeepotentially very interesting in the quest for
better explicit families. The derandomization presentethis section improves the rate of the concatenated
code at the cost of decreasing its relative distance (by hoawhndepends on how good the expander we
employ is).

It is a recurring theme in coding theory that random consimas yield good codes with high probability, but
doing so explicitly is much more difficult (i.e., finding a way guaranteeinga good code). Although the
expectedatode is good, there will be some variance in the experimerdivwdiso makes very bad codes possible
(very far from the expected result). Expander graphs hagadmarkable property that they enable fairly
good “simulations” of random behavior. More precisely oaa i some contexts use expanders to achieve
deterministic (i.e., non-random) behavior within a clogege of the expectation of a random experiment. So
if the expectation is good, then the result is guaranteee t@linost as good.

In this section we essentially use the fact that randomlycfurimg a code will improve its rate, while keeping
its expectedelative distance fixed. So we employ an expander graph tolaienthis random puncturing. In
general, it is an interesting problem to find good ways of puniveg codes. For example an AG-code can be
seen as a puncturing of a product of two or more Reed-Solorades; and it would be interesting to study
the properties of the corresponding puncturing pattern.

6.5.2 Definitions

We will consider only binary inner codes. We will supposetighout this section that we have[an, k1, d1]4-
codeCy, and anng, ko, dz]2-codeCq, Whereq = k2 (soF, is an extension af, of degreek,). We will also
suppose that we have a fixed basi&gfoverlF,, which leads to a natural bijection

o:F, — Fh. (6.60)

We start by recalling the definition of code concatenation:

Definition 6.24. Let ¢; andC;, be as above. We define thewmncatenatior® = C;0C; as thelning, k1k2)o-
code whose encoding map: Fi'*2 — F71"2 can be decomposed as follows:

—1
Fglkz o Fl;n Eq F;ll o Fgle E> FSUD’

whereF; and F» are the encoding maps 6f andC,.
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This amounts to first interpreting the message vem:terlf?’glk”2 as amessage vectoth‘Iﬁ1 for €, and encoding
it to a codeword:; € C;. Then each of the; components of; are interpreted as message vector€-pfand
encoded to codewords .

Notice that there is a bijection betwe&n andC (but they have different dimensions since they use differen
alphabets)C consists of:; codewords of,. We index thew; ny, components of € € with the sefn;] x [ng]
in the canonical way. We can write a codewerd C;()C, as

c=(T1,. ., Tn,), (6.61)

wherex; € C, for all .

We will now puncture, with a pattern that will be given by a bipartite expandepgraie suppose through-
out this section that we have a biregular bipartite graphvith left vertex setn;], right vertex sefn,], and
of left and right degreeéandr, respectively.

Definition 6.25. Let G, G, and H be as above. We construct tderandomized concatenatidh ¢ ;Co of
C; andC, with respect tad by taking their normal concatenati@h ¢ C2, and then performing the following
puncturing: we remove all componeriis k) € [n1] x [nz] that are not connected H.

The resulting cod€ will have lengthn ¢ = nyr (which is equal to the number of edgestif).

6.5.3 The Rate of¢;05C,
Proposition 6.26. Let H be a biregular bipartite graph as above. L@t andC, also be as above, and |é;
and R, denote their respective rates. LBtbe the rate of21 {5 Cs.

If £ > ny — dy then

Proof: We will show thatC;{ €y has the same dimension @s0Cs, namelyk; k. It will suffice to show
that no non-zero-codeword €f $C, becomes the zero-codeword after the puncturing (sincetpring is a
linear operation, this makes it injective). Lebe a codeword of; (€, which we write as

c=(21,...,Tpn,)- (6.63)
Now each non-zere; € C, gets puncturea, — ¢ times. Sincer; has weight at least,, as long as
ng — € < do (6.64)

x; will not become the zero-codeword. In particutacannot become the zero-codeword through this punc-
turing.
SinceC; O €y has dimensiork; k, and lengthn, £, we can deduce that it has rate

k1k k1 k
p=tt2 Rl pop T2 (6.65)
nlf ni ng 4 l
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So as long ag > no — dz, by performing this puncturing we increase the rat&pfC, by a factor of“2.
Notice that sincei £ = nor, we can write (6.62) as

R= 3132% - Rle% = Ri% =R~ (6.66)

6.5.4 The Relative Distance o€, ;C-

We start by giving the following bound on the relative distaofC;(C,:

Proposition 6.27. LetC; and G, be as above. Then the minimum distanc&dfC is at leastd; ds.

Proof: Letc be a codeword of = C;0Cs. ¢ can be constructed by taking somec €y, interpreting each
of its n; components as @-message vector, and then encoding these to obta@godewordse, . . ., z,, In
Co. Sowe have = (z1,..., %y, ).

Note that wgfc) is equal to the sum of the weights of thgs. Since at least; of these are non-zere,(must
have at least that many non-zero components), and eachenorcadeword of; has weight at least;, we
have

wgt(c) > didz, (6.67)

as requiredm

Recall thaly = 2¥2 = |C,|. We label the; codewords ir€, as
Cy={cV, ... oYy, (6.68)

Wherec(QO) denotes the zero-codeword.

Fix a codeword: € € = €,y C,. ¢ was obtained by puncturing some codewemf C;)C,. As seen above,
c consists ofi; codewords of2,:
c= (xl,...,:cnl), (6.69)

wherez; € Cy. Foralli € [¢ — 1] we define the setS; andT; as

S; = {j € [n1] | xj = c(;)} and T, = Sup[(c(;)). (6.70)
So we haveS; C [n;] and7; C [nsy]. Notice that theS;’s depend orc € € (and therefore on the codeword
¢ € C we fixed above), but thé;’s do not. This enables us to obtain the following expres$orihe weight
of ¢:

Lemma 6.28. Letc € C1QyCs. If S; andT; are defined as above then
qg—1
wgt(@) = > |Eu(Si, T))|. (6.71)
=1

Proof: Let ¢ be the codeword i, Cy from which¢ was constructed, and let be theC;-codeword from
which ¢ was constructed. S8, ..., .S, form a partition of supfr;).
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For eachi € [¢ — 1] we leta; = |S;|, and notice that

q—1

> ai=wgt(cy) > dy. (6.72)

i=1

Next, we leth; = |T;| = wgt(c (Z)) so that for alli € [¢ — 1] we have:
b; > do. (6.73)

In ¢ there area; copies of the codewordy) So if there Was no puncturing (or equivalentlyHAf was the
complete bipartite graph), the total weight of all the c~sx|crmfac2 would bea;b;, and so we would get

wgt(c) Za,b > dy Zaz > dyds, (6.74)

as expected.

When puncturing does occur, notice first of all tl¥atis a subset of the left vertices &f, andT; a subset of
the right vertices off. The non-zero components ofire exactly those whose indéx k) is in S; x T; for
somei € [¢ — 1]. Furthermore any component ofvhose indexj, k) € [n1] x [n2] is not an edge i will

be punctured out. So the total weight of all the copiesgéfafter puncturing will be equal to the number of
edges betweef; andT;. This gives us

Wgt(c) Z |Ex(S;, T3)| (6.75)

We have the intuition that if{ is a good expander, théEH(S,», Ti)\ should be close to its expected value in
a random setting (i.e., wheH is constructed randomly). This however is only trugjfandT; are not too
small, for example nothing can be said of the cg&¢ = 1. We know that|T;|/n2 > d2, but we have no
guarantee on the size 6f. Once again the intuition behind a lar§eis that we would like to apply many
different puncturing patterns to the same codeword (hgr)r)ato ensure that the resulting average weight will
be good.

If ny is much larger thag, then we are dividing a large set (namely supp, of sized;n;) into few subsets
S; (¢ of them), and so most elements of sgpp will be in a large subset, which is what we are looking for.
So we can ensure th*aE(Si, TZ-)| will be close to its expected value in a random setting as &sigis not too
large, or equivalently, as long as the rateCefis small (since; = 22).

The Expander Mixing Lemma (see Section 5.7.8) formalizedidea that in a good expander the number
of edges between two sets of vertices is close to what woulekxpected in a random setting (the second
eigenvalue off determines how close). We restate the bipartite versioovwbédee Section 5.7.8 for a proof).

Lemma 6.29. (The Bipartite Expander Mixing Lemma).
Let H be a biregular bipartite graph, with left and right vertextsén, ] and [nq] respectively, and left and
right degreed andr. Let A\ denote the second eigenvaluefdf For any S C [ni] andT" C [ny] we have

?-\S|-|T
) - ST < Ve T (6.76)
1
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The main result of this section is the following theorem:

Theorem 6.30. Let Gy, G, and H be as above. Suppose furthermore that < \/% and/ > 2"7261_2. Ifdis

the relative distance df; )y C- then
52(51(52—)\]{' \/q—l-\/élég. (677)

Requiring thath\y; < \/—167 is saying that we wani to be quite a good expander (otherwise the puncturing
could deviate too much from its expected behavior, openpntpe possibility of “worst- case” scenarios about

which we can say nothing).
Proof: Leté € C10yCy be a codeword constructed fromm € C; (as in the analysis above). Suppose
S1,...84—1andTy, ..., T, are defined as above. We know from Lemma 6.28 that

q—1

wgt(@) = 3" [E(Si, 7).

i=1

Settinga; = |S;| andb; = |T;|, we deduce from the expander mixing lemma that

A B
N[ Lagh, ¢ = =
c) = — — Ay - “Vaibi | = — ibi) = Am - : ibi - A
wgt() ; < s Ai - Vir Vab) s ;(ab) Ai - Vi ;\/ab (6.78)

Notice thatA corresponds to the “expected behavior” wherBa®rresponds to the “error” (i.e., the variance).
We know that

q—1
> ai>d and Vielg—1]:b; > dy, (6.79)
=1
We use this to deduce that
¢ ¢ ! ¢
A= b)) > — - . p> — . .
np 2 laibi) = - do Za o dady (6.80)

This corresponds to the expected behavior in the “worgt“cscenario (i.e.¢; has weightd; and all non zero
C,-codewords have weiglab).

Claim 1: A — B is minimal whenb; = dy Vi € [¢ — 1].
Proof: d, is the smallest possible value edglcan take. We will show that increasing abyycannot
decrease the value of — B. First note that ifa; = 0 then A — B = 0 for all values ofb;, so the

statement holds. Suppose now that> 1. Foreach = 1,...,¢ — 1, we have
0 / \/ Aj 1
—(A—B)=—"-a;— Ag - Vir- : . 6.81
8b2 ( ) no “ H " 2 \/b_z ( )
We therefore have:
P vai 1 ¢
8bi(A_B)ZO < Ag-Vihr- 5 -\/b_ign—2 a;
6.82)
no 1 (
Al == < .
<~ Ag-Vir 7 2ya S V' b;
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We will show that the last line of (6.82) is always true Wd t#dS and RHS respectively the left and
right hand sides of this inequality. Becausg < \/_ anda, > 1, we have LHS< 27 Recalling

[n] : Vdy < Vb

Comblnlng aII this we obtain

LHS<—<\/_ Vb = RHS

We see in (6.82) that this is equivalent to

0
0b;

(A-B)>0.

So increasing; cannot decreaséd — B for anyi € [¢ — 1], SOA — B is minimal when alb;’s are set
to their minimal valuei,. [J

We let B,,, denote the value aB when allb;’s are set tal,. We would now like to upper boung,,,, which
along with (6.80) will give us a lower bound ofi— B,,, (and therefore ol — B by Claim 1).

q—1 q—1
= i Vo Vb = g Vi Y (6.83)
=1 i=1

qg—1
Claim2: Y "\/a; < g—1-/di.
=1

Proof: We will use the Cauchy-Schwarz inequality. We define thearect= (\/ar, . . ., , /—aq_l)T
R¢~1, and letl,—; € R7~! be the all one vector. We know (Cauchy-Schwarz) that

(0, 1g-1) < [Jol” - 11g-111*. (6.84)
This means that
(T w)’ < (SE ) -(a-1) = (TEva) < (SEia) - (a-1)
= (XL va) <di-(¢—1) (6.85)
= XL VE < Va1V

0

Combining (6.83) with Claim 2, we deduce that

By <A - Ver-\/do - \Jqg—1-/dy. (6.86)

We know from (6.78) and Claim 1 that w@) > A — B,,,. (6.80) and (6.86) therefore lead to

wot(@) > "Ny Vo DTV (6.87)
2
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which is also a lower bound on the minimum distadcaf C; ) ;C5. Since the length o8, 5 Cs is Inq, we
can now obtain a bound on its relative distanice

bdydy A - Nir - Jg—=1-Vdidy

f?’LlTLQ €n1
_ 5152_ )\H'\/;'\/q—l'\/dldg
NN NG

_ 5152_AHW_1.\/§ L (6.88)
1

ni
. r dq ds \/? . _nar
= 0102 —Ag-v/qg—1 \/; - \/m . (sincen; = g)
= 0102 — Ay -\/q— 10102,

as requiredm
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Appendix A

The Extension of the Binomial Function

This appendix deals with the extension of the binomial fiomcfrom natural numbers to non negative real
numbers. We give the required definitions, and prove sonteegitoperties needed in Chapter 3. In particular,

we prove Proposition 3.13.
<> 'NxN— N,

/
<> : Rzo X Rzo — Rzo,
a a !
beN = .
e = ()= ()

We will do this using thegamma functior”, see ([91]), which is defined everywhereli.y, and has the
property that

The binomial function($) is a map

which we will extend to a map

with the property that

ra =1
Mz+1) = z-T'(2).

In particular, we can deduce from this that
neN = I'(n+1)=nl
Because of this slightly inconvenient relation to the faieldunction, we will also use Gauss’s simpler nota-

tion
II(z) =T'(z+1),

which is defined over all dR>( and gives us the nicer relationship:
neN = II(n) =nl

Soll can be seen as an extension of the factorial function ffaimRR . We use this to define our extension
of the binomial function:
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Definition A.1. For anya,b € R>q with a > b, we define:

I1(a)

a\’ T(a—b)-TI1(b)
() -

0 otherwise

ifa>0b

Notice that as required, whenb € N we have

/
a o a
() -C)
From now on we will just write(}) instead of($)". We will start with some lemmas giving general properties
of the functiond™ andTI.

Lemma A.2. The gamma function has the following property:

I(y+d)
I'(y)

I'(z +d)

Ve,y € Ry, deER>5y: y<zx =
- [(x)

<

Proof: Suppose we have a fixelde R>(: We consider the following function:

) = S

over the range € R~ . Differentiating we obtain:

fry = Lt+d)- F(t%(—t)g(t +d) ')

and so

e T/(t+d)-T(t) >T(t+d) T'(t)

—

Now in general (see [91]) we have
(e B[ 2))
I'(2) Z+7+nz:1 1+z/n n])’

where~ is the Euler-Mascheroni constant (see [93] [39]). We see%ég increases as increases, and so
because + d > t, we have

I'(t+d) - I'(t)
L(t+d) — T@)’
which means that’(¢) > 0 for all t. Sof is an increasing function, which in particular means that

I'(y+d) - I'(xz+d)
Ily) = T(x)

Ve, y € Ryg, deR>0: y<a = f(y) < f(zx) =
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Itis clear that becausé(z) =I'(z+ 1), andy <z <= y+1 <z +1, foranyz,y,d € R>( we also have

M(y+d) T(z+d)
’= M(y) — M)
LemmaA.3. Foranyz € R>o andm € N we have
M(z+m) 15 .
—_— Y = z —|— ).
Proof: We have:
H(z—l—m) = (Z—I—m) -H(z—l—m—l)

= (z4+m)-(z+m—-1) -I(z+m—2)
—
~ [+ me).

+

m)(z—l—l)H(Z)

and so the result follows

Proposition A.4. For anya,b € Rwith1 < b < a we have

a
2a-h(b/a)
(3) <=

whereh denotes the binary entropy function:
h(z) = —z -logy(z) — (1 — z) - logy(1 — z).

Proof: We will useStirling’s formula(see [51], Chapter 10): far > 1 we have
V2 - 22 e < II(z) < V2r - 23 et

(A.1)

(A.2)

(A.3)

We set\ = g so thath = \a. Sinceb < a we have) < 1. We also define = 1 — \. We have:

() = wamw

< [\/27r - a%ts . ea+ﬁ] . [\/27r BtI et 2 (a — b)aber% -ebme

al/?

a a® 1
= Ver \/ %a(Na  Dape(d-naave  XP (122)

_ 1 1 1
= Ve ) e 1 €Xp (m)

< L_ (sincea > 1).

)\)\a,X/\a
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Now we see that

)\Aa . an _ 2)\~a-10g2(>\)+x-a~log2(X) _ 2&-(A-10g2(>\)+(1—>\)~10g2(1—)\)) _ 2—a~h(>\)7

and since\ = £, the result follows.

Proposition A.5. For anya, b, c € N, € € R>o. We have:

rsa = ()< ()7
ez = ()= ()

Proof: We start with the first inequality:
e 1) Calling LHS and RHS the left and right hand sides of inequi(®.4), we have:

and

-1
RHS _ ma—e)  _ _7wbte (@ . _ =)
LHS m(a—c—e)-m(c) w(b—c+e)m(c) m(a—c)-m(c) w(b—c)-m(c)
(A.6)
_ mla—e)  w(bte) m(a—c) w(b—c)
m(a—e—c) m(b+e—c) m(a) w(b) -
Recall from Lemma A.3 that
I m
¥z € Rug,m € N : 0z +m) =]+ (A7)

I1(2) Pl
Now to each one of the four fractions in (A.6) we can apply jAWe setm =c,andz=a—c—¢, b—c+
€, a — candb — ¢ to obtain

E{THg = Hf:l(a_c"i_i_e)'(b_c—i_i—i—e)'a—%:—f—i'b—}:—ki

_ HC a—cti—e  b—ctite
=1 a—c+i b—c+i

o Hc Ai—e  Bite
- =1 A, B;

whered; =a —c+iandB; = b — ¢+ i. Now

Are . Bie>1 <= (A-¢€)-(B+e)>AB

AB — Be+ Ae — ¢ > AB

—B+A—-€>0 (A-8)

111

A>B+e.
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Now since we suppose in the statement that b + ¢, for all i we haveA; > B; + ¢. So since we used
equivalences everywhere in (A.8), we obtain

C
HAZ—E'BZ‘FGZ:[’
i A Bi

which means that
LHS < RHS,

and so (A.4) holds.

e 2) The second inequality can be proved in much the same way. Wée@d exactly as id), the only
difference being that in this case we ha¥e= b — ¢ — 1 +i. So we have an even stronger inequality between
the A;'s andB]s: a > b+ e implies that for alli: A; > B; + €+ 1 > B; + €. So (A.5) also holdss

Proposition A.6. For anya, b, c € R>q withb < a, we have

()20 = () () w9

Proof: Calling LHS and RHS the left and right hand sides of the indqugA.9), we have

RHS _ r(a) , (b Jom@ . xw
LHS m(a—c—1/2)-7w(c+1/2)  7w(b—c—1/2)-7w(c+1/2) w(a—c)m(c) w(b—c—1)-mw(c+1)
X1 X2
m(a —¢) w(b—c—1) 7(c) m(c+1)

mla—c—1/2) wb—c—1/2) w(c+1/2) w(c+1/2)"
Now we know from (A.1) that for, y, d € R>( we have

II(y + d)
I(y)

So settingy = ¢, z = ¢+ 3 andd = 1, we havey < z, and therefore

II(x + d)
M(z)

y<az = < (A.10)

T(c+ 1/2)
II(c)

II(c+1)
(c+1/2)

<

From this we can deduce that
X, > 1.

Likewise, we apply (A.10) withy = b—c— 1,z = a — ¢ — 5 andd = 3. Since we are supposing that a,
we havey < x, and therefore
b —c—1/2) II(a — ¢)
< )
o—c—1) ~—a—c—-1/2)

which leads to
X > 1.
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So we have

and so (A.9) holdsa

We are now ready to prove Proposition 3.13 of Chapter 3, wviehestate below:
Proposition 3.13.Foranyn,/ € N,0 < § < % with 1 < ¢ < 2nd, lettingd = 1 — 6 we have

() () = () (G2)

Proof: We call LHS and RHS the left and right hand sides of (A.11). Warped differently depending on
whether/ is even or odd.

e 1) /is even.

Lettingz = & = |£] = [£], we have

ws = 5 (60 = £0290)

where the inequality follows from the fact that everythisgbsitive and in generdf) < (57}). We let

b+1
weto=(* 7))

We will show that for any, « and for anyd = 1, ..., [nd| — 1 we havew,, ,(d) < wy »(d + 1):
-1
Wn,x d+1 _ n—d—1\ (d+1 n—d\ (d
s — e e )]
o (n—d—1)! (d+1)! (n—d—az)!z! (d—z)'z!
= (h—d—z—D2! " {dfi—a))! (n=a)y = d

— _d+l  n—d-z
d+1—x n—d

X1 X2
,—/?71 /—’T
- |1- 1= .
[ d+1] n—d]

This means that

W o (d) < W (d+ 1) 1< Xt Xy

X1 < Xo

—_

A<l (A.12)

n—

d+1

xT

n—d

T

IN

<~
<~
<~
e
<— d+1<n-—d.
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Now for anyd = 1,..., [nd] — 1, we haved + 1 < [nd| < % (sinces < 1). So
d+1<g = 2d+2<n = d+1<n—-d-1<n-—d.

Combining this with (A.12) we deduce that
Vd=1,...,[nd] —1: wpe(d) <wpa(d+1).
So this leads to
Vd=1,...,|[nd|: wpa(d) <wya([nd).
We can now deduce:
[nd]

LHS — Zwm < |nd] - waa([nd]) = Ln5J-<”_xL”‘5J)<L”5J>. (A13)

T

Now lettinge = nd — [nd|, we notice thatr — |nd| —e =n — [nd] — (nd — [nd|) = n —nd = nd. Sowe

have _
n—|nd]—e = nod
|nd| +e = né.

Now recall from (A.4) of Proposition A.5 that for any b, ¢ € N with b + ¢ < a we have

OO =)0 s

We notice that becausé < % we have|nd] < n/2, which means thatné| < n — [nd]. So setting
a=mn—|nd],b=|nd| andc = = we see first of all thak < a. So sincez andb are integers and < e < 1
we haveb + ¢ < a and we therefore can apply (A.15) to obtain

() = () - (m? (02 (19

. Now we combine (A.13)

(A.14)

where the last equality follows from (A.14) and the fact thatas defined as =
and (A.16) to deduce

st () () s () ) - s

e 2)/is odd.
We letz = 52, So[¢/2] =z and[¢/2] —1 = (z + 1) — 1 = . This leads to
[nd] [nd]
n—d\/d—1 n—d d
— <
ws = 2 () =2 (L05)

where the second inequality follows from the fact that ingyei(;) < (Zﬁ) As above, letting

= (T4
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we will show that for anyn, z and for anyd = 1, ..., [nd| — 1 we havew,, ,(d) < wy, »(d + 1):

st~ [ene)] [ es]

o (n—d—1)! (d+1)! (n—d—x)lz!  (d—z—1)!(z+1)!
—  (—d—z—-D2! " (d—o)(z+1)! (n—d) d! '
_ d+l n—d-=z
- d-=z n—d
- ~1
_ d+1—($+1):| . |:nd:c:|
d+1 n—d
Y1 Yy
C———_._1 PN
- o+l R
- d+1] [ n—d}

We saw above in (A.12) that because- 1 < n — d, for anyx > 0 we have

.z
d+17~ n—d

So here +1
T T
<1-—- <1-
d+1 d+1"— n—d
and thereford@; ' - Y3 > 1. From this we deduce that

Vi=1-

= Y2>

Vd=1,...,|[nd] =1: wy(d) <wpz(d+1),

and therefore
Vd=1,...,|[nd|:  wya(d) <wyz([nd).

As above, this leads to

HS = 3 unad) < 6] wnn(lnd)) — s (" ) (1) (A17)
= 2 W,z < |n W,z ([T = |n . et/ .
In exactly the same way as cakgabove, setting = nd — |nd] gives us

n—|nd|—e = nd

|nd] +€ = nod. (A.18)

Recall from (A.5) of Proposition A.5 that for any b, c € N with b + ¢ < a we have

@ <ci 1) = (a . 6) (chi i) (A19)

If we seta = n — |nd], b = |nd] andc = x then as above we havet ¢ < a, and we can therefore apply

(A.19) to obtain )
<n _a«"Ln(SJ) (:Eﬂ) = @6) (a:T—LEl) (A.20)

135



Finally, we saw in Proposition A.6 that for amayb, c € R>( with b < a, we have

<Z> (C—?— 1> = <c —|—a1/2> (c -|-b1/2)’ (A.21)

and so applying this with = nd, b = nd andc = x we haveb < a and therefore

OELANE)-CE

where the second equality follows from the fact thawvas defined ag = K*Tl Combining (A.17), (A.20)
and (A.22) gives us

st () (5) 2 (5) ) - s
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Appendix B

Proof of Theorem 6.11

The proof of Theorem 6.11 was outlined in section 6.4.4, is #ppendix we give proofs of the results that
were stated in that section namely we will prove (6.53) an846(Lemma B.6), and the three inequalities in
(6.55) (Lemmas B.7, B.8 and B.9).

Although there is a certain intuition behind these (simitathat in the section on derandomized squaring), it
is not easy to convince oneself of the truth of the propasstiby intuitive reasoning. We therefore make our
proofs more technical and rigorous, even though this dod® iengs more tedious to follow.

We will need some basic results on tensoring, inner prodaststhe graphs we defined in section 6.4.3.
Although with a little thought we can convince ourselvest ttieey hold, formal proofs are technical. We
therefore lay these results out in the following lemmas éberence. The proofs are included in Appendix C.

Lemma B.1.

1. Vo eR"™ 1 eR": (0,7 ® 1) = My(0), 7).
2. Yo e R 7 e R": (0,7 Qer) = (M,(0),7).

3. Vo e R 7 e R": (0,7 Qey) = M, (0),7).

Lemma B.2.

1. Vo e R": MH(Z(O' ® 61)) =d; - Ao.

2. Voe R™: Mm(E(U ® 62)) =ds - Bo.

3. Vo e R\ VT eR": (A0 ®e1),7®e1) =dy - (Ao, T).
4. Yo e R™" V7 € R™: (B(o ®e3), T ® e3) = do - (Bo, 7).

Lemma B.3.
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1. 0-61:%'62.

2. C~62:§—f'61.

3. Vo e R : Ao ® 1) = A(o ® e1).

4. Yo e R" : B(oc ® 14) = B(o ® e2).
5 Yo € R", 7 € R™ : Myn(0 @ 7) = 0 @ My (7).

To obtain the required results we will first need to prove twarmas (B.4 and B.5). As stated in Theo-
rem 6.11, our bound on the second eigenvalue of a deranddrt@meor product required that the labellings
of the graphs4 and B be half-colorings. The next two lemmas are the only placewileise this.

Recall that we interpret the graph (see Definition B.5 as consisting of copies of the vertices af’ (m
clouds), namely one for each vertex®f We refer to the vertices ifm] x D, as theleft verticesof B, and
to those infm] x Dy as theright vertices A vectorT € R™? is said to beB-uniform if

Mm(7) € 1], (B.1)

Soif 7 is a distribution over the right vertices &, it is B-uniform if and only if the marginal over the clouds
is uniform (the probability of being on any given cloud is game, namely%).

The intuition behind Lemma B.4 is the following: Suppose wartswith a B-uniform distribution on the
vertices ofB of the form1,, ® o (so the distribution inside each cloud is the same). Thesr afte step of a
walk in B it will still be B-uniform.

Lemma B.4. If the labeling ofB is a half-coloring then for any € R,

My (B(ly ® 0)) = 1y - {0, 14).

Proof: Recall from Definition B.5 thaB is a graph with vertex sétn] x [d] in which each verteXi, j) has
either one or no neighbors:

o If j € D; then(i, j) has no neighbors.

e If j € D, then there is an edge frofw, j) to (i[j], pr(7))-

One step of a random walk dB can be seen as an involution on the [se} of vertices (they all have degrees
either1 or 0). Multiplying a vectorr € R™¢ by B involves permuting its components. Formally, if we index
the entries of- with the setm] x [d] then

Recall that a half-coloring means that each cgler D has a “partner colorp(j) € D, for which any vertex
i € [m] satisfies
iljllp(1)] = ilp(H)Il] = i (B.3)

We want to studyB(1,, ® o). Letw = 1,, ® 0. If we index the entries ofv with the setfm] x D, in the
natural way then we have
’LUZ',j = Uj. (B.4)
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So using (B.2) gives us

(Bw)ij = Wils] o) = p(s)- (B.5)
So for alli € [m] the vector(Bw); € Ry is just a permutation of. We have
o d o d d
(Mon(Bw)); = (Bw)ij =3 oy =) _0; = (7,€2).
j=1 j=1 j=1
Since this holds for alin entries ofM,,,(Bw), we have
M (Bw) = 1, - (0, €2). (B.6)

A vectorT € R™ is said to beB-anti-uniformif the marginal over eacti’-vertex is anti-uniform. Another
way of phrasing this is that if we decomposas

71

Tm
wherer; € R?, then

in = 04. (B.8)
i=1

The intuition behind Lemma B.5 is the following: Suppose weetswith a B-anti-uniform distribution on the
vertices ofB of the formv ® 14, with v € 1. (so aC-uniform distribution). Then after one step of a walk in
B it will still be B-anti-uniform.

Lemma B.5. Suppose the labeling & is a half-coloring. Lew € 1;-, and decompose= B(v®14) € R™?
as follows:

b={ : |. (8.9)

whereb; € R?. Then

> b =04 (B.10)

Proof: Recall that a half-coloring means that each cgla D, has a “partner colorp(j) € D, for which
every vertex € [m] satisfies

ilfllp()] = ilp()Il] = . (B.11)
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is a bijection. Fot, ¢ € [m] we have
X (1) =x;(6) = ilj] = £[7]
= ij]loi)] = L1ie(5)] (6.12)

= 1=/ (by the definition of a half-coloring)

Soy; is injective and therefore (by cardinality arguments) diijee. Soy; is a permutation ofmn).

Now letw = v ® 1,, € R™4. If we index the entries ofy with the setm] x [d] then

Now using (B.2) we have:
(B.14)
So for eachy € [m]:
<Z bi> = > (bs),; = D v =Y v (B.15)
i=1 J =1 i=1 i=1
Sincey; is a permutation ofm], we can deduce that

i=1 77

i=1

where the last equality follows from the fact that 1.-. So as required,

> b =0g. (B.17)
=1

We are now ready to prove the results we stated in our outlirieeoproof of Theorem 6.11. We start by
giving a reminder of the definitions of the subspasgsS, and.S; of R™™:

s = el el
Sy = 1&@1#@12. (B.18)
Ss = 1teiiell

Lemma B.6. Let Sy, S5 and S3 be the subspaces defined in (B.18).x{f € Si, x5 € Sy, 3 € S3 and
T = x1 + 29 + 23 then

<AOB$,$> = (ACBx1,21) + (AC’EJ:g,&:g) + (AC’BJ:g,J:g). (B.19)
(EC’Ax,x> = <BOA$1,x1> + <BOA1‘2,.T2> + (BC’AJ;g,J;g). (B.20)



Proof: We will show only the first part, from which the second partlfdllow by symmetry. We have

A A A

(ACB.I‘,JZ’> = <AOB(x1 + 22 +.1‘3),(ZC1 + 22 +:C3)>¢ (821)
and therefore expanding this leads to

3
(ACBzx, ) Z AC’Bxl,x] (B.22)

i=1 j=1

Mw

We will show that of the nine terms in (B.22), all but the thitbat appear in (B.20) are zero. As explained
above, the intuition is that the images of the spaggsS, and.S; under the linear transformation defined by
AC B are also pairwise orthogonal.

By the definitions ofS;, S5 andSs, there arav € 1#, Yy € 1# with

T =w® 1y, ® 1, T2 =1, 0y ® lg, (B.23)
and there ar@, ..., u, € 1;5, v1,...,v; € 1,5 with
k
z3=Y U ®0;® lg. (B.24)

i=1

Claim 1: For anys € 1;-, 7 € R™, we have
(ACBxy,0 @7 ®14) = 0. (B.25)
Proof: Recall thatB = I,, @ B (see Section 6.4.3).
Biy=B(1,0y®1g) =1, ®B)(1,9y®13) =1, ® By ® 1) = 1, ®b, (B.26)
whereb = B(y ® 1,4). We can decompodec R™¢ as follows:

b1
b= | |, (B.27)
b

whereby, ..., b, € R% Now recalling that” = I,, ® I,,, ® C, we obtain

b1 Cbl t1
CBxy= (I, ®1,®C)- <1n ®| : > =1,® : =, |, (B28)
by Cby, tm

wherevj € [m] : t; = Cb; € R Lett € R™ be defined as

3]
A I (B.29)
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We now need to change bases (purely for notational purpodésinake the basis change given by the
matrix P from Definition 6.23. This gives us

1, ®t
CBro=1,®t~p : . (B.30)
1n @t
In this new basis we havé ~p 1,, @ 4, so that
Al, ®@t)
ACBzy ~p A(1, @ t) = ; : (B.31)
A(l, @tm)
Again in our new basisy ® T ® 145 becomes
o® 1y (0 ® 14)
oRTRLlg~p T® = . (B.32)
o® 1y Tm(o ® 1g)
Recall that we need to compute o
(ACBxy,0 @ T ® 1), (B.33)
which according to (B.31) and (B.32) is equal to
Z(ln@)tl) T1(U®1d)
< : ) : > (B.34)
Z(171 & tm) Tm(U & ]-d)
We can express this as
(ACBay,o@t@1y) = Y7, (A(l, @t)),75(0 ® 1a))

= Z;ﬁlej'<Z(1n®t]’),O’®61>
= YLiTi-d- (M (A(l, ®t5)),0) (LemmaB.1(2))  (B.35)
0

= YiLimd- (t1a) - (In,0) (Lemma B.4)

= 0 (sinceo € 1;1).

The next two claims are corollaries of Claim 1:

Claim 2: <AC’B$2,$1> = 0.
Proof: Recall that
r=w®l, 1y, (B.36)

wherew € 1:-. So the result follows by setting = w andr = 1,,, in Claim 1.0
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Claim 3: (AC By, x3) = 0.

Proof: Recall that i

T3=» u @ lg. (B.37)
i—1
Foreach = 1,...,k, settingoc = u; € 1;> andr = v; € 13} in Claim 1 enables us to obtain
<AOBZC2, U; @ v; @ 1d> =0, (B.38)

which means that

A A A

<ACBZC2,ZL‘3> = <AOB$2, Zz U; @ V; @ 1d>

= ZZ <AOB$2,UZ & Uj & 1d>

(B.39)
= 0.
U
Claim 4: <AC’B$3,$1> = 0.
Proof: Recall that
k Zi
——N—
T =w® 1, ®1lg, r3=> Ui lq. (B.40)
=1
We will show that for each, (CBz;, Az;) is zero. SinceB = I, ® B, we have
Bz = B(u; ®v; ® 1) = u4; @ B(v; ® 1) = u; ® b, (B.41)
whereb = B(v; ® 1,4). We can decompodec R™ as follows:
by
b= : , (B.42)
bm
whereby, ..., b, € R% Now recalling that” = I,, ® I,, ® C, we obtain
by Chy 1
C’Bzi:(In®Im®C)-<ui® : >:ui® : =y | |, (B.43)
b Cbp, tin
wheret; = C'b;. Changing the basis, (B.43) becomes
u; ® tq
CBz ~p : (B.44)
U; Xty
Since in this new basid ~p I,, ® A andz; ~p 1, @ w @ 14, we can deduce that
Az ~p 1, @ A(w @ 1y). (B.45)
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So combining (B.44) and (B.45) leads to

U; & tl A(w & 1d)
(CB. Auy) = < - ; > (B.46)
Ui @ty Alw @ 1q)
This can be written as
<OBZZ',AJ}1> = Z <’LLZ & tj,Z(w & 1d)> = <ul & Zt]’,_(’w & 1d)> (B.47)
j=1 j=1
We know from Lemma B.5 that .
> b =04 (B.48)
j=1
So
04
—~N=
m m m
Y tj=) Cbj=C-> bj=0q (B.49)
j=1 j=1 j=1

Plugging in (B.49) we see that (B.47) is equal to zero, ancethes

<OBZZ, A.1‘1> =0. (850)
SinceA is symmetric, we have
0
o o . o k . k —_—
<ACBJJ3,1‘1> == <CBJJ3, Al‘1> == < BZ 24, Al‘1> == Z <CBZZ‘,A$1> = 0. (851)
=1 i=1
O
Claim 5: <AC’B$1,$2> = 0.
Proof: Recall that
1 =w® ly, ®lg, x2 =1, ®y ® g, (B.52)

with w € 1> andy € 1... SinceB is a permutation on elements Bf” x R,, it is clear that it fixes
uniform vectors, in particular:

B(1m®€2) = 1m®62. (B53)
This leads to

Br; = (I,®B)(w® ly, @ 1g)
= w® B(l, ®e) (B.54)

= wRl, e (using (B.53))

In the same way (though again a basis change is required tonaccdate the limits of the current
notation) it can be shown that
Aro =1, Qv ® e;. (B.55)
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Now (B.54) leads to
CBzy = (Lym @ C) (w ® 1y, ® 62)

= w®l,®C- e

= wRlL® % ¢ (from Lemma B.3 (1))

So combining (B.55) and (B.56) gives us

(ACBxy1,20) = (CBuay,Axs) (sinceA is symmetric)

= 2. (1,®v®e, w1, ®e) (using (B.55) and (B.56))
0

——
= g—f . <1n,w> (v ®ep, Ly, ®ep)

=0 (sincew € 1;}).
O
Claim 6: (ACBxy,x3) = 0.
Proof: Recall that .
b /—/%
r=w®l, 1, $3=Zui®vi®1d,

=1
withw € 1,5, Vi = 1,... k : u; € 1;- andv; € 1;5. We know from (B.56) that

Now by changing basis we have~p I,, ® A, which means that

A A A

d _
ACBxy ~p d_2 . (1m ® A(w ® el)).
1

Since for alli € [k] : z; ~p v; ® u; ® 14, we obtain

(ACBuay,z) = 2 -(1n,@Aw®er),v;®u®1y) (from (B.59))
—_
= g—i : <1m,2}i> : <A(’LU & 1d),ui & 1d>

=0 (sincev; € 13-).
This leads to
(ACBxy,w3) = (ACBx1,Y 2y =Y (ACBzy,2) =0
=1 =1
U
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Claim 7: (ACBux3,z5) = 0.
Proof: Recall that

Zq

k
——
2y =1, @y ®1q, vy =Y U@ ® lg, (B.62)
=1

withy € 1.5 Vi =1,...k :u; € 1 andv; € 1.1.. We have:
m n m

— B.63
= (In®fm®0)(ui®B(vi®ld)) ( )
= (uz &® ti),

wheret; = (I, ® C) (B(v; ® 14)) € R™?. We can now write
(ACBz,20) = (CBz,Axs) sinceA is symmetric
= (ui®t,1, ®v®er) using (B.63)and (B.55)
2 (B.64)
= (ui, 1n) -(ti,y ® 1)
=0 sinceu; € 1;-.
This leads to
(ACBux3,15) = ACBZ ziowa) =Y (ACBz,ay) = (B.65)
=1 =1
O
Combining everything: We know from (B.22) that
A A A 3 3 A A A
(ACBw,z) => Y (ACBu;,x;). (B.66)

Claims 2 to 7 tell us that six of the nine terms in (B.66) arezep keeping only the remaining ones leads to
(ACBz,x) = (ACBxy,21) + (ACBuy, 23) + (AC By, x), (B.67)

as requiredm

The next 3 lemmas will prove the inequalities of (6.55).
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LemmaB.7. Let Sy = ll‘z ® 1#1 ® 12. For anyx, € Ss, we have:

|<BOAZC2,ZC2>‘ + |<AOBZC2,JL‘2>‘ < \p- <ZC2,ZL‘2>.

Proof: Recall first of all that we can writey as

Next, we saw in (B.55) that

So this gives us

Also, sinceB = I, ® B

We therefore have

(BOAZCQ, ZL‘2>

$2:1n®y®1d.

A$2:1n®y®61.

C’Axg = C(ln ®y & 61)

= 1n®y®0'61

= 1, 9y® % e (fromLemmaB.3 (1)).

Bry = 1,2By® 1)

= <OAJ:‘2, BZCQ>

(B is symmetric)

= 2. (1,0y®e, 1, ® Bly®1g)) (from (B.70) and (B.71))

= 2. (1, 1,) - (y®ea, Bly®ez)) (fromLemmaB.3(4))

d

- dy -

- dl : <1n> 1n> :

(y, By) (from LemmaB.2 (2))

(y, By).

Now sincey € 1, we know by definition that

We therefore have:

(Béz‘il‘g, .1‘2>‘

[y, Bv)| < Ap(y,y).

dy -

A (l,®y®d 1, ®y®d)

. )\B . <ZC2,ZL‘2>.
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Analogously, we can show that
|<ACBZC2,JL‘2>‘ < %2 “AB - (w9, xa). (B.75)
Sinced; + dy = d, we can combine (B.74) and (B.75) to obtain
‘(C’Aa@,Ba@ﬂ + |<OB$2,A.T2>‘ < Ap - (z2,22), (B.76)

as requiredm

LemmaB.8. LetS; = 1# ® 11‘,1 ® 12. For anyx; € S, we have:

|<Béz‘il‘1,1‘1>‘ + |<AOBZC1,JL‘1>‘ < Ag- <.1‘1,£C1>.

Proof: Analogous to that of Lemma B.7 (though a basis change is nedjui

Theorem B.9. Letm(a, b, ¢) be the function defined in (6.33) of Theorem 6.11.a4zet Ss. Then

|<Béﬁx3,$3>‘ + ‘<AOB.Z‘3,JL‘3>| <m(Aa, A, A¢) - (x3,x3). (B.77)

Proof: SinceB is symmetric, we have
(BCAxs, x3) = (CAxs, Bxs). (B.78)

Lety = Azs andy = Bus. Notice that
YER"@RM @R, pcR"@R™ Ry. (B.79)

We defineyll and~+ as follows:

(&

’YH = Mnm(’}/) ® d_I’ + H
1
So~!lis uniform andy is anti-uniform over the left nodes of eachcloud (soy!l L A1), andy = Al +~+.

In the same way we decompogevith respect to the right nodes of eaChcloud. Formally,

€2 L I

I _ €2
i Mnm(u)®d2,
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Claim 1: (CAll, yby = (Cy+, ull) = 0.

Proof: 4l e Rr@R™ @ el, and¢ = I, ® I, ® C. Now for anyw € el we haveCw € el, so
CHll € R" ® R™ @ €ll. On the other hand* € R™ ® R™ ® e<, which means thatCyl, ) = 0.
The second part can be shown in exactly the same way.

Using Claim 1 we see that:
<OA$37 B.’E3> = <C”Y7 :U’>

= (Ol +Cyh pl 4 )
0 0

= (Ol uly +(CAV pty + (Gt ply (Gt )y (Claim 1) (B.80)
= (Gl il + (Cy ot

= NI - Nl - cos (CAN, ull) + 1G] -l - cos (Cots ut).

Therefore we have

(C Az, Bas)| < O] - ] + 11O - 11 (B.81)
Now, we know thatrz € S5 with S3 = 1- @ 1L ® 15. Letuy, ... u,—_1 andvy, . .., v,_1 be the normalized
eigenvectors ofd and B respectively. As usualy andvg are uniform whileuy, ... u,_1 andwvy, ..., vy,

form orthonormal bases df- and1;; respectively. Consequently,

1q

Vd

is an orthonormal basis ¢f;. So there arey;; € R with

{viwv;@—=|ien—1], jelm-1]}

n—1lm—1

lq
I3 = Z Z Qg - (ul & Uj & —) (882)
i=1 j=1 \/E

Claim 2: [la5]? = & - |ull”
Proof: Since the basis in whichs is expressed in (B.82) is orthonormal, we have

n—1m-—1

lzs? =D o). (B.83)

i=1 j=1

Now fori=1,...,n — 1letw; € R™ be defined as
m—1
w; = Z Oéij’Uj, (B.84)
j=1
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so that

n—1m-—1 n—1
g 14

w3=y Y i ®u®—2) =) (4w —=). (B.85)
i=1 j=1 Vd =1 Vid

Notice that because the vectars . . . , u,,_1 are pairwise orthogonal, the ® w; ® 1, are also pairwise
orthogonal.

o)
= IS B e )P

= [T weB- (we @)

(B.86)
= Y weB- (v f) H2 (since theu,’s are pairwise orthogonal)
= YMHB (wi® f)H2 (since||u;|| = 1 V4).
From Lemma B.3 (4) we know that
B(wi®-L)=F (wo-2). (B.87)

Vd Vd

SinceB is a permutation on elementsRf* ® Ry, it is length preserving on these elements. This leads
to

1B (wi® %)H = flwi o 2| = il £ = 2 - el (8.88)
So plugging (B.88) into (B.86) gives us
d2 —
lul* =7 Z i (8.89)
Sincew; = 37", a;jv;, and they;’s are pairwise orthogonal, we obtain
m—1
wil* = Z o+ ujll* = D afj. (8.90)
j=1
Plugging (B.90) into (B.89) gives us
) d2 n—1m-—1 ) d2 )
lall® =7+ 32> oy = Fllasl®, (B.91)

i=1 j=1

where the last equality follows from (B.83)]
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Claim 3: [|z3]* = 4|1/,
Proof: Analogous to that of Claim Z.]

Claim 4: |Gyl = /4 - |41}
Proof: Lemma B.3 (1) tells us that
€1 €9
T o B.92
¢ dl dg ( )

Now recall thatyl = M, (7) ® e andC = I,,,, ® C. We therefore have

A = Mun(1) ©C - = Mam() © L. (B.93)
This leads to )
A e

and therefore

|CAl| = \/;z;' Iyl (B.95)

Claim 5: [Cy- || < Ac - (/4 - [y -
Proof: We saw in Proposition 5.44 that for amyc e;-

d
el < /2 xc . 5.96)

Now we can decomposg- € R"" @ ei as

1
At = : , (B.97)
Yom
wherey;; € ef". Therefore
C’YlL,l
CAyt = : , (B.98)
CYarm

and so

ICYHI? = i, S5 Iy
< ML L G- IhIP (from (B.96), sincey € ef) (8.99)

di

= &

151



And so we conclude that

ICYH]l < Ae - 7 Iy -
2
O
Continuing with our proof, from (B.81) we obtain
|(CAzs, Bas)| < - ICAM Il - Gy
(w3,2z3) =] (|32

and so Claims 4 and 5 then give us

[(CAzs, Bug)| _ [di |l |2V e B sl
(x3,23) = Vo sl sl dy sl ]

From Claims 2 and 3 we know that

d d
sl = 3/ 11 sl = /2l

Therefore (B.102) and (B.103) lead to
|<CAx3,Bx3 [d \/d1d2 e e [l Vhdy el Il
dy da

(z3,23) el I el il

We now letd 4 be the angle betweenandfy”, andfz be the angle betweenand!l. Notice that

W | Il
cos(04) = ——, sin(f4) = ,
0 =T G0 ="

and likewise ford . With these definitions, (B.104) can be reduced to

CAuxs, B
<ZC37$3> d d

Since in general for ang € [0, /2] we havesin(f) = /1 — cos?(#), we can deduce:

|<CY/A1.1‘3,BZC3>‘ < d1
<.1‘3,.1‘3> —d d

In exactly the same way it can be shown that

|<OB$3,A$3>‘ d2 dg

— - cos(604) - cos(0p) + Ao - 4 V(1 —cos2(6,4)) - (1 — cos2(0p)).

<$3,$3> — d
Sinced = d; + dy, combining (B.107) and (B.108) gives us
|<OA$3,B$3>‘ N ‘(C’Bx&fil’:ﬂ

(3,23) (3, 23)

< f(cos(fa),cos(0B), \c),

where

f(a,b,c) =ab+c-+/(1 —a2) - (1 —b2).
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Claim 6: cos(0p) < A\p
Proof: First recall from (B.82) that there arg; < R with

n—1lm-—1

1
r3 = Z Z Qij - (uz XV & \/—d,) (B.lll)
i—1 j—1 d
Settingb; = B(v; ® 1£) € R™ gives us
n= BI‘S

= B (TS 5 ey (w v @ 21)

= Z 2]10(2]([”@3)(@%@,0]@%)

bj
e N
= TS ey (T w) 9B - (00 L)
Z Zm 1 O(z] (uz ® bj)
Recall thatu!l was defined as
i = Mo () © 2. (B.112)
2
Lemma B.3 (5) tells us that
and therefore
n—1m-—1 . n—1m—1 - e
” M (5 © b;) ” i®Mm(bj)®d—2.
=1 j=1 =1 j=1 2
Now b; = B(v; ® e2), and therefore Lemma B.2 (2) tells us that
This leads to
> = 2P 7 i © M (b)) © 11

= S Y %R w @ (dy - Buy) @ Z[2 (from (B.114))

= > Zm ! a” Nuil? - [z - Bus||* - |21 (since theu;’s are pairwise orthogonal)

SIS S B2 (sincevi : [us]| = 1)

(B.115)
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Now sincev; € 1#1, by the definition of\ 5 we have
| Bvj|| < Agllvjll = As-

So plugging this into (B.115) gives us
n—1m—1
VUEEPURESS 3 Srv:
i=1 j=1
We also know from (B.91) that

n—1m-—1

d
Il == >0 > iy

i=1 j=1
So combining (B.117) and (B.118) leads to

I
'l
I

Claim 7: cos(64) < Aa.
Proof: Analogous to that of Claim 6.]

Combining it all: Sincecos(64) € [0, A4], andcos(0p) € [0, Ap], (B.109) tells us that

[(CAzs, Bas)| |(CBas, Axs)|

(x3,3) (w3,23)

< M()‘Av)‘Bv)‘C)v

where
M()\A, AB, )\c) = max {f(a, b, )\0) | a < [0, )\A], be [0, )\B]}-
Theorem B.10 below states that
M(Aa, A, Ac) < m(Xa, A, Ac),

and so we deduce

(CAwxz, Bas)| + [(CBus, Aws)| < m(Aa, Ap, Ac) - (z3,23),

as requiredm
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Theorem B.10. Suppose that we havey, Ag, ¢ € [0, 1] with Ag < A\ 4. Let f(a, b, ¢) be the function

fla,b,¢) = ab+ /(1 — a2)(1 — b?),
let M (A4, A, c) be the quantity
M (X, Ap,c) =max {f(a,bc) | a€c0,\Aa],be[0,A5]},

and letg(b, c) be the function

Then we have:
(A4, AB,¢) if Aa < g(AB,c)

| f
M(Aa, A, c) = { f(g(AB,c), B, c) otherwise

So another way of putting this is
M()‘Aa AB, C) = f(mln ()‘Aa g()\Bv C))7 AB, C> = m()‘Aa AB, )‘C)a
which means that(a, b, ) is as defined in Theorem 6.11.

Proof: First of all, we have

0 acyV'1l — b?
—fla,b,c) =b— —F/——.
Ja V1 — a2

Now
%f(a,b,c)20<:>b\/1—a22ac 1-02 — L_1>¢ big—l

= L>2 (F-1+1

whereg(b, ¢) is taken from (B.126).

Furthermore, for any, c € [0, 1] we have

9 fobe) = b > 0,
Oa

(B.124)

(B.125)

(B.126)

(B.127)

(B.128)

(B.129)

(B.130)

which means that for fixetl ande¢, f(a,b,c) is increasing whem € [0, g(b, ¢)], and decreasing when €
[9(b,c),1]. So over the range € [0, A 4] (and for fixedb, ¢ € [0, 1]), depending on whethery < ¢(b,c) we

have one of the two following cases:
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fla,b,c) fla,b,c)

0 glbc) 2 1 ¢ 0 M gbo) 1
Case 1 Case 2

The maxima off (a, b, c) over the range: € [0, A4] will therefore be atzg = min (A4, g(b,c)). We will
consider the two values, can take separately. We will show that in both cases, when [0, A\g] and
c € [0, 1] we have:

flag,b,¢) < f(ap, \p,c), (B.131)

from which the result follows.

Case 1:g(b,c) < Aa. Soag = g(b,c). Let

b 1
hl(ba C) = f((lo,b, C) = f(g(bu C),b, C) = TS tc: \/(1 - b2) ’ (1 - ﬁ) (8132)
& — | o+l
It can then be checked that
0 i (bsc) L (B.133)
a1 ,C) = ) .
o Vb2 = b2 + 1
which means that 9
Vb,ce0,1]: = hi(b,c)>0. (B.134)

0b

Therefore for fixede, hi(b, c) increases withh and so wherb is in the rang€0, Ag] it is maximal when
b= )\BZ
Vb,ce|0,1]: hi(b,c) < hi(Ap,c). (B.135)

Case 2:\4 < g(b,c). Soag = Aa. Let
ho(b,c) = f(ao,b, c) = f()\A,b, c). (B.136)
Now for anya, b, c we havef(a,b,c) = f(b,a,c). Therefore

ha(b,c) = f(b,Aa,c). (B.137)
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We showed above that for fixédande, f(a,b,c) is increasing whem € [0, g(b,c)]. So applying this to
(B.137) we can deduce that for fixeghs (b, ¢) is increasing fob € [0, g(\a, ¢)].

Claim: Vz,c € [0,1] : g(z,c) > .
Proof: Recall from (B.126) thag(z, c) is defined as

g(z,c) = e (B.138)
S—-c2+1
Now we have:
T c? )
) =7\ 5 —c + 1. (B.139)
Therefore
(g(af,c))2 - -12(;_2 —c + 1)

= % —2%c% + 22

= 62(1 —1‘2) + 22

(B.140)
< (1—2?)+2* (sincec e [0,1] andl — 2? > 0)
= 1,
and the result follows immediatelil
From this claim we obtain
A < A4 < g(Aa, o). (B.141)

(The first inequality is an assumption we made in the statémiethe proposition). We have the following
situation:

f()‘Aa b7 C)

|-

0 Ap g(Aac) (e
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So over the rangé € [0, Ag], ha(b, ) is maximal wherb = A\p:
hg(b, C) < hg()\B, C), (B.142)

which concludes case &.
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Appendix C

Proofs

This appendix contains the proofs that are either too teehmo feature in the main chapters, or that do not
involve results of central importance.

Lemma 3.16.For anye; > 0, there areVy, I'; with

1

N>Nyyy>TI'h = Pw—§‘<61. (Cl)
Proof: Using the definitiony = =, we get
poo Lo L 20\ 1 1 2\ ©2)
Y22 Rn 2 2 Rnv ’ '
and therefore . .
Pt VAU o R VU R b €3
vl |2 Rny 2 RI7v - (nR)Y '
To make notation simpler, we let
2y
— Yy —
x = (nR)Y, “= iy (C.4)
So the expression in (C.3) is
1 T
‘5 <1 - 9) . (C.5)
x

Studying the asymptotic properties of (C.5) is a little dale since we need to consider the asymptotic be-
havior of two variables anda. Furthermore the growth rate of one with respect to the atbaetd behave in
many different ways (corresponding to hawgrows withn). We start by seeing that

<1_%>x:exp [x-ln(l—g)],

and so recalling that the Maclaurin expansiondfi — z) is



we obtain

a\” a a® ad a’>  a

Notice thatx could have any behavior asgets large and (C.7) would still hold. Now combining (C.65an

(C.7) we obtain
lim (1 - 9) = 0.
a—o0 €T

So replacing: andz according to (C.4), and combining this with (C.3), we canwtedthat

1
lim |P, — —' =0.
y—00

2

Formally, this means that for ary > 0 there isI'; with

1
Pw——‘<61.

y=2I'h = 5

Now recall that the only values af we consider arev = 1,.. ., [nRR]. So sincey = %, for w to get large
it is also necessary thatbe large enough. Although this is sort of implicit in the staent % > I'y”, we
make this requirement explicit, by saying there AkeI'; with

n>Ny,y>T1 = Pw—%‘ < €.
]
Theorem 3.22.For anyb, z with b > 1 and0 < z < 1 we have
l—z< (1—%)b. (C.8)
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Proof: Using the Maclaurin expansion bf(1 — z), we obtain:

In(l—2z) = —E = 5T =gt = et -
R RS RSO
oy 1 /272 1 a\2
x x x
< by ba(p) —es(3) -

Because the functiol is increasing, we obtain
b
1—x§(1—f),

as requiredm

Lemma 3.33.For all z, b € R~ we have
—zIn(bx) < 1
= be’

Proof: Suppose that € R~ is fixed, and let(x) = —z In(bx). Differentiating we get

t'(z) = 2t(:z:) = —In(bz) — Th=— In(bz) — 1.
ox bx
Now,
t'(x)=0 <= In(bx)=-1
— br=1
— a=4i
Furthermoret”(z) = — = < 0, soz = 4 is a maxima for.

1 1 1 1 1 1

(&

Now z = 4 is a maxima, s&z € Ry : t(z) < t(5 ), and the result followsa

Lemma 3.45.Let f : R — R be a bounded function. Then for aay- 0 there isX with

1>X = exp(— f(z)) —e< (1—@)x§exp(—f(x)).
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Proof: The second inequality follows from the fact that for ang R : (1 + 2) < exp(z).

(1= 22) —exp [ (@ - 2.

x

Next, we have:

Recall that the Maclaurin expandionlef(1 — z) is

In(l—2)=-z — %,22 - éz?’ - 124 -
This leads to ) 5
(1_@) :exp[_f(x) _ f(;;) _ fég - } (C.10)

Therefore sincef(z) is bounded, by making large enough, we can bring (C.10) as close as necessary to
exp ( — f(x)). The result then followss

Lemma 6.8.Let A = DP[A]. Then for anyr € R” we have
~ 1
M, (Ao @ Ed)) = Ao. (C.11)
Proof: Recall that in the notation from definition 5.22, for a vertex [n] and a labek € [d], a[k] denotes

the " neighbor ofa.

Now multiplying o € R™ by A can be described as follows:

d
1
(o), ==+ kzlai[k]. (C.12)

Next recall that the transition matrix of = DP[A] was defined in (5.39):

. [ 1 if j=i[k] and i = j[/]
(A)z‘k,jl - { 0 otherwise (€.13)
Therefore, we have R
(A(O’ & 1d))ikz =(o® 1d)z‘[k]€ = Oj[k]- (C.19)
So
A 1, 1 & 1 &
i k=1 k=1
Combining (C.12) and (C.15) then leads to
M, (Ao @ %)) =d- Ao, (C.16)

as requiredm

LemmaB.1

162



1. Vo eR"™ 7 eR": (0,7 ® 1) = My,(0),7).
2. Yo e R 7 e R : (0,7 @ 1q,) = (Mn(0), 7).
3. Vo e R™?) 7 e R": (0,7 ® 1g,) = (Mn(0), 7).

Proof: We will prove only part (1), the proofs of (2) and (3) are amgalos.

We index the elements of vectors in the the sgatex R with the setim] x [d]. For anyi € [n], j € [d] we
have

(T®1a)ij =7 (C.17)
Now
<U7 T® 1d2> = Zgl Z?zl Oij * (7_ ® 1d2)ij
= Y (X 0y) T (from (C.17))
(C.18)
= 2ty Mu(0)), 7
= (Mp(0),7).
| |
Lemma B.2

1. Vo e R": My (A(o ®1q,)) = dy - Ao.
2. Yo e R™: My, (B(o ®1g,)) = do - Bo.
3. Vo e R* VT eR": (A(0®14,),7® 1g,) = di - (Ao, 7).

4. Yo e R" V1 € R™: (B(o ®1y4,),7 ® 14,) = do - (Bo, 7).

Proof:
e The proofs of (1) and (2) and analogous to that of Lemma 6.8.

e For (3), letoc € R™ andr € R™.

(A0 ®@1q,),T®1q,) = (My(A(c ®1q,)),7) (using Lemma B.1 (2))
= (dy-Ao,T) (using (1)) (C.19)
= dy- (Ao, T).

e the proof of (4) if analogous to that of (3).

Lemma B.3
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1LC-1g =9 1g,.

2.C 14y = % 1q,.

Vo eR"™: Ao ®1y) = A(o @ 1g4y).

4. Yo e R"™ : B(o ® 14) = B(o ® 14,).

5 Yo € R",7 € R™ : Myn(0 @ 7) = 0 @ My (7).

Proof:

e (1) and (2) follow immediately from the fact that the trai@itmatrix of C is in the form

0 |1.Xx
) (C.20)
7-XT 0
where the rows and columns a&f have weight- and/ respectively. So
T d1
C'].d1 :Z'ldl :d—2’1d1. (CZl)

e For (3) Recall4 has vertex s€tr] x [m] x [d], and that all vertices if] x [m] x [d2] are edgeless. Therefore
for anyz € R” @ R” @ R4?) we havedz = 0. Now

A 1; = Z(ldl + 1d2) =A- 14,. (C22)

e The proof of (4) is analogous to that of (3).
e For (5), on the left hand side we ha%,,,,(c ® 7) € R" @ R™. For anyi € [n], j € [m]

d

Mnm(U & T)ij = ZUZ' . Tjk~ (C23)
k=1

On the right hand side, first note that,, () € R™ and

d
(Mn(7)); = > Tk (C.24)
k=1
Now
(c® Mm(T))ij = o0;- (Mm(T))j
= 00 X1 Ton (C.25)

= Mum(oc®7)i; using (C.23)

and so (5) followsm
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List of Symbols

Algebra
N Natural numbers{0,1,2,...})
N* Positive natural numberg1,2,3,...})
Z Ring of integers
L, Ring of integers modula (Z/nZ)
Q Field of rationals
R Field of real numbers
R>o Set of non-negative real numbers
R<o Set of positive real numbers
C Field of complex numbers
F, Finite field of sizeg
Cy Cyclic group of siz¢
Dy DFT matrix corresponding t6’
[n] The set{1,...,n}
[x] Smallest integer not smaller than
|x] Largest integer not larger than

sSuT Disjoint union of the set$ andT

Linear Algebra

(x,y) Inner product of the vectors andy

TRY Tensor product of the vectorsandy

Izl Norm of vectorz

Ty Vectorsz andy are parallel

Ly Vectorsz andy are orthogonal

1, The vector inR™ whose entries are all

1','1 Space of vectors iR™ generated by,

1+ Space of vectors iR" that are orthogonal tb,,

R>m The set of all x m matrices with entries in the ring

lker(M) Left kernel of the matrix\/
rker( M) Right kernel of the matrix\/
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Algebraic Geometry

X Algebraic curve
D(X) Divisor group of the curvé&l
DO(2X) Group of divisors of degree 0

Prin(X) Group of principal divisors
Pic(X) D(X) modulo Prir{X)
Pid’(X) D(X) modulo Prir{X)

D Divisor (element ofD(X))
L(D) Linear space of the divisab
dim(D) Dimension of the divisoD
deg(D) Degree of the divisoD

Ny(9) Maximum number of points on a curve ovgy of genusg
Coding Theory

e Code

wgt(x) Hamming weight of the vector

d(z,y) Hamming distance between the vectorandy

B, (z) Ball of radiusr around the vector

Vol (r,n) Volume of a ball of radius: in F3

dmin(C) Minimum distance of the code

i(C) Relative distance of the code

dim(C) Dimension of the cod€

R(C) Rate of the cod€

{C; }ien Family of codes

hy g-ary entropy function

h Binary entropy function
Graph Theory

Ky Complete graph od vertices

N(a) Set of neighbors of the vertex

N(S5) Set of neighbors of the set of verticés

ali] i neighbor of vertex:

A Second eigenvalue of the grapgh

P [A] Projection of size: of the graphA

DP[A4] De-projection of the graph

A? Square of the grapA

AQC Derandomized square of the graghwith respect to the grapff

A® B Tensor product of the graphsand B

A®c B Derandomized tensor product of the graphand B with respect to the grapfy

A@B Zig-zag product of the graph4 and B
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