
Semester Project

Approximation Algorithms for the
Undirected Travelling Salesman

Problem

Author:
Aleksandar Markovic∗

Under the direction of:
Professor Mohammad Amin Shokrollahi

Responsible Assistant:
Dr. Ola Svensson

Fall 2011

∗aleksandar.markovic@epfl.ch

Contents
1 Introduction 1

2 First approximation algorithms for the undirected TSP 3
2.1 Preliminaries . 3
2.2 Christofides’ approximation 6

3 Linear Programming Relaxation 7
3.1 Integrality Gap . 7
3.2 Lower bound on the Integrality Gap 9
3.3 Upper bound on the Integrality Gap 11
3.4 Special cases . 13
3.5 Pairs . 15
3.6 Subcubic graphs . 18

4 General metric 19
4.1 New condition . 19
4.2 5-cycles . 22

5 Conclusion 27

Abstract

We present an overview of known approximation algorithms and
linear programming relaxations of the Undirected Travelling Salesman
Problem with the triangle inequality.

In particular, we review the classical algorithm by Christofides and
explain how it upper bounds the integrality gap of the considered linear
programming relaxation.

We also complement this by presenting better upper bounds for
specific cases, such as subcubic graphs in the unweighed shortest path
metric and two 5-cycles connected by five paths in a general metric.

1 Introduction
Imagine you are Santa Claus. You have to deliver gifts to the good children
and coal to the others, and you have only one night to do it. Therefore you
will have to find the shortest tour of the world which goes through every
town exactly once, for you do not want to be seen too much. This problem
is called the Travelling Salesman Problem (TSP for short) and is one of the
most studied questions in combinatorial optimisation.

Let G = (V,E) be a complete undirected graph and let

w : E → R+

1

be the weight (or distance) function. We make the reasonable assumption
that the triangle inequality is satisfied, i.e., for each three vertices v1, v2 and
v3 ∈ V , we have w(v1, v2) + w(v2, v3) ≥ w(v1, v3). We have now a more
mathematical way to formulate the problem. Indeed, we want to find a tour
S ⊂ E, which minimises: ∑

e∈S
w(e),

such that every vertex is visited exactly once by the tour S. We can first
wonder which class of problems it belongs to.

The question P = NP [15] is one of the most interesting open problems
in computer science since it was introduced in 1971. We say that a problem
is in class P if it is solvable in polynomial time and that it is in class NP
if we can "verify" a solution to be feasible in polynomial time. We know
P to be included in NP , but the other inclusion is unlikely, even if we
cannot prove it. Then, we can define the class NP -complete to be the most
"hard" problems of the class NP , i.e., a problem is NP -complete if any other
problem in NP can be reduced to it in polynomial time. Thus, if we can
find a polynomial time algorithm for any NP -complete problem, we have
proven P = NP , but this will be very surprising since we think P 6= NP .

The TSP is known to be NP -complete [9]. Moreover, Sahni and Gonza-
les [7] prove that the TSP without the triangle inequality has no constant
approximation guarantees, i.e., we can find a efficient algorithm which re-
turns a solution of value at most r times the optimal solution with r a
constant, if and only if P = NP . But as the problem is still interesting
in practice, we are also interested in solutions not too far away from the
optimal one. There are several methods to find such a solution: approxima-
tion algorithms, heuristics, etc. In this report, we will use approximation
algorithms, which are algorithms running in polynomial time and return-
ing a result not too far away from the optimal result. More formally, an
r-approximation algorithm is an algorithm which returns a solution of value
at most r times the optimal one.

We will present the best approximation algorithm known for the general
case, found in 1976 by Christofides [2]. Then we will introduce an integer
linear program and its relaxation, the Held-Karp relaxation [8, 16], and
analyse how good it is. Since the relaxation is solvable in polynomial time,
the better the relaxation is, the closer we are to a real tour; and this will
be "measured" by the integrality gap. We will analyse this gap in order to
bound it [1]. Then, we will consider some specific cases with the biggest
known bound.

2

2 First approximation algorithms for the undirected
TSP

As we stated in the introducation, the best known approximation algorithm
has been found in the seventies by Christofides [2]. We will present this
result and the naive one, both using a minimum spanning tree, which can
be found in polynomial time with for instance Kruskal’s Algorithm [10].

2.1 Preliminaries

First, we will present some basic definitions.

Definition 2.1. Let G = (V,E) be a connected undirected graph. A Hamil-
tonian tour is a closed path a0−a1− ...−am = a0 such that for every vertex
v ∈ V , it exists an i ∈ {0, 1, ...,m − 1} so that v = ai and v 6= aj for every
j 6= i.

Definition 2.2. Let G = (V,E) be a connected undirected graph. An Eule-
rian tour is a path a0 − a1 − ...− am = a0 such that for every edge e ∈ E, it
exists an i ∈ {0, 1, ...,m− 1} so that e = (ai, ai+1).

Definition 2.3. A graph G = (V,E) is called an Eulerian graph if E con-
tains an Eulerian tour.

Theorem 2.4. A graph G = (V,E) is an Eulerian graph if and only if the
degree of each vertex is even.

Proof. First, we will prove that if the graph is Eulerian, the degree of each
vertex is even. As the graph is Eulerian, we can find a tour which goes
through every edge. Therefore, for every vertex, all edge "in" will correspond
to an edge "out", which is the next edge in the Eulerian tour.

On the other hand, let us take a graph G with an even degree on each
vertex. We will proceed on each connected part with more than one element.
If there is no such part, there is no edges in the graph, so it is obviously
an Eulerian graph. Then, for every vertex of this graph, there is an even
number of edges. Let us do pairs of such edges, one in and one out. Then,
the out one is obviously an in of the next vertex. As it is an in, there is an
out linked to it. And so on, until we’re back on the first vertex. Then, if we
have not visited each edge, we take one of those edge and we do this again
until there is no edges unvisited. Since the graph is connected, there is a
way to collapse all those tours into a unique one as in Figure 1 in order to
create an Eulerian tour. Thus, the graph is Eulerian.

Let us denote the optimal tour byOPT and the minimum spanning tree
of the graph G = (V,E) by MST , and let

val : P(E)→ N

3

1 2

3

4

Figure 1: Let us consider this graph. It is obviously Eulerian for all the
degrees are even. Then we take any vertex and follow one path until we are
back on the first vertex. We will have visited the tour 1, for instance. But
in this case, all the edges have not been traversed yet. So we take another
vertex and we highlight a tour until there is no more edges not traversed.
Thus, we will have a certain number of tour, in this example, we will have
four. Then, we take any vertex of the graph, for instance, the coloured
one, and we follow a tour in which it appears until we reach a vertex which
appears in a tour we have not begun to go through. We stop the first tour
and begin with the second, until another such vertex appears or until we are
back on the vertex where we have changed the tour. Finally when we have
ended the last tour, we can go back on the others in the reversed order and
thus complete the big tour.

4

be a function defined by: val(E′) =
∑
e∈E′ w(e), where E′ ⊆ E. We start

by showing that a MST is a lower bound of an optimal tour.

Lemma 2.5. Let Kn = (V,E) be the complete undirected graph of n vertices
and let Ee ⊆ E be an Eulerian tour in Kn. Let moreover w be a weight
function on E which satisfies the triangle inequality. Then, we can find an
Hamiltonian tour Eh ⊆ E of G in a polynomial time such that val(Eh) ≤
val(Ee).

Remark 2.6. We are interested in Eulerian tours because they are more
convenient to construct than the Hamiltonian ones. But without the trian-
gle inequality, we cannot use shortcuts to transform them into Hamiltonian
tours without increasing its cost.

Proof. Let us take any vertex of the Eulerian tour and rename it a0. Then
for every ai of this path, we call ai+1 the next vertex of the Eulerian tour
that has not already been visited, i.e., if ai+1 6= aj , for all j ≤ i. Else
we continue on the Eulerian tour until we find such a vertex or have visited
every vertex of the graph. We will now show that ao−a1− ...−an = a0 is an
Hamiltonian tour Eh of cost at most the cost of the Eulerian tour. Indeed,
for every pair (ai, ai+1), we have a corresponding edge because the graph
is complete. Moreover, with the triangle inequality, this edge cannot cost
more than the path between ai and ai+1 in the Eulerian graph. Therefore,
we have val(Eh) ≤ val(Ee).

Definition 2.7. Let G = (V,E) be a complete undirected graph with a weight
function w. A spanning tree in this graph is a subset T ⊆ E such that (V, T)
is connected and contains no cycle. Moreover, if the sum of all the weights
of T is minimum, we call it a Minimum Spanning Tree (MST for short).

Algorithm 1 describe how to find a MST of a graph.

Algorithm 1 Kruskal’s MST algorithm
1: color the cheapest edge in red
2: while there is uncoloured edges do
3: find the cheapest uncoloured edge
4: if it creates a cycle in the red tree then
5: color it in blue
6: else
7: color it in red
8: end if
9: end while
10: return the red edges

This algorithm picks the cheapest edge (if there are several, it makes an
arbitrary choice) in the graph and colors it red. Then it takes the cheapest

5

uncoloured edge, if it creates a cycle in the red tree, it colors it in blue and
if not, in red. And so on, until there are no more uncoloured edges (we
can also just ask we have enough red edges to make a connected tree, i.e.,
|V | − 1, for less coloring steps). So, the wanted MST is the set of the red
edges returned.

The following lemma is easy to verify and well-known [15].

Lemma 2.8. Kruskal’s MST algorithm returns a minimum spanning tree
in polynomial time.

2.2 Christofides’ approximation

We will present two different approaches, both using a MST. The first, more
naive, is an approximation of at most twice the cost of an optimal tour, and
the second, a little more elaborated, is the Christofides approximation [2].
The second one is the best approximation known for the general case of
metric undirected TSP.

Lemma 2.9. val(MST) ≤ val(OPT).

Proof. Let us take the optimal tour and remove the heaviest edge. The
result is a spanning tree T1. Thus val(MST) ≤ val(T1) ≤ val(OPT).

Lemma 2.10. (2-approximation) We can find a tour T2 ⊆ E in polynomial
time, such that val(T2) ≤ 2val(OPT).

Proof. Let us find a MST of our graph G. Then, we consider each edge of
the MST twice to create an Eulerian graph, shown in Figure 2. The cost of
this tour is at most twice the cost of OPT , by Lemma 2.9. Then, we apply
Lemma 2.5 in order to obtain a Hamiltonian tour of no larger cost from the
Eulerian tour.

Lemma 2.11. (Christofides’ 1.5-approximation [2]) We can find a tour
T1.5 ⊆ E in polynomial time, such that val(T1.5) ≤ 1.5val(OPT).

Proof. Let us find a MST and consider all the vertices with an odd degree
and color them in red. Since the number of such vertices is even, we can
find a minimum perfect matching between the nodes in polynomial time [4].
Then, we can combine them both in order to have an Eulerian graph, since
all the vertices will have an even degree. Finally, by Lemma 2.5, we can find
in polynomial time a Hamiltonian tour.

In order to analyse the cost of the resulting tour, we will split the analysis
in two steps: the MST and the MM (Minimum Matching). We already have
proved in Lemma 2.9 that the value of the MST is at most the value of the
optimal tour. In addition, we need to upper bound the cost of the MM in
terms of the optimal tour cost.

6

a

b

c

d e

f

g

a

b

c

d e

f

g

Figure 2: We first double each edge of theMST to obtain an Eulerian tour
of cost at most twice val(OPT). Here the tour will be a-b-c-d-c-e-c-b-f-g-f-
b-a. Then, we consider all the vertices which appear more than once, and we
avoid them by taking a shortcut. Thus, we obtain the tour a-b-c-d-e-f-g-a,
our 2-approximation.

Therefore, let us consider the red vertices in the optimal tour. We choose
one of them and follow the tour until we find another red vertex. Using
shortcuts, the weight of the edge between those two vertices is less or equal
to the weight of the part of the tour we have traversed. Then we repeat this
for all the following red vertices. We have thus a tour of the red vertices
with cost at most val(OPT). As the number of red vertices is even, we
can find exactly two perfect matchings in the constructed tour between red
vertices. Further, we chose the cheapest one to have a perfect matching of
cost at most half the cost of OPT and hence the cost of a minimum perfect
matching is at most half the cost of an optimal tour.

From the arguments above, we have a Hamiltonian tour of value at most
val(MST) + val(MM) ≤ val(OPT) + 0.5val(OPT) = 1.5val(OPT).

3 Linear Programming Relaxation
We will now introduce the Held-Karp relaxation [8] and analyse how good
it is compared to the exact integral linear program formulation.

3.1 Integrality Gap

First of all, we need another definition, in order to formulate our linear
program.

Definition 3.1. Let G = (V,E) be a graph and let S ⊆ V be a subset of the
vertices of G. We denote δ(S) ⊆ E the subset of the edges that crosses the

7

a

b

c

d e

f

g

a

b

c

de

f

g

Figure 3: We consider all the vertices of the MST with an odd degree and
we find the minimum matching of those vertices. Then, we use shortcuts
and the triangle inequality to find an approximation of the optimal tour.
The cost of MST is at most the cost of OPT . Moreover, the cost of this
matching is at most half the cost of OPT : we consider those vertices in
an optimal tour a-b-c-d-e-f-g-a, for example. Then if g-a, b-c and e-d are
more expensive than half the tour, we drop them and take a-b, c-d and
e-g. Therefore, a minimum matching has value at most half the cost of an
optimal tour.

cut (S, Sc), i.e., δ(S) = {e ∈ E | |e ∩ S| = 1} We abbreviate δ({v}) by δ(v).

We will now introduce the linear program (1) [8].

min
∑
e∈E

w(e)xe, subject to:

∑
e∈δ(v)

xe = 2, ∀v ∈ V,

∑
e∈δ(S)

xe ≥ 2, ∀S (V, S 6= ∅,

xe ∈ {0, 1}.

(1)

If we find a solution vector x, we are done. But, we cannot hope to solve
this Integral Linear Program (ILP) in polynomial time. So, we have to relax
it, i.e., instead of taking xe ∈ {0, 1}, we take xe ∈ [0, 1]. Thus we have a
Linear Program (LP) which is known to be solvable in polynomial time even
with the exponentially many constraints, e.g., withe the ellipsoid method or
by an equivalent more compact formulation. If we are lucky, all xe are either
0 or 1, and we have the exact optimal tour, but in general, this is not the
case. Obviously, the solution x of the LP has cost at most val(OPT), since
we have relaxed a condition. Thus, we can define the following.

8

OPT¾OPT⅔OPT

LP

Figure 4: The value of the LP takes place between 2
3 and 3

4 times the
optimum value. The actual conjecture [12] claim the LP to be exactly 3

4 .

a b

cd

e f

Figure 5: We provide this graph with a simple weight function w, such
that each drawn edge has a weight 1, and all undrawn edges have the same
weight as the shortest path between the two vertices, e.g., the edge (a, c)
has a weight 4.

Definition 3.2. For an instance I of the TSP, let ILP(I) be the value
of the exact formulation, and let LP(I) be the value of the linear program
relaxation. Then the integrality gap is the following number :

IntGap = sup
I

ILP(I)
LP(I) ≥ 1.

We will now investigate the strength of our LP, i.e., the closer the IntGap
is to 1, the better the relaxation is. We will prove the integrality gap to be
between 2

3val(OPT) and 3
4val(OPT) as depicted in Figure 4.

3.2 Lower bound on the Integrality Gap

To find a lower bound, we just need to provide an instance of the problem
in which this bound is reached.

Therefore, let us take the graph depicted in Figure 5, with the same
weight function w. Such an instance is called graph-TSP or TSP on un-
weighted shortest path metric.

We want to calculate the integrality gap for this graph. If we let x be
the solution of the LP, defined by

9

11

4

Figure 6: We link a and f with the obvious path (of cost 11) and then we
come back to a with the edge (f, a), which has cost 4.

a b

cd

e f

n nodes

Figure 7: We provide this graph with the same weight function w as in
Figure 5, where n = 2. Here, the edge (a, c) has a weight n+ 2.

xe =


1 if e is plain,
1
2 if e is dotted,

0 otherwise.

Obviously, x is a solution of the LP, and hence LP(I) ≤ 6 · 1
2 +9 ·1 = 12.

Then we consider the tour on Figure 6 which can be proved to be optimal.
Thus, we have IntGap ≥ 15

12 .
Let us generalise this result. Therefore, we consider the general case of

the graph-TSP instance as shown in Figure 7. Then the same tour becomes
a 4n+ 7-weighted path as on Figure 8, while LP(I) ≤ 6 · 1

2 + 3n · 1 = 3n+ 3.
Thus,

IntGap ≥ 4n+ 7
3n+ 6 −→

n→+∞

4
3 .

We have thus found a specific case to lower bound the integrality gap.
In the next subsection, we will find an upper bound.

10

3n+5

n+2

Figure 8: We use the same tour as in Figure 6. The path from the first to
the last vertex has a length of 3n+ 5 and the last edge, n+ 2.

3.3 Upper bound on the Integrality Gap

Wolsey [17] in 1980 then Shmoys and Williamson [14] in 1990 proved this
gap to be bounded by 3

2 . We will here present the proof given by Carr [1]
in 2004, which is shorter and more elegant. We will use the fact that the
MST and the T-join problems have integer polytopes. We will first remind
the following definition.

Definition 3.3. A T-join for a subset T ⊆ V of a graph G = (V,E) is a
subgraph H = (V,E′) in which all vertices of odd degree are exactly those in
T .

We will now prove two lemmas in order to use them to prove Theorem
3.6.

Lemma 3.4. [1] Given a solution x∗ to the Held-Karp relaxation [8],
(
1− 1

n

)
x∗

is a feasible solution to minimum spanning tree polytope.

Proof. Let |V | = n and E(S) ⊆ E, for S ⊆ V , be the subset of edges e such
that |e ∩ S| = 2, i.e., the edges with both extremities in S. And, then, let
us write the spanning tree polytope [11]:

1.
∑
e∈E(V) x

∗
e = n− 1;

2. ∀S (V, S 6= ∅, then x∗(E(S)) ≤ |S| − 1;
3. x∗ ≥ 0.

We will now see if those conditions are satisfied. We first have

∑
e∈E(V)

x∗e =

∑
v∈V

∑
e∈δ(v)

x∗e

 1
2

=
(∑
v∈V

2
)

1
2 = |V | = n

11

and thus
∑
e∈E

(
1− 1

n

)
x∗ = n− 1.

Then, in order to prove the second condition to be true, let us suppose
that it exists a subset of vertices S (V , such that x∗(E(S)) > |S| − 1.
Therefore, we can write

|S| − 1 <

∑
v∈S

 ∑
e∈δ(v)

x∗e

− x∗(δ(S))

 1
2

=
(∑
v∈S

2− x∗(δ(S))
)

1
2

=
(
2|S| − x∗(δ(S))

)1
2 .

Thus, x∗(δ(S)) < 2 which contradicts that x∗ is feasible to 1 and so,(
1− 1

n

)
x∗ is a feasible solution to spanning tree polytope.

Lemma 3.5. [1] Given a solution x∗ to the Held-Karp relaxation [8], 1
2x
∗

is a feasible solution to T -join polytope.

Proof. Let us write the T -join polytope [6]:

1. x(δ(S)) ≥ 1 if |S ∩ T | is odd for S ⊆ V ;
2. x∗ ≥ 0.

As x∗(δ(S)) ≥ 2 for all S (V , if we divide the solution by 2, we have
almost verified 1. But the case S = V cannot happen, because |S ∩ T |
must be odd, hence, all the conditions of a T -join polytope are verified for
1
2x
∗.

Theorem 3.6. [1] Given, a solution x∗ to the Held-Karp relaxation [8],(
3
2 −

1
n

)
x∗ can be expressed as a convex combination of Eulerian graphs.

Proof. By Lemma 3.4, we know
(
1− 1

n

)
x∗ to be a feasible solution for MST

polytope : ∑
i∈I

λiTi =
(

1− 1
n

)
x∗,

where Ti is a spanning tree for all i ∈ I. Then, for all Ti, 1
2x
∗ is a feasible

solution to T ′i -join polytope, where T ′i ⊆ Ti is the subset of vertices of odd
degree of Ti for all i ∈ I:∑

i∈I,j∈J
δi,jMi,j = 1

2x
∗,where Mi,j is a Ti-join for T ′i .

Hence, since Ti ∪Mi,j is an Eulerian spanning graph for all i ∈ I and
j ∈ J , we have a convex combination of possible tours, using Lemma 2.5,

12

a b c

d e f

Figure 9: The same graph as in Figure 5, but the path from a to f is drawn
as a straight line with the additional backedges, here doted.

and thus
(

3
2 −

1
n

)
x∗ can be written as a convex combination of spanning

trees Ti and Ti-join.

Therefore, we can conclude with the following result.

Corollary 3.7. The integrality gap of the TSP is at most 3
2 .

Proof. As we have a convex combination of Eulerian graphs, and the ex-
pected cost is 3

2 −
1
n times the cost of the spanning tree, there exists at least

one Eulerian graph of cost at most that.

3.4 Special cases

Recently, Gharan, Saberi and Singh [13] presented an approximation al-
gorithm for graph-TSP with a guarantee of 1.5 − ε, for an ε of the order
10−12. This major achievement was later improved by Mömke and Svensson
[12]. We will present their approach. First, let us introduce some graph
terminology.

Definition 3.8. A cubic graph is a graph in which each vertex has degree
3.

Definition 3.9. A subcubic graph is a graph in which each vertex has degree
at most 3.

Here we want to find more instances where the integrality gap is 4
3 . Let

us take the graph-TSP and draw it as a line with backedges, as depicted in
Figure 9.

Then, let us drop two of the backedges and add and/or remove some
vertices on the line, as on Figure 10.

There is three paths from b to c: the first one is the one going directly
from b to c by the path, the second one use the backedge (b, d) and then
the path from d to c and the last one goes back to a and then through the
backedge (a, c). If we duplicate one of those three path, we would have an
Eulerian graph. Thus, if we choose the path to duplicate at random with
the same probability, the expectation cost of the Eulerian tour would be 4

3
times the number of edges, since all edges have cost 1.

First, let us consider only cubic graphs.

13

a b

c d

Figure 10: We draw a path a− ...− b− ...− c− ...− d with any number of
vertices between those four. Then we add to this graph two shortcut edges
(a, c) and (b, d).

Figure 11: We consider this graph with the perfect matching represented
by the discontinued line. If we drop those three edges, we disconnect the
graph.

Theorem 3.10. [3] In a cubic 2-vertex-connected graph G = (V,E), we can
pick a perfect matching at random so that

PrM [e ∈M] = 1
3 ,∀e ∈ E.

We now consider a cubic graph, e.g. Figure 11. We want to drop as
many edges as possible without disconnecting the graph, so we can obtain
a better tour and thus make a better bounding of the integrality gap.

Lemma 3.11. Given a cubic 2-vertex-connected graph G = (V,E), we can
in polynomial time find a tour of value at most

2
3(|E|+ |V | − 1).

Proof. Let us apply Algorithm 2 to G and analyse the returned subset of
edges.

14

Algorithm 2 Cubic algorithm
1: Find a MST T of G.
2: Pick a perfect matching at random M , so that every edge has a proba-

bility of 1
3 to appear.

3: return (E ∪ (M ∩ T)) \ (M \ T).

First, the algorithm returns the set of all edges and it duplicates the
edges of the matching that are in the minimum spanning tree. Then it
removes the edges of E which appears in the matching but are not a part
of the tree.

Then, as the MST is connected, we will always have a connected graph.
Furthermore, the algorithm duplicates the edges of the matching in the tree
and drop the others. Since it is a matching and all the vertices have degree
3, each vertex either drops or duplicates exactly one edge incident to it, i.e.,
each vertex has either degree two or four and the obtained graph is thus
Eulerian by Theorem 2.4. Finally, let us calculate the expected number of
edges of the given tour, using Theorem 3.10

E[|(E ∪ (M ∩ T)|) \ (M \ T)] = |E|+ E[|M ∩ T |]− E[|M \ T |]

= |E|+ 1
3(|V | − 1)− 1

3(|E| − (|V | − 1))

= 2
3 |E|+

2
3(|V | − 1).

3.5 Pairs

We now want to increase the number of removable edges, so that the ex-
pected cost of the returned edges will be even lower. For now, we have only
allowed the edges not in the MST to be removed. But since the graph is
two vertex connected, perhaps we can do better. Therefore, we will intro-
duce some pairs in the graph, so that one is in the MST and the other is a
backedge, i.e., an edge connecting a vertex to his ancestor, but not the direct
one. We define them both to be removable, but they will not be removed at
the same time, i.e., if we remove one, the other has to stay in the graph.

Therefore, we will first add some edges in R, the set of removable edges.
Since all edges have the same cost, instead of using Kruskal’s algorithm, we
will simply use the Depth-First-Search (DFS) to find a minimum spanning
tree, thus all the edges will either be in the MST or will be backedges. So,
in this case, for every pair of vertices connected by a backedge, it exists a
path going either always up or always down in the tree, i.e., if (a, b) ∈ E is a
backedge where a is the ancestor of b, it exists a path a0 = a−a1−...−an = b,
such that ai+1 is a child of ai for every i = 0, ..., n− 1. With this property,
we can pair every backedge (a, b) with (a, a1), as in Figure 12.

15

a=a0

a1

a2

a3

b=a4

Figure 12: We pair each backedge with another one to increase the num-
ber of removable edges without disconnecting the graph. For instance, the
backedge (a, b) is paired with (a, a1). Here, we have made a pair more than
we need.

Let us consider Algorithm 3, and then we will analyse it.

Algorithm 3 Cubic algorithm with pairs
1: Obtain a MST T of G by Depth-First-Search.
2: Let R = E \ T ∪ P , where P is the set of edges paired.
3: Pick a perfect matching at random M , so that every edges has a prob-

ability of 1
3 to appear.

4: return (E ∪ (M \R)) \ (M ∩R)

The return of this algorithm is the set of edges E in which the edges of
the matching M which are not removable, i.e., the MST without the paired
edges, have been duplicates and and the edges of M which are in R, i.e., all
the pairs, have been deleted.

Lemma 3.12. Given a cubic graph G = (V,E), Algorithm 3 returns a
connected Eulerian graph with expected number of edges of 4

3n −
2
3 , where

n = |V | is the number of vertices.

Proof. First, we will prove that the graph stays connected by induction on
the height of the tree. If the graph has a height of 0, i.e., it is a single
vertex, then it is always connected. Now let us assume that the graph stays
connected for every height strictly lower than h. Let us take a tree of height
h. We have two cases: on the one hand, we have a full tree of height h
and on the other, we only have a subtree of that height. If it is the whole
tree, we will have two cases as shown in Figure 13. The last case with three
subtrees is not 2-vertex connected.

16

T1 T2 T1

Figure 13: The two cases of height h with respectively two subtrees with
one backedge and one subtree with two backedges. We first can notice that
the left case is not 2-vertex-connected.

If the root has two subtrees, then there is exactly one backedge to the
root, without loss of generality, T1. So it is paired to the edge from the root
to T1. Since both subtrees stay connected by the induction hypothesis, and
as the only two other edges of R cannot be removed at the same time, this
first graph stays connected. However, this case never happen because the
tree is not 2-vertex connected. Then, if the root has one single subtree, the
argument is the same, because the second backedge to the root can either
be removed or not when the other is paired to the edge linking the root and
T1.

Otherwise, if it is just a subtree of a bigger tree there are also two cases
as in Figure 14.

In the first case, we have no more removable edges, so there is nothing
to be done. In the second case, as the two paired edges cannot be chosen at
the same time and by induction hypothesis, the graph stays connected.

Furthermore, for every vertex, the algorithm either delete or duplicate
exactly one edge incident to it, so the resulting degree of this vertex is either
two or four, thus the graph is Eulerian.

Now we have proved that the graph stays connected and all the degrees
are even, let us calculate the expected number of edges returned. So, using
the fact that the probability of any edge to be picked by the matching is 1

3 ,
we have

E[|(E ∪ (M \R)) \ (M ∩R)|] = |E|+ E[|M \R|]− E[|M ∩R|]

= |E|+ 1
3(|E| − |R|)− 1

3 |R|

= 4
3 |E| −

2
3 |R|.

(2)

Moreover, if we denote the number of backedges by b and as |E| = 3
2n, we

17

T1 T2 T1T1

Figure 14: The two same cases of height h + 1. In both, we remove a
backedge, so that the graph stays cubic. In the first case, there are no more
removable edges, and in the second one, we have still the same pair. We
have not add the backedges to the new root because they no not have any
purpose in what we consider.

have
b = |E| − (n− 1)

= 2
3n− n+ 1

= n

2 + 1.

Since all the removable edges are the pairs, for every backedge, we have
exactly one other removable edge (exept for the root, because there is two
backedges to it), that implies

|R| = 2b− 1 = n+ 1.

Then, by replacing |E| and |R| in (2), we obtain

E[|(E ∪ (M \R)) \ (M ∩R)|] = 4
3(3

2n)− 2
3(n+ 1)

= 2n− 2
3n−

2
3

= 4
3n−

2
3 .

3.6 Subcubic graphs

All those results for cubic graphs can be extended to subcubic graphs using
a trick. We will transform the subcubic graph in a cubic one without loosing

18

Figure 15: Diamond-element, which replace a two degree vertex into four
three degree vertices.

its structure as follows. Every vertex of degree two v will be replaced by a
diamond structure consisting in a 4-cycle in which two opposite nodes will
be incident to one edge incident to v, and the two other nodes of the 4-cycle
will be linked by an edge, as depicted in Figure 15.

For example, we can take the graph depicted in Figure 10. We replace
vertices of degree two by diamond structures, then we can apply Algorithm
2, and finally go back on the original graph by dropping the edges of the
diamond structures, as shown in Figure 16. We could also apply Algorithm
3 in order to have a better tour.

4 General metric

4.1 New condition

In Section 3, we considered those specific graphs with three restrictions:

1. 2-vertex connected;
2. subcubic;
3. and with the shortest path metric.

We will now consider any metric and replace this condition by the following
one: we want the graph to be composed of some ni-cycles linked by paths
of 2-degree vertices. The relaxed linear program will have a value of 1

2 on
the edges in the cycles and 1 on all the others. In this case, we define the
relaxed solution to be

xe =


1 if e is in a path linking two cycles,
1
2 if e is in a cycle,

0 otherwise.

(3)

In theory, there is a conjecture which claims that the case where every
ni is odd is the most complicated one [5]. So let us consider the case with
3-cycles first. An example of such a graph is shown in Figure 17.

19

Figure 16: We replace every vertex of degree two by a four-vertex diamond
such that every vertex has degree tree. Then, we can use Theorem 3.10 to
pick up a matching. With this construction, we always pick exactly one
of the tree paths between the "middle points" and no other edge of the
original graph. Then we double the chosen path in the first graph. Since
the matching has a probability of 1

3 to chose any edge, this is also the case
for the entire path, i.e., the expectancy of a random tour is 4

3 |E|.

20

Figure 17: We have a 2-vertex-connected subcubic graph with a general
metric in which there are some 3-cycles connected by paths of 2-degree
vertices represented by doted lines.

Lemma 4.1. The integrality gap of this instance of the TSP is 4
3 .

Proof. Let us consider Algorithm 4. This algorithm will duplicate some

Algorithm 4 3-cycles with general metric algorithm
1: Let R, the set of removable edges, be the set of all edges in the 3-cycles.
2: if There are vertices of degree two then
3: Obtain a cubic graph G′ = (V ′, E′) by replacing each vertex of degree

2 in the paths by the diamond structure depicted in Figure 15
4: end if
5: Pick a perfect matching at random M ′, so that every edge has a proba-

bility of 1
3 to appear

6: Obtain M ⊆ E by restricting M ′ to E
7: return (E ∪ (M \R)) \ (M ∩R)

paths between cycles with a probability of 1
3 , so any edge on a path will

appear with a probability of 4
3 . Moreover, in every cycle, the algorithm

will choose exactly one edge and remove it. Moreover, as we only remove
exactly one edge in every triangle, we cannot disconnect the graph. Thus,
the probability that edges on cycles appear will be 2

3 . If we compare this
with the relaxed solution xe of (3), we will have an integrality gap of 4

3 .

We now want to generalise this result for bigger cycles.

21

1

2

3

4

σ(1)

σ(4)

σ(3)

σ(2)

Figure 18: We consider two 5-cycles linked by five paths of 2-degree ver-
tices. Without loss of generality, we can assume the node in the middle of
the left cycle to be connected to the same node in the right one. The other
nodes (from 1 to 4) are sent to them permutation by σ ∈ S4 in the right
side.

4.2 5-cycles

Let us take two 5-cycles linked by five paths of any number of vertices (with
any metric satisfying the triangle inequality), as in Figure 18. Without loss
of generality, we can say that the middle vertex of the left cycle is linked
to the middle vertex of the right cycle. Then we can enumerate from 1 to
4 the other vertices of the left cycle and link them to the right cycle with
a permutation σ ∈ S4. We define, furthermore, Cl, Cr and P ⊆ E to be
respectively the left cycle, the right cycle and the five paths.

There are two different ways to prove that the integrality gap is at most
4
3 . The first way will bound it by 6

5 , but we must look at each of the 24
possible permutations. The other way is more elegant but less precise, so
we have, in this case, an upper bound of 4

3 .
Therefore, we will analyse Algorithm 5 in two different ways.

Lemma 4.2. Given a subcubic 2-vertex-connected graph G = (V,E), con-
sisting of two 5-cycles Cl and Cr, linked by five paths, we can find an Eule-
rian tour of cost at most 4

3 times the cost of the relaxation.

Proof. As we have 5-cycles, the tour obtained will be connected. Then we
have three possible cases. In the first one, we can obtain a connected graph
with only Cr(M), no matter which path we choose; in the second one, we
have connected graph with Cr \Cr(M) for every paths. Those two cases are
simple to analyse. In the first one, every edge of the paths is taken 6 times,
while every edge of the cycles is taken 3 times.Since we have 5 possible choice
for M , we have a bound of 5

6xe. In the second case, each edge of the right

22

Algorithm 5 Two 5-cycles with general metric algorithm
1: Let P be the set of edges of the five paths, Cl be the set of edges on the

left side and Cr, the set of edges on the right side.
2: Pick up one of the five paths with the same probability and put all those

edges in M .
3: Let Cl(M) ⊂ Cl and Cr(M) ⊂ Cr be subsets with the three following

edges: the two linked directly to M and the one which links the two
vertices uncovered by the two first edges.

4: Add in M the edges of Cl(M).
5: if P ∪ Cl(M) ∪ Cr(M) is not connected, then
6: add Cr \ Cr(M) in M .
7: else
8: if P ∪ Cl(M) ∪ (Cr \ Cr(M)) is not connected, then
9: add Cr(M) in M .
10: else
11: Add either Cr(M) or Cr \ Cr(M) in M with the same probability.
12: end if
13: end if
14: return P ∪M

cycle is taken twice, so we can bound this by the same way. For the last
case, we will take a specific permutation, but all the permutations of this
case can be solved with the same argument. Let us consider the graph on
Figure 19.

We now draw every possible tour, as in Figure 20. If we can choose to
take either Cr(M) or Cr \ Cr(M), we can say that every of those edges is
taken with a probability of 1

2 . Otherwise, we sum up every edge taken by
the algorithm to obtain at most three times each edge on the right cycle.
Then, as we have taken each edge on the left cycle three times too, and as
we have taken each path six times, we could conclude the integrality gap to
be at most 6

5 .

The alternative proof is as following.

Proof. This time, we just apply the algorithm twice, once as we already did,
and once by replacing the left cycle by the right one and inversely. We can
see, by case analysis, that every edge appears at most four times, but there
is a more elegant way to see it. We suppose one edge appears five times.
The only way for one edge to be chosen five times is shown in Figure 21.
The two vertices of this edge will have to choose Cr(M), as the opposite
vertex and the two other will have to choose Cr \ Cr(M). Then we count
how many time each edge appear. Two edges appear just once and the two
lasts appear three times. Thus, instead of adding five times the cost of the

23

Figure 19: This permutation, i.e., (34) ∈ S4, is one of the case where we
cannot chose always the same subset of edges on the right side.

considered edge, by the triangle inequality, we can replace once this cost
by the sum of the other costs to have, in the final cost, four times three
edges and twice two others, which is at most four times each edge. (Here,
we do not change the matching by replacing one edge by the four others.
We keep the matching but, by the triangle inequality, we replace one cost
by the others.)

Now, we add to the two tours chosen with Algorithm 5, the two tours
where we take exactly one cycle and we duplicate each edge of P . Then,
we sum up the number of times each edge is taken. On the paths, we have
taken 12 times each edge by Algorithm 5 and 4 times by this tour. So every
edge on the paths is taken 16 times for 12 tours, that makes 4

3 . Then, we
have taken each edge of the cycles 7 times by Algorithm 5, and once by this
tour. So every of those edge is taken 8 times for 12 tours, that makes 2

3 .

Unfortunately we have not been able to generalise this for bigger cycles.
Indeed, we cannot expect the graph to be connected by one of those two
tours. For instance, we can look at the graph in Figure 22. Therefore, we
will certainly need some other tours which duplicate three, five or all of the
seven paths.

Conjecture 4.3. Given two 7-cycles linked by seven paths of 2-degree ver-
tices, we can find a connected Eulerian graph by duplicating an odd number
of paths and removing the right number of edges on the cycles, such that the
cost of the Eulerian graph is at most 4

3 times the cost of the original one.

Remark 4.4. The result is perhaps even better than this. As for 5-cycles,
we have 6

5 , we can expect 7
6 for 7-cycles, but with 4

3 , we already have the
wanted result.

And if this is true, maybe the following is as well.

24

1

1

1

11

1

11

½

½

½ ½
½

½½
½

½

½ 0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0

1

0

1

0

1

0

1

1

0

0

1

1

0

1

2

3

3

3

2

Figure 20: All cases that could appear in Algorithm 5. If the tour discon-
nect the graph, we draw discontinued lines and we circle the disconnected
part. Then, if the algorithm allows both possibilities, we consider every edge
to be taken 0.5 times, else we count how many times each edge is taken. At
the end of the day, we count how many times each edge appear for every
path and we sum up everything to obtain at most three times each edge.

25

5

1 1

3 3

Figure 21: We consider the case where one edge appears five times on
the right cycle. The coloured vertex is the one where the duplicated path
arrives. Then, in the three top cases, we have to pick Cr(M), and in the
three bottom cases, we have to pick Cr \ Cr(M). Finally, we count how
many times each edge appears, so we can replace once the cost of the five
times chosen edge by the sum of the four others to have each cost added
four times.

26

Figure 22: We have two 7-cycles, but both selections disconnect the graph.

Conjecture 4.5. Given two (2n+1)-cycles linked by seven paths of 2-degree
vertices, where n ∈ N, we can find a connected Eulerian graph by duplicating
an odd number of paths and removing the right number of edges on the cycles,
such that the cost of the Eulerian graph is at most 4

3 times the cost of the
original one.

5 Conclusion
As we have seen, we can use a minimum spanning tree to find a 2-approximation
and a 1.5-approximation [2], which is the best known result for the general
case. This algorithm is very clear and elegant but in 40 years, we have not
been able to improve it, even with something really sophisticated.

On the other hand, we have analysed the integrality gap of the relaxation
in order to find a better approximation in another way. Even if all the specific
cases we can think about do not exceed the 4

3 bound, the upper bound is
still 3

2 for the general case.
Thus there are two ways of having a better understanding. We can think

of a case where the gap is bigger than 4
3 , but this would be astonishing, since

the consensus is that this bound is tight. Therefore we are trying to prove
the integrality gap to be exactly 4

3 .
For some specific metric, we already have this result. We also proved

it for some specific graphs: the 3-cycles connected to each other by paths
to create a 2-vertex-connected graph and the two 5-cycles connected by five
paths. If we could generalise either to more 5-cycles or for bigger cycles, it
would be an interesting progress for understanding general metrics.

27

References
[1] Robert D. Carr and Goran Konjevod. Polyhedral combinatorics. In Har-

vey Greenberg, editor, Tutorials on emerging methodologies and appli-
cations in Operations Research, chapter 2, pages (2–1)–(2–48). Springer,
2004.

[2] Nicos Christofides. Worst-case analysis of a new heuristic for the trav-
elling salesman problem. Technical Report 388, Graduate School of
Industrial Administration, CMU, 1976.

[3] Beth Spellman Munson Clyde L. Monma and William R. Pulleyblank.
Minimum-weight two-connected spanning networks. Mathematical Pro-
gramming, pages 153–171, 1990.

[4] Jack Edmonds. Maximum matching and a polyhedron with 0,1 vertices.
Journal of Research of the National Bureau of Standards, 69:125–130,
1965.

[5] David Paul Williamson Frans Schalekamp and Anke van Zuylen. A
proof of the boyd-carr conjecture. July 2011.

[6] A.M.H. Gerards. Matching. In Network Models, volume 7 of Handbooks
in Operations Research, pages 503–615. Elsevier, 1995.

[7] Teofilo Gonzalez and Sartaj Sahni. P-complete approximation prob-
lems. Journal of the ACM (JACM), 23(3):555–565, July 1976.

[8] Michael Held and Richard M. Karp. The traveling-salesman problem
and minimum spanning trees. Operations Research, 18(6):1138–1162,
1970.

[9] Richard M Karp. Reducibility among combinatorial problems. Com-
plexity of Computer Computations, 40(4):85–103, 1972.

[10] Joseph B. Kruskal. On the shortest spanning subtree of a graph and the
traveling salesman problem. Proceedings of the American Mathematical
Society, 7(1):48–50, february 1956.

[11] Thomas L. Magnanti and Laurence A. Wolsey. Optimal trees. In Net-
work Models, volume 7 of Handbooks in Operations Research, pages
135–224. Elsevier, 1995.

[12] Tobias Mömke and Ola Svensson. Approximating graphic tsp by match-
ings. CoRR, abs/1104.3090, 2011.

[13] Amin Saberi Shayan Oveis Gharan and Mohit Singh. A randomized
rounding approach to the traveling salesman problem. In FOCS, pages
550–559, 2011.

28

[14] David B. Shmoys and David P. Williamson. Analyzing the held-karp
tsp bound: a monotonicity property with application. Information
Processing Letters, 35(6):281 – 285, 1990.

[15] Ronald L. Rivest Thomas H. Cormen, Charles E. Leiserson and Clifford
Stein. Introduction to Algorithms. MIT Press, 1990 (first edition).

[16] David Paul Williamson. Analysis of the held-karp heuristic for the
traveling salesman problem. Master’s thesis, Massachusetts Institute of
Technology, June 1990.

[17] Laurence A. Wolsey. Heuristic analysis, linear programming and branch
and bound. In Combinatorial Optimization II, volume 13 of Mathemat-
ical Programming Studies, pages 121–134. Springer Berlin Heidelberg,
1980.

29

