
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

ingénieur mathématicien diplômé EPF
de nationalité suisse et originaire de Bâle (BS)

acceptée sur proposition du jury:

Prof. R. Dalang, président du jury
Prof. M. A. Shokrollahi, directeur de thèse

Dr A. Canteaut, rapporteur
Prof. A. Lenstra, rapporteur
Dr N. Sendrier, rapporteur

Cryptography Based
on Error Correcting Codes

Lorenz Minder

THÈSE NO 3846 (2007)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 27 juillet 2007

 À LA FACULTÉ DES SCIENCES DE BASE

LABORATOIRE DE MATHÉMATIQUE ALGORITHMIQUE

PROGRAMME DOCTORAL EN MATHÉMATIQUES

Suisse
2007

1

Abstract. The idea to use error-correcting codes in order to construct public
key cryptosystems was published in 1978 by McEliece [ME1978]. In his original
construction, McEliece used Goppa codes, but various later publications sug-
gested the use of different families of error-correcting codes. The choice of the
code has a crucial impact on the security of this type of cryptosystem. Some
codes have a structure that can be recovered in polynomial time, thus break-
ing the cryptosystem completely, while other codes have resisted attempts to
cryptanalyze them for a very long time now.

In this thesis, we examine different derivatives of the McEliece cryptosystem
and study their structural weaknesses. The main results are the following: In
chapter 3 we devise an effective structural attack against the McEliece cryp-
tosystem based on algebraic geometry codes defined over elliptic curves. This
attack is inspired by an algorithm due to Sidelnikov and Shestakov [SS1992]
which solves the corresponding problem for Reed-Solomon codes. The presented
algorithm is heuristic polynomial time and thus inverts trapdoors even for very
large codes.

In chapter 4, we show that the Sidelnikov cryptosystem [S1994], which is
based on binary Reed-Muller codes, is insecure. The basic idea of our attack
is to use the fact that minimum weight words in a Reed-Muller code have very
particular properties.This attack relies on the ability to find minimum weight
words in the code, a problem that is, in this specific instance, much easier than
general decoding, and feasible for interesting parameters in a modest amount of
time. The attack has subexponential running time if the order of the code is
kept fixed, and it breaks the large keys as proposed by Sidelnikov in under an
hour on a stock PC.

In the chapter 5, we finally discuss some of the problems to solve if one
attempts to generalize these algorithms.

Keywords: Public key cryptography, McEliece cryptosystem, error-correcting
codes, Reed-Muller codes, Sidelnikov cryptosystem, algebraic geometry codes,
structural attack.

Résumé. L’idée de réaliser la cryptographie à clé publique à l’aide de codes
correcteurs d’erreurs a été conçue en 1978 par McEliece [ME1978]. Ce dernier
utilisait des codes de Goppa dans sa construction originale, mais différents au-
teurs ont par la suite proposé l’utilisation d’autres codes. Le choix du code a un
impact crucial sur la sécurité de tels systèmes de cryptage. Pour quelques codes
il existe des algorithmes qui reconstruisent leur structure en un temps polyno-
mial, cassant donc complètement le système de cryptage, tandis que d’autres
codes résistent déjà des décennies à la cryptanalyse.

Dans cette thèse, nous exhibons des faiblesses structurelles de différentes vari-
antes du cryptosystème de McEliece. Les résultats principaux sont les suivants:
Dans le chapitre 3 nous construisons une attaque structurelle efficace contre
le système de cryptage de McEliece basé sur des codes de géométrie algébrique

2

définis sur des courbes elliptique. Cette attaque est inspiré par un algorithme dû
à Sidelnikov et Shestakov [SS1992] qui résout le problème correspondant pour les
codes de Reed-Solomon. Le temps de parcours de l’algorithme est heuristique-
ment polynomial et peut donc être utilisé pour inverser des trapdoors provenant
de très grands codes.

Dans le chapitre 4, nous montrons que le système de cryptage de Sidelnikov
[S1994], qui est basé sur les codes de Reed-Muller, n’est pas sûr. L’idée de base
de notre attaque est d’utiliser le fait que les mots à poids minimum dans un code
de Reed-Muller ont des propriétés particulières pour déduire de l’information sur
le code en question. Donc cette attaque dépend de la faisabilité de trouver des
mots à poids minimaux dans le code. Ce problème est, dans ce cas particulier,
beaucoup plus facile que le décodage général, et peut se faire en peu de temps.
Le temps de parcours de cet algorithme est subexponentiel si l’ordre du code
est fixé, et pour des tailles de clé proposées par Sidelnikov, il faut moins qu’une
heure de temps sur un PC normal.

Dans le chapitre 5, nous discutons finalement quelques problèmes à résoudre
si on tente de généraliser ces algorithmes.
Mots clés: Cryptographie à clé publique, cryptosystème de McEliece, codes
correcteurs d’erreurs, codes de Reed-Muller, cryptosystème de Sidelnikov, codes
de géométrie algébrique, attaque structurelle.

Contents

1 Introduction 7
1.1 Public key cryptography . 7
1.2 Cryptography based on error correcting codes 8

1.2.1 The history of code based cryptography 9
1.2.2 The current situation . 10
1.2.3 Contributions of this thesis 10

2 Aspects of coding theory 15
2.1 Linear codes . 15

2.1.1 Basic definitions . 15
2.1.2 Constructing codes from other codes 17
2.1.3 Algorithmic problems in coding theory 17

2.2 Low weight word finding algorithms 19
2.2.1 Information set decoding 20
2.2.2 Example application: graph codes 21
2.2.3 Improved versions of information set decoding 21

2.3 The McEliece cryptosystem . 23
2.3.1 Basic idea . 23
2.3.2 Hardness assumptions . 24
2.3.3 Variants of the McEliece cryptosystem 26

2.4 Families of algebraic codes . 28
2.4.1 Reed-Muller codes . 28
2.4.2 Generalized Reed-Solomon codes 31
2.4.3 Algebraic geometry codes 31

3 An attack against elliptic codes 41
3.1 The Sidelnikov-Shestakov attack revisited 41

3.1.1 Geometric observations 42
3.1.2 Reconstructing Reed-Solomon codes 43
3.1.3 Subcodes of Reed-Solomon codes 45

3.2 Elliptic codes . 46
3.2.1 Code invariance . 46
3.2.2 Outline of the algorithm 47

3

4 CONTENTS

3.2.3 Step I: Recovering the group structure 49
3.2.4 Step II: Finding an isomorphic curve 50
3.2.5 Step III: Reconstructing the ci 56
3.2.6 Assumptions . 57
3.2.7 Running time . 61
3.2.8 Experimental running time 61

4 An attack against Sidelnikov’s cryptosystem 63
4.1 Outline of the attack . 64
4.2 Finding the subcode R(r − 1,m)σ ⊆ R(r,m)σ 64

4.2.1 Finding factors of minimum weight words 64
4.3 Finding inner words in the shortened code 67
4.4 The case r = 1 . 68
4.5 Running time analysis . 69

4.5.1 Finding very low weight codewords 70
4.5.2 Finite-length analysis . 70
4.5.3 Asymptotic analysis . 71

4.6 Experimental running time . 72

5 Final thoughts 73
5.1 Algebraic curves of genus g > 1 73

5.1.1 Why algebraic geometry codes? 73
5.1.2 Structural weaknesses of algebraic geometry codes 74

5.2 Large subcodes of Reed-Solomon codes 80
5.2.1 An algorithm for breaking subcodes of dimension k − 4 . 80
5.2.2 Running time analysis . 81
5.2.3 The example of Berger and Loidreau 83
5.2.4 Smaller subcodes . 83

5.3 Structural weaknesses of codes 84

Acknowledgement
I am very grateful to Amin for supervising me, for his continuous support

and his constant willingness to share his rich knowledge and savoir faire over the
years I have been in the group. It was a great work and learning environment,
and I am particularly thankful that I was given the opportunity to work and
study in a way that would suit me well, with wide freedom in choosing the way
to go and the problems to study. Thank you, Amin, for the trust and confidence
you had in me!

I would also like to thank my colleagues and friends with whom I have shared
offices, in particular, Andrew, Gérard and Frédérique. I lived a very friendly and
motivating working athmosphere with them, and I have great memories of our
cooperation, be it when preparing exercises, course notes, or also of the two
weeks intensive programming session I once had with Andrew. I would like to
thank Gérard for our collaboration when he was with the group, him sharing
his expertise and the many interesting discussions; I have learnt many things
in cryptography from Gérard. His support and encouragement has also been
greatly appreciated.

I would like to thank the people who have kindly agreed to be on my thesis
committee: Anne Canteaut, Robert Dalang, Arjen Lensta and Nicolas Sendrier.
I am very happy and honored to have you on my committee.

Last but not least, I would like to thank my family, Memer, Beber, Ögi, Li
and Dodee, who have been very supportive all along the way, and my friends, in
particular my flat mates Catherine, Régis, Dön, Benjamin and Eva.

My work has been supported by a grant of the Swiss National Funds, and I
would like to thank them for making this work possible.

5

6 CONTENTS

Chapter 1

Introduction

We first give a brief description of public key cryptography. We then turn to
public key cryptosystems based on error-correcting codes, giving a short overview
of the progress made in the past thirty years in this domain. Finally, we briefly
summarize the new results of this thesis.

1.1 Public key cryptography

In conventional cryptography, encryption and decryption were symmetric oper-
ations: Anyone who had access to the key could both encrypt and decrypt. The
simplest example of such a cryptosystem is the codebook method, where each
word is replaced by another one according to a given table, called the codebook.
Anyone having access to the codebook can decrypt messages.

Such cryptosystems that use a single key for both encryption and decryption
are called symmetric cryptosystems. While this type of system is and remains
tremendously useful in practice, some cryptographic problems cannot be satis-
factorily solved with symmetric cryptography alone.

Imagine, for example, that Alice wants to send confidential information to
Bob via e-mail. They can decide to use a symmetric scheme to encrypt their
messages so that no eavesdropper on the Internet can obtain useful information
from the e-mail exchange other than the observation that an exchange is taking
place. If this approach is used, they have to use the same key, so for example
Alice decides on a key and hands it to Bob. Since Alice cannot just send the key
over the Internet (given that an eavesdropper might then receive the key as well),
they have to use a secure channel to transfer the key instead. For example, they
can physically meet to exchange the keys. In fact, Alice would have to establish a
secure channel with anyone she would want to exchange confidential information
with. The problem is that secure channels can be prohibitively expensive.

Public key cryptography was invented in 1976 by Diffie and Hellman[DH1976]
to solve this problem. A public key cryptosystem has the following components:

7

8 CHAPTER 1. INTRODUCTION

• A Key generator. The key generator computes a key pair (Kpub,Kpriv)
from a random number.

• An encryption function. The encryption function enc(·, ·) takes a public
key Kpub and a cleartext message m and computes a ciphertext c, i.e.,

enc(Kpub,m) = c.

• A decryption function. The decryption function dec(·, ·) takes a private
key Kpriv and a ciphertext c and computes the cleartext message m =
dec(Kpriv, c) corresponding to c.

The message space, ciphertext space and key space can be chosen to be the set
of binary vectors of certain lengths.

The cryptosystem must satisfy a few conditions. It must be correct, i.e.,

dec(Kpriv, enc(Kpub,m)) = m

must hold for any generated key pair (Kpub,Kpriv) and any message m from the
message space. It must be practical: Key generation, encryption, and decryption
must be polynomial time operations. Last but not least, it must be secure, which
means that given a public key Kpub, a ciphertext c, and an exact description
of the system, it should be computationally infeasible to compute parts of the
corresponding plaintext dec(Kpriv, c). This is not the strongest definition for
the security of such systems that can be given, and it is rather vague, but it is
sufficient for our needs.

1.2 Cryptography based on error correcting codes

Despite the fact that the idea of public key cryptography has been published
more than thirty years ago now, and that public key cryptosystems are widely
used in practice, astonishingly few constructions have led to systems that are
likely to be safe.

To date, broadly three classes of public key cryptosystems are known: number
theory based ones, lattice based constructions, and constructions based on error
correcting codes.

Number theory based constructions have seen by far the widest adoption in
practice, and of those, the most frequently used ones are based on the hardness
of either factoring or the discrete logarithm problem.

This concentration on very few quite similar constructions is rather concern-
ing, especially in light of the fact that despite extensive research, there is very
little theoretical evidence indicating that these problems are indeed hard.

Another problem is that some of the number theoretic problems are not hard
under all computational models: Specifically, Shor has shown that both factoring
and the computation of discrete logarithms can be done in polynomial time on a

1.2. CRYPTOGRAPHY BASED ON ERROR CORRECTING CODES 9

quantum computer [S1997]. While this threat remains a theoretical one for the
time being, it is not clear that this will be the case indefinitely.

It seems to be both prudent and necessary, given the scarce choice of options,
to both seek new constructions of public key cryptosystems, and to carefully
examine the various existing constructions. In this thesis, code based cryptosys-
tems will be considered.

1.2.1 The history of code based cryptography

The idea of code based cryptosystems is almost as old as public key cryptogra-
phy itself: the first such system was proposed by McEliece in 1978, [ME1978].
This original construction is not yet broken (even though the original choice of
parameters has been shown to be too small, [CS1998]), and, up to the fact that
its public keys are rather large, it is reasonably efficient.

Since McEliece’s original publication, a significant amount of research went
into analyzing and improving this system. We will give a short summary of
the progress that has been made in the domain, but limiting the discussion to
systems that are based on the classical decoding problem, and exclude notably
the variants that use other error models, such as for example cryptosystems
based on rank codes.

One line of research was concerned with improving the direct decoding at-
tacks that McEliece had outlined in his original paper, and with choosing the
parameters that would maximize resistance against these attacks. This prob-
lem was investigated, for example, by Adams and Meijer in [AM1987], Lee and
Brickell [LB1988], Leon [L1988], Stern [S1989], and by Canteaut and Chabaud
[CC1998].

Another line of research was concerned with modifying McEliece’s construc-
tion in order to obtain a more powerful system. Niederreiter gave a deran-
domized variant of the McEliece system in [N1986], and also proposed to use
Reed-Solomon codes instead of Goppa codes. Sidelnikov proposed a variant of
the McEliece cryptosystem that would use Reed-Muller codes in [S1994]. Janwa
and Moreno proposed to use algebraic geometry codes [JM1996], and recently,
Gaborit proposed the use of BCH codes [G2005].

A third line was concerned with structural analysis, i.e., the study of the
structure of the underlying codes in order to devise attacks against such crypto-
systems. In 1992, Sidelnikov and Shestakov discovered a deterministic polyno-
mial time structural attack against Niederreiter’s proposal to use Reed-Solomon
codes [SS1992]. Shortly thereafter, Sendrier discovered an effective attack against
concatenated codes [S1994]. In 2001, Loidreau and Sendrier devised a structural
attack against weak keys in the McEliece system [LS2001].

10 CHAPTER 1. INTRODUCTION

1.2.2 The current situation

I think the Achilles heel of McEliece type cryptosystems today is that their se-
curity properties are not well understood. If only the direct decoding attacks
are considered, relatively simple statements about the security of such systems
can be made: the succinct summary is that better codes lead to better security.
When it comes to structural attacks, however, not much is known. A fundamen-
tal question that still has no satisfactory answer is the following: what properties
should a code have, so that it can be considered as structurally safe to be used
in a McEliece type cryptosystem?

Given the variety of constructions of error-correcting codes, it may not be
possible to develop a complete theory about the structural security of error-
correcting codes. Research in the domain is thus constrained, for the time be-
ing, to analyze existing constructions, and to attempt to find common patterns
among the known attacks.

1.2.3 Contributions of this thesis

This thesis explores questions concerning the structural security of McEliece
type cryptosystems. We will now give a brief overview on the topics that will be
covered, and the basic ideas that will be pursued in this thesis.

Chapter 2 is an introductory chapter that serves on the one hand to recall
the needed notions of coding theory, and on the other hand to motivate the
later chapters. For example, the focus on algebraic constructions of codes for
cryptographic use is briefly justified. A short review of the known low weight
word finding algorithms will also be given: it turns out that these algorithms
play a crucial role in some structural attacks.

Elliptic codes

In Chapter 3, we present a generalization of the Sidelnikov-Shestakov attack on
Reed-Solomon codes [SS1992]: Reed-Solomon codes are the subclass of algebraic
geometry codes that are defined over curves of genus 0. We will adapt this
attack, so that it applies to codes defined over curves of genus 1, that is, to
elliptic codes.

The motivation for looking at this type of code is twofold. First, if these codes
were not structurally weak, they would be a very advantageous choice for this
cryptosystem: their high minimum distance makes them resistant against direct
decoding attacks for comparatively small key sizes. Second, general algebraic
geometry codes lead to the only known construction of a McEliece type cryp-
tosystem with the property that the direct decoding attack scales exponentially
with the block length n (See section 5.1.1). Therefore, a further generalization
of the attack against elliptic codes to arbitrary algebraic geometry codes would
break the best (in a sense) known construction.

1.2. CRYPTOGRAPHY BASED ON ERROR CORRECTING CODES 11

We briefly illustrate the main idea of the algorithm. Let F be a finite field, E
an elliptic curve defined over F, Δ a divisor on E defined over F, and {P1, . . . , Pn}
a set of n distinct F-rational points on E, such that

supp(Δ) ∩ {P1, . . . , Pn} = ∅.

The elliptic code AGC(E,Δ, (P1, . . . , Pn)) is the image of the evaluation map

ev(P1,...,Pn) : L(Δ) ∩ F(E) → Fn

f �→ (f(P1), . . . , f(Pn)),

where L(Δ) denotes the linear space associated with the divisor Δ, and F(E)
the F-rational functions over E.

The trapdoor inversion problem for McEliece type cryptosystems based on
elliptic codes can be stated as follows: Given a random basis of the elliptic code

C := AGC(Ê, Δ̂, (P̂1, . . . , P̂n)),

where Ê, Δ̂ and P̂1, . . . , P̂n are unknowns, find an elliptic curve E, divisor Δ,
and points P1, . . . , Pn on E such that

C = AGC(E,Δ, (P1, . . . , Pn)).

In Chapter 3 we present an adaptation of this method to codes defined on
curves of genus g = 1 (i.e., on elliptic curves). We now give a short sketch of the
method. Let

C = AGC(E,Δ, (P1, . . . , Pn)).

be an elliptic code of parameters [n, k, n−k]. Using curve isomorphisms, we can
assume Δ = k〈O〉, where O denotes the point at infinity of E.

Let v ∈ C be a minimum weight codeword. Then v has zeros at k positions,
for example at the positions 1, . . . , k. Let f ∈ L(k〈O〉) correspond to v. Then
the divisor of f satisfies

(1.1) div(f)
 〈P1〉 + · · · + 〈Pk〉 − k〈O〉.

But since the divisor on the right hand side is of degree 0, equation (1.1) holds
with equality, and yields thus a linear equation on the representants of 〈Pi〉−〈O〉
in Pic0

F
(E). If we collect a sufficient number of such equations we can solve

for the Z-module G ∼= Pic0
F
(E) and also compute zi ∈ G corresponding to the

representants of 〈Pi〉 − 〈O〉 in Pic0
F
(E).

The key point about the zi is that they leak geometric information about
the points Pi on the curve. We use the knowledge of zi to explicitly construct
known rational functions on E(F).

These rational functions, together with their known evaluations on some of
the points Pi can then be used to explicitly compute coordinate positions of a

12 CHAPTER 1. INTRODUCTION

number of the points Pi. A speedy algorithm to do so has to be carefully crafted,
if an effective attack is sought.

A few more steps are needed to complete the trapdoor inversion problem,
but the final outcome is an algorithm that runs heuristically in O(n4) in the
settings that are most interesting in practice. In the experiments that we ran,
this reconstruction procedure would invert trapdoors even of very large codes
(F = GF (953), n = 1008, k = 504) in roughly two hours, and much faster for
codes of more realistic size.

Using structure in Reed-Muller codes

In 1994, Sidelnikov proposed a McEliece type cryptosystem that uses Reed-
Muller codes as the underlying family of codes [S1994]. This cryptosystem is
today known as the Sidelnikov cryptosystem. Reed-Muller codes are appealing
for this application since there are known, efficient decoding algorithms that cor-
rect more errors than the minimum distance of the code, with high probability.
For example, Sidelnikov reports in his paper [S1994] that as many as 200 errors
can be corrected with very high probability when the Reed-Muller code of pa-
rameters [1024, 176, 128] is used. For this reason the Sidelnikov cryptosystem has
a high transmission rate and is well protected against direct decoding attacks.

In Chapter 4, we show however that the Sidelnikov cryptosystem can be
structurally broken. To quickly summarize the attack, recall that a codeword in
R(r,m), the r-th order Reed-Muller code of length 2m, is formed by evaluating
a Boolean function f in m variables to binary vectors of length 2m. There is
a bijective identification of R(r,m) with the Boolean functions in v1, . . . , vm of
degree at most r, a set we denote by B(r, {v1, . . . , vm}). Codewords can thus be
regarded as functions.

We consider the problem of recovering a private key from a given public
key in the Sidelnikov cryptosystem: We are given a random basis of the code
R(r,m)σ , i.e., of R(r,m) with its positions permuted by some unknown (secret)
permutation σ. We seek a permutation τ such that

R(r,m)τ◦σ = R(r,m).

A result due to Kasami and Tokura [KT1970] says that if f ∈ B(r, {v1, . . . , vm})
corresponds to a minimum weight codeword, then, up to an affine change of
variables, we have

f = v1 · · · vr.

From this result it can be shown that the code obtained from shortening R(r,m)
on the support of a minimum weight word has a particular structure: it is a
concatenated code, with the inner words lying on sets that fix the values of
v1, . . . , vr. This fact can be used to construct words in the subcode R(r−1,m)σ

of R(r,m)σ . By iterating the procedure, the complete code R(r − 1,m)σ can

1.2. CRYPTOGRAPHY BASED ON ERROR CORRECTING CODES 13

be recovered. Hence, the order r can be iteratively reduced, until R(1,m)σ is
obtained. The problem of identifying a suitable permutation τ such that

R(1,m)τ◦σ = R(1,m)

turns out to be easy to solve, and the same permutation τ will also satisfy
R(r,m)τ◦σ = R(r,m).

This reconstruction procedure requires finding low weight words in the code,
a problem that is believed to be intractable in many instances. Due to several
reasons, however, it turns out to be feasible in this case: First, Reed-Muller
codes are low rate codes, and the known good low weight word finding algorithms
work better in this setting. Second, Reed-Muller codes contain many minimum
weight words, and since any of these can be used, this reduces the search space
considerably. Note also that in the example we cited before, direct decoding
would require finding a word of weight ∼ 200, while the low weight words only
have weight 128 in this case, so they are much easier to find.

The result is that Reed-Muller codes of considerable size can be reconstructed
with a bearable amount of computation. For example, a cryptosystem using
Sidelnikov’s largest suggested parameters takes roughly an hour to break on a
standard PC.

Extensions

In Chapter 5, we discuss possibilities to extend the results of the earlier chapters,
and the problems that need solving if such generalizations are sought.

Section 5.1.2 is devoted to discuss possibilities to generalize the attack on
elliptic codes to codes over more general curves. Our findings will be threefold:
Some of the ideas can be generalized to other families rather easily, other parts
lead to algorithms that, if generalized in the obvious way, will be impractical
for too large genera, and a number of problems lead to interesting geometric
questions.

A second question that will be discussed is the possibility to generalize the
Sidelnikov-Shestakov attack to large subcodes of Reed-Solomon codes. This is in
some sense a counter part to the discussion in section 3.1.3 which estimates the
maximal size of the subcode if structural safety against any attack based on low
weight words is sought: in section 5.2, we sketch an algorithm to break codes in
the case where the subcode is too large.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Aspects of coding theory

In this section, we present the notions of coding theory that are prerequisite for
the following chapters. The intent is to merely recall the notions and to define
the notations, an in-depth presentation of classical coding-theoretic notions has
no space in this thesis. Instead, pointers to the relevant literature will be given.

2.1 Linear codes

2.1.1 Basic definitions

Let F be a finite field, called the alphabet, n an integer (the block length) and k
another integer (the dimension) with k ≤ n. An [n, k] linear code defined over F

is a vector space C ⊂ Fn of dimension k. The elements in C are called codewords.
The rate of C is the quantity R = k/n. If C is a code and C′ ⊆ C is also a code,
then C′ is said to be a subcode of C.

Let x1, . . . , xk be a basis of C. The k×n matrix with coefficients in F whose
rows are formed of the vectors x1, . . . , xk is called a generator matrix for C and
is generally denoted by G. Since the basis of a vector space is not unique, a code
does not have a unique generator matrix.

The Hamming distance of two vectors x, y ∈ Fn is the number of positions
on which x and y differ, i.e., the quantity

d(x, y) = #{1 ≤ i ≤ n | xi �= yi}.

The Hamming distance does indeed verify the axioms of a distance. In particular,
it verifies the triangular inequality.

The minimum distance of a code C is the quantity

d := min
x,y∈C,y �=x

d(x, y),

and the relative minimum distance of C is the quantity d/n.

15

16 CHAPTER 2. ASPECTS OF CODING THEORY

Since for linear codes, we have x− y ∈ C whenever x, y ∈ C, it follows that

d = min
x∈C,x �=0

d(x, 0).

The Hamming weight wt(x) of a vector x is its Hamming distance to 0. In that
terminology, the above statement says that the minimum distance of a code is
equal to the minimum weight of a nonzero vector in C.

An [n, k, d]-code is an [n, k] linear code with minimum distance d. A mini-
mum weight word in C is a word x ∈ C with wt(x) = d.

A set of codes F = {C1, C2, . . .} where each Ci is defined over the same
alphabet F is called a family of codes. Note that an infinite family necessarily
contains members of arbitrary long block lengths.

An infinite family F is said to be asymptotically good, if positive real numbers
R0, δ0, and an infinite subfamily F ′ ⊆ F exist such that each C ∈ F ′ has rate at
least R0 and minimum distance at least δ0 · n, where n is the block length of C.

Example. Fix the alphabet F of size q = |F| and 0 < R < 1, and take the family
F consisting of all codes of block length n and dimension �nR� defined over F

for all n ∈ N. We would expect F to be asymptotically good, since otherwise,
no good family for the given rate R would exist.

This is indeed the case. Fix n, set k = �nR�. Fix some arbitrary nonzero
x ∈ Fn and let C be a randomly selected code of block length n. The probability
that x ∈ C is qk−n. Using this reasoning, the union bound tells us that the
probability that any nonzero point in the Hamming ball of center 0 and radius
r is contained in C is at most

qk−n
r∑

i=1

(
n

i

)
(q − 1)i.

Choosing r just large enough that this quantity is < 1, we deduce by the proba-
bilistic method that a code of parameters [n, k] and minimum distance at least
r + 1 exists. Letting n → ∞, we can deduce that F is an asymptotically good
family for any R and relative distance δ − ε for any ε > 0, where δ satisfies

(2.1) Hq(δ) ≥ 1 −R,

where
(2.2)

Hq(x) =

{
x logq(q − 1) − x logq(x) − (1 − x) logq(1 − x) if 0 < x < 1 − q−1,
0 if x = 0.

is the q-ary entropy function. Equation (2.1) is known as the asymptotic Gilbert-
Varshamov lower bound.

2.1. LINEAR CODES 17

2.1.2 Constructing codes from other codes

Let C be an [n, k, d]-code. Consider the set

C⊥ = {y ∈ Fn | 〈y | x〉 = 0 ∀x ∈ C},

where 〈·|·〉 denotes the standard scalar product of two vectors. Since 〈·|·〉 is
bilinear, C⊥ is a vector space and thus a linear code. The dimension of C⊥ is
n− k. Let H be a generator matrix of C⊥, then any word y ∈ Fn is a codeword
of C if and only if

Hyt = 0.

The matrix H is also called a parity check matrix for C. As the name suggests,
dual code of C⊥ is C itself, i.e., (C⊥)⊥ = C.

Let C be an [n, k, d]-code, and let S ⊂ {1, . . . , n}. The [n∗, k∗, d∗]-code ob-
tained from removing the coordinate positions S from C is a punctured code, de-
noted CS . The parameters of the punctured code satisfy n∗ = n−|S|, k∗ ≥ k−|S|,
d∗ ≥ d− |S|.

Let C′ be the subcode of C obtained as follows:

C′ = {x ∈ C | xi = 0 ∀i ∈ S}.

Then the puncturing of C′ on S is the shortened code of C on S, denoted CS. The
shortened code CS has parameters [n∗, k∗, d∗], with n∗ = n − |S|, k∗ ≥ k − |S|,
d∗ ≥ d.

Punctured and shortened codes are related as follows (See [HP2003, Theorem
1.5.7]): We have

(2.3) (CS)⊥ = (C⊥)S and (CS)⊥ = (C⊥)S .

Let C be an [n, k]-code over F. If σ is a permutation on {1, . . . , n}, then
we define the permuted code Cσ as the code C with the coordinate-positions
permuted by σ:

Cσ := {x ∈ Fn | (xσ−1(1), . . . , xσ−1(n)) ∈ C}.

If C′ and C are [n, k]-codes with C′ = Cσ for some permutation σ, then C′ and C
are said to be equivalent. If σ is a permutation such that Cσ = C, then σ belongs
to the automorphism group of C.

2.1.3 Algorithmic problems in coding theory

There are a number of algorithmic problems in coding theory whose computa-
tional hardness is important to understand.

First, the manipulations on codes given in section 2.1.2 are all easy, e.g., it is
a polynomial time task to compute a parity check matrix H for a given generator
matrix G.

18 CHAPTER 2. ASPECTS OF CODING THEORY

The encoding problem, i.e., constructing a map Fk → C, where C is an [n, k]-
code, is also easy; for example, encoding can be realized as a linear map:

enc : x ∈ Fk �→ xG,

where G is a generator matrix for C.
The decoding problem, however, is notoriously hard in general. Let C be an

[n, k]-code and x ∈ Fn a word, then any vector y ∈ C such that

d(x, y) = min
z∈C

d(x, z)

is called a maximum likelihood-decoding of x.
The maximum likelihood problem is generally intractable, and therefore at-

tention has to be restricted to specific families of codes, as well as to low weight
error-patterns.

We will now introduce notions of families that correct a δ(n)-fraction of errors
and of t-error-correcting codes. It should be pointed out that the meaning of
those notions are not agreed upon in coding theory: in some texts, a code is said
to be t-error-correcting whenever its minimum distance d satisfies d ≥ 2t + 1.
For our purposes, this notion is too weak: we will define a code to be t-error-
correcting only if a suitable corresponding decoding algorithm exists.

Let 0 ≤ p < 1 be a small fixed error probability. For a code C of block length
n, we say that a map

decC : Fn → C
that satisfies

Prob
(
d(x,decC(x)) ≥ min

y∈C,y �=decC(x)
d(x, y)

∣∣ d(x, C) ≤ t
) ≤ p

for (uniform) random x ∈ Fn, is a (1 − p)-correct decoding map for distance t.
Let F be an infinite family of codes, and let δ : N → R. Assume F is

such that there exists a polynomial �(n) such that for any [n, k]-code C ∈ F ,
there is an algorithm for computing an (1−p)-correct decoding map for distance
�nδ(n)�, in time O(�(n)). Then we say that F corrects a δ(n)-fraction of errors
with failure probability p. For any C ∈ F , it is often convenient to say that C is
t-error-correcting with failure probability p whenever t ≤ δ(n) · n.

If F is an infinite family of codes correcting a δ(n)-fraction of errors for some
function δ(n) verifying δ(n) > ε for any n and some ε > 0, and the rate of each
member in F is at least R0 for some R0 > 0, then we say that F corrects a
constant fraction of errors with failure probability p.

Note that any family that corrects a constant fraction of errors with fail-
ure probability 0 is necessarily asymptotically good. The converse statement
is neither proved nor disproved. However, Dumer, Micciancio and Sudan have
shown in [DMS2003] that under certain complexity theoretic assumptions, dis-
tance 2/3d-decoding is hard in general for asymptotically good families. If the

2.2. LOW WEIGHT WORD FINDING ALGORITHMS 19

factor 2/3 could be improved to ε for any ε > 0, this would indeed prove that
asymptotically good codes do not necessarily correct a constant fraction of errors.

Example. Fix 0 < R < 1. Let F be the family of binary Goppa codes of rate
R (See [MS1977]). Then one can show that any [n, k]-code in F has relative
minimum distance at least

(2.4) 2δ(n) =
2(1 −R)
�log2(n)� ,

and Patterson’s algorithm [P1975] will correct n · δ(n) errors with failure prob-
ability 0. It does not asymptotically correct more errors, and since no other
algorithm correcting more errors for Goppa codes is known, it is not known
whether these codes correct asymptotically more than a δ(n)-fraction of errors
with some failure probability bound away from 1.

Certain Goppa codes meet the Gilbert Varshamov bound (see [MS1977,
p. 350]), so in particular there exists some α > 0 and an infinite subfamily
F ′ ⊆ F such that the relative minimum distance of each member of F ′ is at
least α.

This shows that the family F is asymptotically good, while yet it is not known
to correct a constant fraction of errors with a non-trivial error-probability, given
that δ(n) −→ 0 with n −→ ∞. Even F ′ is not known to correct a constant
fraction of errors.

2.2 Low weight word finding algorithms

In this section, we will examine probabilistic algorithms to find low weight words
in a general linear code. The problem of finding minimum weight words is closely
related to the decoding problem; most of the algorithms for finding minimum
weight words can be easily modified to solve a decoding problem and vice versa:
Any generic minimum weight word finding algorithm can be transformed to a
generic < d/2-distance decoding algorithm, using the following approach, due to
Chabaud [C1995].

Let C be an [n, k, d]-code, and assume x /∈ C is a word in Fn with d(x, C) <
d/2. Write x = y + e with y ∈ C and wt(e) < d/2. Now, note that the linear
code C′ := C ⊕ Fx (where ⊕ denotes the direct sum of vector spaces) contains
e, and that e is the unique minimum weight word in C′. So, since finding the
error pattern is enough to decode, decoding can be done by constructing C′ and
then finding the minimum weight word in C′, and this will solve the decoding
problem.

Interestingly, a randomized inverse conversion is also possible, although dis-
tance d decoding is needed, and not just distance (d/2) decoding. To do this,
pick any x ∈ C and construct C′ such that C = C′ ⊕ Fx. Then decode x in C′,
i.e., find y and e such that

x = yG′ + e,

20 CHAPTER 2. ASPECTS OF CODING THEORY

and e is of minimum weight. If there is a minimum weight word in C which
is also in x − C′, then e is such a minimum weight word. This happens with
probability at least 1 − 1/|F| ≥ 1/2.

2.2.1 Information set decoding

We now study the low weight word finding algorithm which is known as the
information set decoding algorithm, since it is often used as a decoder. This
algorithm is the basis of the most powerful low weight word finding algorithms
known to date.

The working principle is as follows: Assume we work in an [n, k]-code C with
generator matrix G, and we seek a word of weight at most w0. A random set I of
k among n positions is chosen, the information set (IS). A new generator matrix
G′ is constructed by diagonalizing G on I using elementary row operations. (It
is possible to select I in a way so that such a diagonalization can always be
performed.)

Each row of G′ is a codeword in the code, and has weight at most n− k+ 1.
The weight of each row is computed, and if a row of weight at most w0 is found,
then this row is returned, otherwise the algorithm fails (that is, one has to try
with a new information set).

Information set decoding can be crudely described as a variation of the algo-
rithm that randomly samples codewords, until one of suitable weight is found.
The key improvement, though, is that the sampling is biased towards low weight
words. It is obvious that the sampled codewords are by construction of weight at
most n− k+1. We will now illustrate that, in addition, sampling is not uniform
among those low weight words, but that there is a bias towards lowest weight
words.

The probability that a fixed word of weight w shows up as a row in the
diagonalized matrix is

(2.5)

(k
1

)(n−k
w−1

)(n
w

) .

Writing k = Rn, w = ωn, dropping the term
(k
1

)
and approximating the binomial

coefficients, we obtain the asymptotic (in n) approximation of this probability,
which is

(2.6) 2n
[
(1−R)H2

(
ω

1−R

)
−H2(ω)

]
.

Computing the derivative of the exponent with respect to ω shows that the
response decreases monotonically with increasing ω.

Note that (2.6) is the probability that a single word of the given weight
matches; if a larger number of matching words exist, then a match is much easier
to find. For example, if there are Δ acceptable target words, the probability of
finding any one of them is roughly Δ times (2.6), if Δ is not too large.

2.2. LOW WEIGHT WORD FINDING ALGORITHMS 21

2.2.2 Example application: graph codes

While the estimate (2.6) clearly shows that the constant rate, constant relative
weight setting leads to an exponential running time of the information set de-
coder, it is important to also study the fringe cases which are encountered, when
non-random codes are used.

We will now look at one such special case, the case where the sought weight
of the word is a constant independent of n.

LDPC codes are codes that have a sparse parity check matrix. The parity
check matrix is usually random, with the row- and column-weights selected ac-
cording to some so-called degree distribution, which is fixed independently of n.
The weight of each such parity check is thus O(1). The key point of the decoders
for such codes is that low weight parity checks contain a lot of information about
likelihood of errors on the positions on which they are nonzero. See, for example
[S2002], for a detailed description of LDPC decoding algorithms.

Now consider the following problem: you are given a generator matrix for an
LDPC code C of parameters [n, k]. Find a set of n−k sparse linearly independent
parity checks.

A possibility to solve this problem is to apply a low weight word finding
algorithm on C⊥ to find these sparse checks.

The largest weight of a parity check of the canonical parity check matrix
of an LDPC code depends on the selected degree distribution, and therefore
the difficulty of finding a complete set of low weight parity checks from the same
ensemble as the original code depends largely on the selected degree distribution.

For concreteness, we consider the example of a rate 1/2 code. A possible
degree distribution for this setting is the one suggested by LDPC-opt [U2001],
which suggests a degree distribution with the maximal weight of a check being
20. If we take the case of a block length 1000, and assuming there is just a single
weight 20 word in the dual code, equation (2.5) shows that finding it would
cost roughly 216 diagonalizations of the parity check matrix with information set
decoding.

Increasing the block length n increases the difficulty of finding constant
weight words only insofar as the involved linear system becomes larger: The
equation (2.5) can be approximated by

(2.7) R(1 −R)w−1

for the constant weight case, showing that recovering sparse parity checks in
such codes is a polynomial time problem, with the degree of the polynomial
depending on the degree distribution functions.

2.2.3 Improved versions of information set decoding

Various better versions of the information set decoding algorithms have been
proposed over the last two decades. In particular, the following improvements

22 CHAPTER 2. ASPECTS OF CODING THEORY

were suggested:

• Allow for low weight error-patterns in the information set. In
the basic information set decoding algorithm, a weight w word is matched
whenever it has exactly one 1 on the k positions forming the information
set and w − 1 ones on the n − k remaining positions. For interesting
values of w, however, the average weight of a weight w word on a random
information set is much larger than 1. The probability of a match can
therefore be increased if we look for words of weight � on the information
set and w − � on the remaining positions, for some small � > 1.

This can be done by first diagonalizing the matrix on the information set,
and then checking all possible linear combinations of at most � rows of the
diagonalized matrix.

Doing this check is expensive, but the advantage is that fewer information
sets have to be examined, and thus fewer diagonalizations are needed. In
practice, � = 2 or 3.

This is the basic idea of the algorithm of Lee and Brickell [LB1988].

• Avoid operating on the complete generator matrix. Since the
weight of the sought vector is in general much less than the average weight
of a row in the diagonalized generator matrix, and since most candi-
date vectors have to be rejected, an early abort strategy brings a notable
speedup: The idea is to look just at a subset of the codeword positions,
rather than looking at all of them, and to do the complete computations
only for promising candidates. This idea appeared first in Leon’s algorithm
[L1988].

• Use square-root methods in the IS error patterns. It turns out that
when a Lee-Brickell-like approach is used, it is not necessary to evaluate
all the error patterns separately, but that, with small failure probability,
an exhaustive evaluation only to half the acceptable weight is necessary,
which reduces the cost of evaluating an information set. This improvement
was first suggested by Stern [S1989].

• Avoid to completely rebuild information sets from scratch. In-
stead of performing a complete Gaussian elimination to get a new infor-
mation set, it is much cheaper to just pivot on one position in the generator
matrix, adding a new position into the information set, while removing an-
other one from it. This new information set is not independent of the
previous one, as it shares most of the positions with the old one, and so
the matching probability of each information set will correlate with the
matching probability of the previous one.

The net effect is, however, that the pivoting technique is much faster than
diagonalizing the generator matrix on a new information set for each it-

2.3. THE MCELIECE CRYPTOSYSTEM 23

eration. This idea was proposed by van Tilburg in 1988, [vT1988], and
proved to be an actual improvement by Canteaud and Chabaud [CC1998].

In addition to that, many of the algorithms exist in alternative formulations that
operate on the parity check matrix rather than the generator matrix. It is often
better to operate on the parity check matrix, for example, if R > 1/2.

We will not give a detailed account of these algorithms in this thesis; good
summaries already exist, see e.g., [C1996] or [C1995]. It is interesting, however,
to observe that none of these improved algorithms is known to have a better
exponent than the basic information set decoder, i.e., it is possible that up to
a polynomial factor, they all have the same running time. Indeed, only Stern’s
improvement in the above list could possibly result in a better exponent, if the
number of information set error patterns could be chosen to be proportional to
k.

Chabaud gives an asymptotic analysis of Stern’s algorithm in [C1992]. In
this analysis, only constant weight errors on the information set are considered.
He also points out, however, that constant fraction error weights would lead to
exponential memory use.

In practice, choosing very small error weights (at most 4) on the information
set appears to lead to the best results, see e.g. the numbers given in [CC1998].

For this reason, we will generally just use the information set decoding success
probability, when it comes to estimate the cost of finding low weight words with
general decoding.

2.3 The McEliece cryptosystem

This thesis is concerned mainly with one particular application of codes in cryp-
tography, namely the security of different variants of the McEliece cryptosystem
[ME1978]. We will now study this cryptosystem.

2.3.1 Basic idea

The key idea of the McEliece cryptosystem is to identify encryption with encod-
ing, and decryption with decoding, of a certain code.

In this aim, we want to disguise a decodable linear code in a way that the
construction of the code can no longer be deduced. The point is that a general
description of the linear code, as given by the generator matrix, makes it easy to
encode, but decoding needs far better knowledge of the code. So, the disguised
code could serve as public key, and the exact description as the private key.

Let C be an [n, k] Goppa code over F = GF (2). Equation (2.4) asserts that
these codes are t-error-correcting, with

t =
n(1 −R)
�log2(n)� .

24 CHAPTER 2. ASPECTS OF CODING THEORY

Let G be the k × n generator matrix of this Goppa code. Let A be a k × k
random invertible matrix with coefficients in F. The matrix AG is a generator
matrix for the same code. Let σ be a permutation over {1, 2, . . . , n}, and let P
be the corresponding n× n permutation matrix. The matrix Gpub := AGP is a
generator matrix of Cσ.

Note that we can apply any t-error-correcting decoder for C to decode t errors
for Cσ; it is enough to undo the permutation prior to decoding.

The disguising procedure we just gave allows us to construct a public key
cryptosystem as follows:

• Public Key. The matrix Gpub and the integer t.

• Encryption. To encrypt the message x = (x1, . . . , xk) ∈ Fk encode with
Gpub, i.e., compute y := xGpub, construct a random error vector e of length
n and Hamming weight at most t. The cryptogram is then y + e.

• Private Key. The private key is the knowledge of the construction of Cσ,
in particular, the factorization A, G, P , and the t-error-correcting decoder
for C.

• Decryption. The decryption problem is the problem of decoding the
linear code Cσ. Since the encryptor added at most t errors, the t-error-
correcting code for Cσ, deduced from the t-error correcting code for C, can
be used to solve this problem.

The original McEliece cryptosystem used binary Goppa codes, much in the
way as we have just defined it. However, there is fundamentally nothing imposing
that choice; A priori, any other family of linear codes that can correct many
errors, can be used instead. We will call a cryptosystem that works just like the
McEliece cryptosystem, but uses other codes, a McEliece type cryptosystem.

2.3.2 Hardness assumptions

There are two major hardness assumptions in McEliece type cryptosystems.

Hardness of general linear decoding

First, if a t-error-correcting [n, k]-code is used, it should be hard to correct t
errors in a general [n, k] linear code given by some generator matrix Gpub. This
problem has seen quite some research, and it appears that it is indeed very hard
in general.

On the theoretical side, Berlekamp, McEliece and van Tilborg proved in
1978 that maximum likelihood decoding of linear codes is NP-hard in general
[BMEvT1978]. Unfortunately, this result has little significance to assess the
hardness in our setting, for a number of reasons:

2.3. THE MCELIECE CRYPTOSYSTEM 25

1. The underlying codes in the McEliece system are not random, but instead
specific t-error-correcting codes have been selected.

2. The maximum-likelihood decoding problem does not have to be solved in
generality. Instead it is sufficient to decode words with distance up to t
from Cσ.

3. In the cryptographic application, the average hardness of an attack is the
correct measure. NP-hardness, however, is a worst-case criterion, and so
it does not give the information we would need to assess the hardness of
an attack.

More recent results improve on the original result by Berlekamp, McEliece and
van Tilborg. For example, the Bruck and Naor showed in [BN1990] that even in-
finite preprocessing of the code does not render the decoding easy. This stronger
result, however, still applies to the complete maximum likelihood decoding prob-
lem only, and not to bounded distance decoding. For the bounded decoding sce-
nario, Dumer, Micciancio and Sudan have shown in [DMS2003] that in general,
decoding is hard, if the maximum weight is > 1/2d1+ε, where d = d(n) is the
minimum distance of the family. This does still not prove the conjecture that
any constant fraction of errors is hard to correct in the fixed rate scenario.

Asides from complexity theoretic considerations, the problem can of course
also be studied from a best-known-algorithm point of view.

As mentioned in section 2.2, the best known general decoding algorithms are
refinements of information set decoding. So, in particular, the best known algo-
rithms are fully exponential in the block length if both the rate, and the fraction
of errors is constant. It should be noted, though, that most McEliece type cryp-
tosystems are not in this setting. In particular, the example on page 19 shows
that the original McEliece cryptosystem, based on Goppa codes does not satisfy
this condition, and attacking it with direct decoding is thus subexponential.

In practice, the estimate (2.6) (or a variant thereof) is used to get an estimate
of suitable code parameters, given a desired security level.

The code reconstruction problem

The second hardness assumption of McEliece-type cryptosystems is that, given
a generator matrix G, it is hard to reconstruct the underlying code. We call an
attack that exploits the structure of the underlying code a structural attack.

The difficulty of this problem depends heavily on the family of codes that has
been used in the construction. For some families, efficient attacks are known,
while for others, the best currently known attack is still ineffective. For example,
in the original McEliece cryptosystem, Goppa codes were proposed, and this
choice is still not broken. On the other hand, our considerations in section 2.2.2
show that LDPC codes, for example, are not safe.

26 CHAPTER 2. ASPECTS OF CODING THEORY

In this thesis, structural attacks against different families of algebraic codes
will be discussed in detail in Chapter 3.

2.3.3 Variants of the McEliece cryptosystem

The Niederreiter variant

In 1986, Niederreiter, apparently unaware of McEliece’s work, proposed a crypto-
system [N1986] that is based on the same hardness assumptions as the McEliece
system. As a consequence, any structural attack on the Niederreiter system can
be applied to the corresponding McEliece system, and vice versa [LDW1994].
The same holds for general decoding attacks.

It turns out, however, that Niederreiter’s variant has a some advantages over
the original McEliece system:

• It is not vulnerable to message resend attacks: when the same message is
encrypted twice with the original McEliece cryptosystem, then this condi-
tion can be detected, since the two cryptograms x and y then have distance
at most 2t, and many likely error positions can be identified, namely every
position in supp(x − y). The remaining errors are then much easier to
guess. The Niederreiter-variant is not affected by this problem.

• It often suffers less from message expansion: A cryptogram in the McEliece
system has length 1/R times the message size, where R is the rate of the
code, so for any fixed, nontrivial rate, there will be a fixed blow up in the
message size, typically around 2. The Niederreiter system also has message
expansion. In this case, the expansion factor is a function of the number
of correctable errors divided by (1 − R)n|F|, where n is the block length
of the code. The expansion factor is often smaller than the one seen in
the corresponding McEliece cryptosystem, and we shall see that it is not
inherent.

We will now quickly describe the Niederreiter cryptosystem. Let C be a t-error-
correcting [n, k] code, and let H be an (n− k)×n parity check matrix of C. Let
A be a random invertible (n− k) × (n − k) matrix, and let σ be a permutation
over {1, . . . , n} with P the corresponding permutation matrix. Then

Hpub := AHP

is a parity check matrix for the t-error-correcting code Cσ.
Let

M := {x ∈ Fn | wt(x) ≤ t}
be the message space. Then the Niederreiter cryptosystem works as follows:

• Public Key. The public key is Hpub and t.

2.3. THE MCELIECE CRYPTOSYSTEM 27

• Encryption. The cryptogram of m ∈ M is Hpubm
t.

• Private Key. The matrices A, H, P , and the construction of C. In
particular, a t-error-decoder for Cσ.

• Decryption. The cryptogram s ∈ Fn−k has been received. The following
procedure decrypts s:

1. Find an arbitrary solution x ∈ Fn to the linear equation system
Hpubx

t = s. Note that now we have x − m ∈ Cσ, for the yet un-
known m. In particular, d(x, Cσ) ≤ t.

2. Use the t-error-correcting decoder for Cσ to decode x into y ∈ Cσ.

3. Return x− y.

Given the equivalence, when it comes to structural attacks of the McEliece and
the Niederreiter cryptosystem, we will in the sequel limit ourselves to analyzing
the McEliece system, even though the Niederreiter variant may turn out to be
more efficient in practice.

We will terminate the discussion of the Niederreiter variant by showing that,
asymptotically, the Niederreiter system does not suffer from message expansion
if capacity-achieving codes are used. This fact is insofar surprising, as it suggests
that message expansion may not be intrinsic to code-based cryptosystems.

Recall that the capacity of the binary symmetric channel with bit-flipping
probability p is 1 −H2(p). Thus if C is from a capacity-achieving family of rate
1−H2(p), it can correct a p− o(1)-fraction of errors with the failure-probability
of the decoder tending to 0 as n→ ∞ (the o(·) is also with respect to n). Thus
we can pick t(n) = n(p− o(1)), giving a message space of size

�n(p−o(1))	∑
i=0

(
n

i

)
≈ 2nH2(p−o(1)),

holding an nh(p − o(1))-bit message. The messages are of size n − k = n(1 −
(1 −H2(p))) = nH2(p). Thus the expansion factor is

H2(p)
H2(p− o(1))

→ 1,

as desired.
It should be noted, however, that no capacity-achieving family of codes that

is usable for a secure McEliece system is known, at this point: all capacity-
achieving families with known suitable decoders to date have been broken: Con-
catenated codes have been broken by Sendrier [S1994], LDPC codes are broken
given in section 2.2.2, and so are expander codes by the same reasoning.

28 CHAPTER 2. ASPECTS OF CODING THEORY

The subcoding trick

McEliece’s original paper proposes two disguising techniques: changing the ba-
sis, and permuting codeword positions. However, implicitly, a third disguising
technique is used, which we will refer to as the subcoding trick.

If C is a t-error-correcting linear code, and C′ ⊆ C is a linear subcode of C,
then the decoder for C can also be applied to C′ to decode t errors; the cost is
a loss in the transmission rate. For example, Goppa codes are subfield subcodes
of generalized Reed-Solomon codes, and while the structure of Reed-Solomon
codes has been broken a long time ago [SS1992], Goppa codes have remained
unaffected by this result.

It should be noted, however, that binary Goppa codes have at least twice
the minimum distance than what the lower bound that follows from the subcode
argument proves, and the decoder due to Patterson [P1975] can also correct
accordingly more errors; so McEliece’s construction is not a pure subcode con-
struction, but makes also use of an improved decoder.

McEliece in his original paper suggests using a [1024, 524, 101] binary Goppa
code, a code that is a subfield subcode of a generalized Reed-Solomon code over
GF (210) of parameters [1024, 974, 51]. Thus the procedure to take the subcode
causes the dimension to drop by 450, which is a rather large number.

It is of course instructive to study the question of how much the dimension
has to drop in order for the code to become safe. In the specific case of subcodes
of Reed-Solomon codes, we will study the question in section 3.1.

2.4 Families of algebraic codes

In this section, we will discuss two families of algebraic codes: Reed-Muller codes
and algebraic geometry codes.

2.4.1 Reed-Muller codes

Reed-Muller codes are a very old and well-known family of codes. We will
briefly present their construction, along with the properties that we will need.
For further details, see [HP2003] or [MS1977].

Construction

We will construct Reed-Muller codes by the means of Boolean functions. A
Boolean function in the variables v1, . . . , vm is a member of the ring

B({v1, . . . , vm}) := F2[v1, . . . , vm]/(v2
1 − v1, . . . , v

2
m − vm),

where F2 = GF (2) is the binary field. The idea is that the variables vi only
ever take values in F2, and on these positions, we have v2

i = vi, which is why
the polynomials v2

i − vi are modded out. The degree of a Boolean function

2.4. FAMILIES OF ALGEBRAIC CODES 29

f ∈ B({v1, . . . , vm}) is defined to be the degree of its lowest-degree representative
in F2[v1, . . . , vm], and is denoted by deg(f). Define

B(r, {v1, . . . , vm}) := {f ∈ B({v1, . . . , vm}) | deg(f) ≤ r}

the F2-vector space of all Boolean functions of degree ≤ r. By counting the
monomials, we see that if r ≤ m, we have

(2.8) dim(B(r, {v1, . . . , vm})) =
r∑

i=0

(
m

i

)
.

Reed-Muller codes can be constructed with the help of Boolean functions. Since
the variables in Boolean functions take values in {0, 1}, a Boolean function in m
variables can be evaluated on 2m different positions. So to each Boolean function
we can associate a binary word of length 2m, obtained by evaluating the function
on each possible position. The code R(r,m) (where 0 ≤ r ≤ m) is the set of
words obtained by evaluating all the Boolean functions in B(r, {v1, . . . , vm}) in
this way.

Since B(r, {v1, . . . , vm}) is a vector space and the evaluation map is linear,
it follows that R(r,m) is a linear code. By induction on r, it is easily shown
that the evaluation map has a trivial kernel, and therefore, using (2.8), we can
conclude that this code has parameters

n = 2m, k =
r∑

i=0

(
m

i

)
.

The one-to-one correspondence of codewords in R(r,m) with functions in B(r,
{v1, . . . , vm}) proves extraordinarily useful, and we will therefore often identify
codewords of R(r,m) and with functions in B(r, {v1, . . . , vm}).

Figure 2.1 shows canonical codewords of the R(·, 4) codes: In the matrix, the
first row forms a generator matrix of the R(0, 4)-code, The first five rows form
a generator matrix for R(1, 4), and so on.

By induction on r, one can show that the minimum distance of R(r,m) is

d = 2m−r.

The fact that all functions generating words in B(r− 1, {v1, . . . , vm}) are also in
B(r, {v1, . . . , vm}) implies the following observation.

Proposition 1 For any m, we have R(0,m) ⊂ R(1,m) ⊂ · · · ⊂ R(m,m).

Another useful property we need is the observation that the dual code of a
Reed-Muller code is also a Reed-Muller code, more precisely

(2.9) R(r,m)⊥ = R(m− r − 1,m).

30 CHAPTER 2. ASPECTS OF CODING THEORY

function corresponding codeword
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
v4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
v3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
v2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
v1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
v3v4 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
v2v4 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
v1v4 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
v2v3 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
v1v3 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
v1v2 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
v2v3v4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
v1v3v4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
v1v2v4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
v1v2v3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
v1v2v3v4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Figure 2.1: Codewords in the Reed-Muller code

Minimum weight words in Reed-Muller codes

The fact that products of r linearly independent degree one functions result in
minimum weight codewords of R(r,m) is well-known. The following proposition
states the converse, namely, that minimum weight codewords in Reed-Muller
codes can always be written as a (pointwise) product of suitable words in the
corresponding first order code. In other words, the only functions giving rise to
minimum weight codewords are products of functions in B(1, {v1, . . . , vm}).
Proposition 2 Let f ∈ R(r,m) be a word of minimum weight. Then there exist
f1, f2, . . . , fr ∈ R(1,m), such that

f = f1 · f2 · · · fr,

where · denotes the componentwise product. The fi are of minimum weight in
R(1,m).

Proposition 2 is proved in [KT1970]. The same paper also gives more precise
formulas for the weight distribution, which can be used, in particular, to estimate
the number of minimum weight words:

Proposition 3 There are at least

2mr−r(r−1).

minimum weight codewords in R(r,m).

2.4. FAMILIES OF ALGEBRAIC CODES 31

2.4.2 Generalized Reed-Solomon codes

Generalized Reed-Solomon codes can be seen as a subclass of algebraic geome-
try codes, defined on curves of genus 0. We start by defining them in a more
conventional way.

Let F be a finite field, n and k integers such that

0 ≤ k ≤ n ≤ |F|.
Pick distinct elements α1, . . . , αn ∈ F. Let c1, . . . , cn ∈ F∗. The ci are not
necessarily distinct. We write

F[X]<k

for the F-vector space consisting of the polynomials in F[X] of degree smaller
than k. This vector space has dimension k. We can map elements from F[X]<k

into Fn via the homomorphism

f �→ (c1f(α1), . . . , cnf(αn)).

This homomorphism is injective, and thus f(F[X]<k) is a k-dimensional subspace
of Fn, i.e., it is an [n, k]-code.

This code is the generalized Reed-Solomon code of parameters α1, . . . , αn and
c1, . . . , cn and dimension k. We denote this code by

GRSF(k, (α1, . . . , αn), (c1, . . . , cn)).

Generalized Reed-Solomon codes are maximum distance separable, i.e., their
minimum distance is

d = n− k + 1,

which is best possible. This property follows directly from the fundamental
theorem of algebra.

We will sometimes use the abbreviation

GRSF(k, (α1, . . . , αn)) = GRSF(k, (α1, . . . , αn), (1, . . . , 1)).

For the purpose of this text it is convenient to call generalized Reed-Solomon
codes with ci = 1 for 1 ≤ i ≤ n ordinary Reed-Solomon codes, but it should be
noted that this is not standard terminology.

2.4.3 Algebraic geometry codes

Reed-Solomon codes have the constraint that their block length is limited by the
alphabet size; the problem is more precisely, that a polynomial in F[X] cannot
be evaluated on more than |F|+1 positions (the extra position corresponding to
∞), and that thus for larger block lengths, larger alphabets are needed.

In order to alleviate this problem, algebraic geometry (AG) codes have been
invented by Goppa in 1977, [G1977]. The basic underlying observation is that

32 CHAPTER 2. ASPECTS OF CODING THEORY

algebraic curves defined over F can have more than |F|+ 1 points, which makes
it possible to define codes with larger block lengths. As we will see, generalized
Reed Solomon codes form the natural subclass of algebraic geometry codes that
is obtained by taking lines as the curves to define the codes on.

Notions of algebraic geometry

We will now give the notations and summarize the definitions and results from
algebraic geometry that are needed to define these codes. The book by Huff-
man and Pless [HP2003] gives a slightly more detailed treatment of the subject
concentrating on the theory needed to understand the definition of algebraic
geometry codes. This book also contains a list of useful references for more
in-depth treatments on the subject. We will frequently also make reference to
[H2003] and [S1986].

For a field F, we denote F its algebraic closure. The affine space An(F) is
simply the set F

n
. This space is a plane if n = 2. We denote points in A2(F) in

the usual vector notation (x, y). Variables representing abscissa and ordinates
in this space are the lowercase letters x and y.

An affine algebraic curve is the zero locus of some polynomial f ∈ F[x, y].
For example, the unit circle

x2 + y2 = 1

is such a curve.
The projective space Pn(F) is the set(

F
n+1 \ {(0, . . . , 0)})/ ∼,

where (X0,X1, . . . ,Xn) ∼ (X ′
0,X

′
1, . . . ,X

′
n) if and only if there exists λ ∈ F

∗

such that (X0, . . . ,Xn) = λ(X ′
0, . . . ,X

′
n). We will be mostly concerned with the

projective plane P2(F). The equivalence class of (X,Y,Z) is denoted (X : Y : Z).
In this text, coordinate variables in the projective plane are denoted by the
uppercase letters X, Y and Z.

Note that arbitrary polynomials on P2(F) do not take well defined values.
However, the zero set of homogeneous polynomials is well defined. A projec-
tive algebraic curve X in P2(F) is the zero set in P2(F) of some homogeneous
polynomial f ∈ F[X,Y,Z]. A curve is said to be defined over F if the defining
polynomial can be written with coefficients in F. For example, the unit circle in
P2(F) is given by

X2 + Y 2 = Z2

and is defined over F. An affine curve given by f(x, y) has an associated projec-
tive curve. The process of replacing x by X and y by Y in f , and multiplying
each monomial of degree d by Zdeg(f)−d, so that a homogeneous polynomial in
X,Y and Z is obtained is called the homogenization of f with respect to Z. The
converse operation, called dehomogenization with respect to Z, consists essen-
tially of replacing Z by 1. See [S1986, p. 13].

2.4. FAMILIES OF ALGEBRAIC CODES 33

The projective curve has in general more points than the affine version;
namely points with Z = 0, such points will be called points at infinity. It is
often convenient to think of the curve as projective, but to do actual calcula-
tions in affine curves. We will regularly do this, and introduce special symbols
(such as O) for points at infinity.

A point on a curve is said to be F-rational (or simply rational), if its projec-
tive coordinates can be written with all entries in F. For a given curve X , we
denote by X (F) the set of F-rational points of X .

A planar curve X given by F (X,Y,Z) = 0 is said to be irreducible if F is
absolutely irreducible. An irreducible curve is said to be smooth if the partial
derivatives of F do not vanish simultaneously on any point of the curve.

For the purpose of this text, we shall always assume that the curve is irre-
ducible and smooth.

If X is an irreducible projective curve in P2(F) given by F (X,Y,Z) = 0, we
define the rational functions on X as follows:

F(X) =
({

f

g

∣∣∣ f, g are homogeneous, deg(f) = deg(g),
F does not divide g.

} /
∼

)
∪ {0},

where the equivalence relation ∼ is given by

(f, g) ∼ (f ′, g′) ⇐⇒ fg′ = f ′g.

The rational functions define a field.
One can define the order of a nonzero rational function f ∈ F(X) at a point

P ∈ X in a fashion so that it behaves very similar to the usual order of rational
functions in F(X). In particular, the order is zero if f(P) �= 0,∞, positive if
f(P) = 0 and negative if f(P) = ∞. We will not give an exact definition of the
order here (see [H2003, p. 169] or [S1986, p. 22]), but we note that it adheres to
the usual rules, in particular,

ordP (f · g) = ordP (f) + ordP (g)
ordP (f + g) ≥ min{ordP (f), ordP (g)}.

The usual rational functions have the property that the sum of the orders over all
values is zero, taking also into account the order at infinity. Rational functions
over smooth algebraic curves satisfy the same remarkable identity, i.e.,

(2.10)
∑
P∈X

ordP (f) = 0 ∀f ∈ F(X).

See [H2003, Theorem 6.13] for details.
Unlike the usual rational functions, there are additional restrictions on what

kinds of poles and zeros can occur. The divisor class group, which we will present
now, characterizes the combinations that can occur.

34 CHAPTER 2. ASPECTS OF CODING THEORY

Divisor class group. Let X be a smooth projective curve. A divisor is a
formal sum of points of X with integer multiplicities that is finite (i.e., zero on
almost all points). I.e., ∑

P∈X
nP 〈P 〉

is a divisor if nP = 0 for almost every P ∈ X . We use the notation 〈·〉 to
distinguish divisors from ordinary points. The set of divisors on X is denoted
by Div(X).

The set of divisors form the free group generated by the elements 〈P 〉 for
P ∈ X , and it is thus an Abelian group.

The degree of the divisor Δ =
∑

P∈X nP 〈P 〉 is defined to be the quantity

deg(Δ) :=
∑
P∈X

nP .

The support of the divisor Δ, supp(Δ), is the set of points on which it is nonzero,
i.e.,

supp(Δ) := {P ∈ X | nP �= 0}.
Let f ∈ F(X) be a nonzero rational function. Then ordP (f) is nonzero only

for a finite number of points, and so

div(f) :=
∑
P∈X

ordP (f)〈P 〉

is a divisor, called the divisor of f . Any divisor which is the divisor of some
rational function is said to be principal. The set of principal divisors is a subgroup
of all divisors.

The statement (2.10) implies that any principal divisor has degree zero. The
converse is not true in general: on curves of genus1 g > 0, not all divisors of
degree 0 are principal. Two divisors Δ1 and Δ2 are linearly equivalent, if their
difference is a principal divisor. The Degree 0 part of the divisor class group of
X is the group

Pic0(X) := Divisors of degree 0/Principal divisors.

It is nontrivial if g > 0. A divisor Δ is said to be defined over F if it does not
change with the action of Aut(F/F). Note that a divisor is defined over F in
particular, if all its points are F-rational. (The converse is not true, however.)
Often we will consider only divisors defined over F, and thus we will frequently
work in the corresponding divisor class group:

Pic0
F
(X) := Classes of Pic0(X) that have a representative defined over F.

1We will not define the genus in this text. Lines have genus 0, and elliptic curves genus 1.

2.4. FAMILIES OF ALGEBRAIC CODES 35

Linear spaces. We can define a partial ordering on divisors. Let Δ1 :=∑
P∈X nP 〈P 〉 and Δ2 :=

∑
P∈X mP 〈P 〉. We define the ordering
 by

Δ1
 Δ2 ⇐⇒ nP ≥ mP ∀P ∈ X .
We define the linear space of a divisor Δ as follows:

L(Δ) := {f ∈ F(X) | div(f) + Δ
 0} ∪ {0}.
The linear space L(Δ) is a F-vector space.

If deg(Δ) < 0, then we have L(Δ) = {0}, since div(f) + Δ
 0 implies
0 = deg(div(f)) ≥ deg(−Δ) > 0. For the case that deg(Δ) ≥ 0, the following
version of the Riemann-Roch theorem [HP2003, Theorem 13.4.2] gives a bound
on the dimension of Δ.

Theorem 1 (Riemann-Roch) Let Δ be a divisor on a smooth projective plane
curve X over F of genus g. Then

dim(L(Δ)) ≥ deg(Δ) + 1 − g.

Moreover, if deg(Δ) > 2g − 2, the above inequality holds with equality.

Another fact about linear spaces that we need is the assertion that if Δ is
defined over F and X is defined over F, then L(Δ) has a basis in F(X) (see
[S1986, Proposition 5.8]).

The construction of AG codes

Let X be a smooth, irreducible curve defined over F, and let P1, . . . , Pn be
distinct, rational points on X .

We consider the evaluation map evP1,...,Pn , which evaluates rational functions
on the Pi, i.e.,

evP1,...,Pn : F(X) → F
n

f �→ (f(P1), . . . , f(Pn)).

Note that evP1,...,Pn is F-linear.
Let Δ be a divisor defined over F such that supp(Δ)∩ {P1, . . . , Pn} = ∅. We

define the algebraic geometry code of divisor Δ and rational points P1, . . . , Pn

over X as the image of L(Δ) ∩ F(X) via evP1,...,Pn , i.e.,

AGC(X ,Δ, (P1, . . . , Pn)) = evP1,...,Pn(L(Δ) ∩ F(X)).

This set is clearly a code of block length n. It is defined over F, since any F-
rational function takes a value in F on any F-rational point. The code is linear
by the linearity of the evaluation map. What are the dimension k and minimum
distance d of this code?

36 CHAPTER 2. ASPECTS OF CODING THEORY

Proposition 4 Let X be a smooth irreducible curve defined over F of genus
g, Δ a divisor with deg(Δ) > 2g − 2 defined over F, {P1, . . . , Pn} a set of n
distinct rational points. The code AGC(X ,Δ, (P1, . . . , Pn) has dimension k =
deg(Δ) + 1 − g and minimum distance at least d ≥ n− deg(Δ).

By the Riemann-Roch theorem, dim(L(Δ)) = deg(Δ) + 1− g, and, since the
divisor is defined over F, the F-vector space L(Δ) ∩ F(X) has also dimension
deg(Δ) + 1 − g. Thus, if we show that evP1,...,Pn |L(Δ) is injective, we conclude
that k = deg(Δ) + 1 − g.

To prove this last point, we show that any nonzero f ∈ L(Δ) creates a word
of weight at least n− deg(Δ), which establishes the triviality of the kernel (and
thus the fact that k = deg(Δ) + 1 − g) and the fact that the d ≥ n − deg(Δ)
simultaneously.

Let f ∈ L(Δ) such that f(P1) = · · · = f(Pdeg(Δ)+1) = 0, say. Then we have
that

f ∈ L(Δ − 〈P1〉 − · · · − 〈Pdeg(Δ)+1〉).
Since the degree of the above divisor is deg(Δ) − (deg(Δ) + 1) = −1 < 0, we
conclude that f = 0.

Invariance properties of AG codes

It turns out that the description of a given algebraic geometry code is not unique,
but that the same code can in general be obtained with several different descrip-
tions. In this section we will devise two invariance properties of the construction
which will prove useful later on.

Choice of the divisor. Recall that generalized Reed-Solomon codes can be
obtained from ordinary Reed-Solomon codes by multiplying the coordinate po-
sitions by nonzero constants.

In fact, any code can be modified in that fashion, and the transformation
has the property that it preserves decodability.

In our case, for a given smooth irreducible algebraic curve X , divisor Δ,
rational points P1, . . . , Pn, and elements ci ∈ F∗, we define the code

AGC(X ,Δ, (P1, . . . , Pn), (c1, . . . , cn))

as the code consisting of all words (c1y1, . . . , cnyn) such that

(y1, . . . , yn) ∈ AGC(X ,Δ, (P1, . . . , Pn)).

One may be tempted to call such a code a “generalized algebraic geometry
code”, but it turns out that these codes do not generalize on ordinary algebraic
geometry codes. To see that, note that we can create a rational function f
such that f(Pi) = ci for 1 ≤ i ≤ n, e.g., by using an analog of the Lagrange
interpolation formula. Now, given such f , notice that

AGC(X ,Δ, (P1, . . . , Pn), (c1, . . . , cn)) = AGC(X ,Δ − div(f), (P1, . . . , Pn)),

2.4. FAMILIES OF ALGEBRAIC CODES 37

because

L(Δ) → L(Δ − div(f))
g �→ f · g

is an isomorphism of vector spaces. So, multiplication of coordinate positions by
nonzero constants does not, in our case, generalize the class of codes.

However, it shows that many divisors generate the same code up to the
multiplicative constants. More precisely, if Δ1 and Δ2 are two divisors, then

AGC(X ,Δ1, (P1, . . . , Pn)) and AGC(X ,Δ2, (P1, . . . , Pn))

are the same up to multiplicative constants if Δ1 and Δ2 are linearly equivalent
and supp(Δ1 − Δ2) ∩ {P1, . . . , Pn} = ∅.
Curve isomorphisms. We will now see that isomorphic curves define the same
codes. Let V1 and V2 be two irreducible projective varieties in Pn(F). A rational
map φ : V1 ��� V2 is a map, where the component functions f0, . . . , fn are
rational functions, i.e.

(X0, . . . ,Xn) �→ (f0(X0, . . . ,Xn) : · · · : fn(X0, . . . ,Xn)),

and such that φ(V1) ⊆ V2. The map φ is regular at P ∈ V1 if there exists
g ∈ F(V1) such that gfi(P) is defined for 0 ≤ i ≤ n and not all of the gfi(P) are
zero. If φ is regular at every P ∈ V1, it is a morphism.

If φ : V1 → V2 is a morphism such that there exists a morphism ψ : V2 → V1,
such that φ ◦ ψ = idV2 and ψ ◦ φ = idV1 , then φ is an isomorphism. If there is
a representation (f0 : · · · : fn) of φ such that each fi is defined over F, then φ
is an F-isomorphism. Note that F-isomorphisms preserve the rational points of
the varieties.

With that terminology, we claim the following: Let X1 and X2 be two irre-
ducible, smooth projective curves defined over F. If X1 is F-isomorphic to X2,
i.e., there is an F-isomorphism φ : X2 → X1, then the codes defined over X1 are
the same as those defined over X2.

Indeed, let
C1 := AGC(X1,Δ, (P1, . . . , Pn))

be a code defined over X1. Let

C2 := AGC(X2, φ
∗(Δ), (φ−1(P1), . . . , φ−1(Pn))),

where φ∗ is the Z-linear extension of the map that maps 〈Q〉 to 〈φ−1(Q)〉 for
each Q ∈ X1.2 Then C1 is the same code as C2, but it is defined over X2. Indeed,

2This definition of φ∗ is only correct if φ is an isomorphism, see [S1986, p. 33] for the details.

38 CHAPTER 2. ASPECTS OF CODING THEORY

let f ∈ L(Δ). Then g = (f ◦ φ) ∈ L(φ∗(Δ)) (see [S1986, Proposition 3.6]), and
the codeword corresponding to g in C2 is

(g(φ−1(P1)), . . . , g(φ−1(Pn))) = (f(P1), . . . , f(Pn)) ∈ C1.

Since both codes have the same dimension, this finishes the proof.
As a particular case of the above observation, if X is a curve, and φ is an

isomorphism X → X then that isomorphism can be applied in the same way
without changing the code.

Example: Reed-Solomon codes

It turns out to be instructive to see how Reed-Solomon codes can be seen as
algebraic geometry codes, and to study the implications of the properties that
we studied in the previous sections.

As we will see later on, the Sidelnikov-Shestakov attack [SS1992] on Reed-
Solomon codes can be described rather naturally in this setting.

We start with an ordinary Reed-Solomon code

GRSF(k, (α1, . . . , αn))

Let X be the projective line Y = 0 in P2(F). The line X has |F|+ 1 rational
points. Define Pi for 1 ≤ i ≤ n by

Pi = (αi : 0 : 1).

We want to show that

GRSF(k, (α1, . . . , αn)) = AGC(X , (k − 1)〈O〉, (P1, . . . , Pn)),

where O = (1 : 0 : 0) is the point at infinity on X . First, note that the Riemann-
Roch theorem implies that both codes have the same dimension, so it is enough
to show that any codeword in the Reed-Solomon code is also a codeword in the
given algebraic geometry code.

Let f ∈ F[X]<k, then (f(α1), . . . , f(αn)) is a codeword in the Reed-Solomon
code. Write f(x) = f0 + f1x+ · · · + f�x

�, where � = deg(f). Let

f̂(X,Y,Z) =
f0Z

� + f1XZ
�−1 + · · · + f�X

�

Z�

be the corresponding rational function. The function f̂ has a pole of order at
most k − 1 at O and no other poles, thus

div(f̂)
 −(k − 1)〈O〉,
and so (f̂(P1), . . . , f̂(Pn)) is a codeword of the algebraic geometry code. Now,
by inserting the Pi, we see that this is the same word as (f(α1), . . . , f(αn)).

Our reasoning on invariants of an algebraic geometry code allow us to di-
rectly conclude that generalized Reed-Solomon codes are also just a subclass of
algebraic geometry codes.

2.4. FAMILIES OF ALGEBRAIC CODES 39

Example: Elliptic codes

Consider the curve defined by the projective solutions to the Weierstrass equa-
tion,

(2.11) E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3,

where the ai ∈ F are parameters of the curve.
If the parameters a1, a2, a3, a4 and a6 are such that the curve is smooth, then

it is an elliptic curve. Elliptic curves have genus g = 1, and in fact, any planar,
smooth curve of genus 1 is an elliptic curve.

Elliptic codes are a special class of algebraic geometry codes, with the un-
derlying algebraic curve being an elliptic curve.

By Proposition 4, we get d ≥ n − k, so, assuming this bound is tight, the
minimum distance is one less than what we could get with the Singleton bound.
Since Reed-Solomon codes are maximum distance separable, this obviously begs
for the question why one would want to define codes over elliptic curves rather
than just lines, given that the latter have better distance.

The answer is that elliptic curves can have more rational points than lines,
and therefore they allow for codes of longer block lengths.

Theorem 2 (Hasse) Let E be an elliptic curve defined over F, with q = |F|.
Then

(q + 1) − 2
√
q ≤ |E(F)| ≤ (q + 1) + 2

√
q.

If q is a prime, then the Hasse bound is tight; a formula due to Deuring [D1941]
can be used to show that any integer order in the Hasse-interval is attained by
at least one elliptic curve in this case, see [L1987].

This leads to an efficient construction of elliptic codes of block length at least

q + 2�√q�.
where the field size q is a prime.

Since we will study cryptosystems based on elliptic curve codes more in
detail, we will now recall the basic facts and notations of the divisor class group
of elliptic curves which we will use extensively in the sequel. Any class in Pic0(E)
has a unique representant of the form

〈P 〉 − 〈O〉,
where O is the unique point at infinity of E. Therefore E can be given the
structure of the Abelian group Pic0(E) via the bijection

divisor class of 〈P 〉 − 〈O〉 �→ P.

For the set of rational points, E(F), a very similar assertion can be made. The
same identification will define a bijection of E(F) and Pic0

F
(E) in this case. (See

40 CHAPTER 2. ASPECTS OF CODING THEORY

[S1986, Exercise 2.13 and Remark 3.5.1].) The group operation on E(F) is noted
additively.

The application sum : Div(E) → E is the Z-linear extension of the map that
maps 〈P 〉 �→ P for every P ∈ E. Note that with these notations, we have in
particular the following.

Proposition 5 Let Δ ∈ Div(X). Then

Δ is principal ⇐⇒ deg(Δ) = 0 and sum(Δ) = O.

An important consequence of Proposition 5 is the following. Let P,Q,R ∈ E.
Then

(2.12) P , Q and R are collinear ⇐⇒ P +Q+R = O,

since this is equivalent to the statement that 〈P 〉+〈Q〉+〈R〉−3〈O〉 is a principal
divisor, which can be the case only if there is a polynomial function passing
through P , Q, R and no other points of E. Such a polynomial function can only
be a line. (This last conclusion follows from Bezout’s theorem, i.e., Theorem 4
in section 5.1.2.)

Note that (2.12) gives a geometric definition of the group law over E.

Chapter 3

An attack against elliptic
codes

In this chapter, we present a structural attack against the McEliece type cryp-
tosystem based on elliptic codes, i.e., on algebraic geometry codes defined on
elliptic curves. The attack is structural and recovers a private key from a given
public key. In section 3.1, we set the stage for this new attack against elliptic
codes by giving a modified presentation of the well-known Sidelnikov-Shestakov
attack.

Section 3.2 is devoted to the attack on elliptic codes. As indicated by the
theoretical analysis in section 3.2.7, the algorithm runs in heuristic polynomial
time. The experimental running times discussed in section 3.2.8 show that this
attack is practical even for keys that are several megabits large, which is larger
than any parameter size that has ever been proposed for use in the McEliece
cryptosystem.

Some of the ideas in this chapter, in particular section 3.2.3, are based on
previous unpublished work by Daniel Bleichenbacher, Karin Melnick and Amin
Shokrollahi.

3.1 The Sidelnikov-Shestakov attack revisited

In 1986, Niederreiter proposed a McEliece type cryptosystem that would use
generalized Reed-Solomon codes [N1986]. A few years later, Sidelnikov and She-
stakov published a paper [SS1992] presenting an effective deterministic polyno-
mial time attack against this cryptosystem. This attack was a ground-breaking
achievement in the cryptanalysis of McEliece type cryptosystems: it was indeed
the first known effective structural attack against any such system based on
algebraic codes.

Some of the ideas of this original method are recurrent in the attacks on
other codes, and they reveal a great deal of the structural weaknesses that can
be found in several McEliece type cryptosystems. We tailor our presentation to

41

42 CHAPTER 3. AN ATTACK AGAINST ELLIPTIC CODES

that need, focusing on the concepts that can be adapted to work on other codes,
in particular elliptic codes. There are two key contributing factors. First, we
interpret the birational transforms of the original paper in a way that is less ad
hoc than the presentation provided by the original paper. As we will see later,
the key point of the birational transforms is that they are also F-isomorphisms,
and that they integrate nicely into our observations from section 2.4.3. Second,
we use minimum weight codewords in the most explicit manner.

This section will be closed by a brief analysis providing some evidence that
sufficiently small subcodes cannot be tackled with this method, baring significant
new ideas.

3.1.1 Geometric observations

It is a well known fact that smooth curves of genus 0 (and thus in particular lines)
are isomorphic to P1(F) (See [H2003, p. 192]). Therefore, algebraic geometry
codes over smooth curves of genus 0 are just Reed-Solomon codes. More to the
point,

GRSF(k, (α1, . . . , αn)) = AGC(P1(F), (k − 1)〈O〉, (P1, . . . , Pn)),

where Pi = (αi : 1) and O = (1 : 0).
We start by studying the code invariance properties from section 2.4.3 in the

setting of Reed-Solomon codes.

Curve isomorphisms. Even though we just saw that the curve is essentially
unique in this case, it turns out to be useful to study curve isomorphisms of
P1(F) onto itself.

It is clear that

P1(F) → P1(F)
(X : 1) �→ (aX + b : 1)

O �→ O,
where a ∈ F∗, b ∈ F is an F-isomorphism. The map

(X : Y) �→ (Y : X)

is also an F-isomorphism: it is clearly bijective, and it is a birational transform
that is defined everywhere, since it can be written

(X : Y) �→
{

(Y/X : 1) if X �= 0,
(1 : X/Y) if Y �= 0.

By composition, we thus find that the map

ϕ : (X : Y) �→ (aX + bY : cX + dY)

3.1. THE SIDELNIKOV-SHESTAKOV ATTACK REVISITED 43

with a, b, c, d ∈ F is an F-isomorphism as long as it is bijective, i.e., as long as

det
(
a b
c d

)
�= 0.

Since there are four parameters (a, b, c and d), in a generic sense, the mapping
is determined by fixing three images, i.e., given three distinct points P̂1, P̂2 and
P̂3 ∈ P1(F) and three distinct images P1, P2, P3 ∈ P1(F), there exists a unique
transformation ϕ of the above form with ϕ(P̂i) = Pi.

The cryptanalyst can take advantage of this fact in the following way: Let

AGC(P1(F), Δ̂, (P̂1, . . . , P̂n))

be some arbitrary generalized Reed-Solomon code, and let P1, P2, P3 ∈ P1(F) be
distinct points that the cryptanalyst arbitrarily selects, then

AGC(P1(F), Δ̂, (P̂1, . . . , P̂n)) = AGC(P1(F),Δ, (P1, P2, P3,
, . . . ,
))

where Δ is a divisor, and
 are points. In the following, denote those points by
P4, P5, . . . , Pn.

Divisor choice. Since Pic0(P1(F)) is trivial, we can arbitrarily fix the divisor,
and get the same code up to multiplicative constants, i.e., if Q is a point distinct
from P1, . . . , Pn, we know that AGC(P1(F), Δ̂, (P̂1, . . . , P̂n)) is equal to

AGC(P1(F), (k − 1)〈Q〉, (P1, . . . , Pn), (c1, . . . , cn)),

where the ci are unknown multiplicative constants.

3.1.2 Reconstructing Reed-Solomon codes

Fix three arbitrary but distinct points P1 = (α1 : 1), P2 = (α2 : 1), P3 = (α3 : 1)
on P1(F). The cryptanalyst is given a random basis of the code

C := AGC(P1(F), (k − 1)〈Q〉, (P1, P2, P3, P4, . . . , Pn), (c1, . . . , cn)),

for known (that is, arbitrarily chosen) P1, P2, P3 ∈ P1(F). His task is to deter-
mine the unknowns Q,P4, . . . , Pn, c1, . . . , cn.

He can proceed as follows. Determine two minimum weight words v and
w of C which are nonzero in the first three coordinates, and such that they
have only one zero located on a different coordinate. Since Reed-Solomon codes
are maximum distance separable, this can be done by simply diagonalizing the
generator matrix on some information set not containing the positions 1, 2 and
3. Without loss of generality, we assume the zeros of v are given by

(3.1) v4 = · · · = vk+2 = 0,

44 CHAPTER 3. AN ATTACK AGAINST ELLIPTIC CODES

and those of w by

w4 = · · · = wk+1 = wk+3 = 0.

Let f1 ∈ L(−(k− 1)〈Q〉) be the function corresponding to v. Then, by (3.1), we
have

div(f1)
 〈P4〉 + · · · + 〈Pk+2〉 − (k − 1)〈Q〉,

and since the degree of the divisor on the right hand side is zero, we have equality.
By an analogous argument,

div(f2) = 〈P4〉 + · · · + 〈Pk+1〉 + 〈Pk+3〉 − (k − 1)〈Q〉,

and so

div(f1/f2) = 〈Pk+2〉 − 〈Pk+3〉.

Therefore

f1/f2 =
aX + bZ

cX + dZ
,

for unknowns a, b, c and d.
Since the words v and w are known, we can evaluate f1/f2 on the points Pi

where wi �= 0:
f1

f2
(Pi) =

cif1(Pi)
cif2(Pi)

=
vi

wi
.

Thus, in particular, we can solve the homogeneous linear system of equations

f1

f2
(Pi) =

aαi + b

cαi + d
, i = 1, 2, 3,

and therefore determine the unknowns a, b, c and d.
Now let 1 ≤ j ≤ n be some position with wj �= 0 and such that Pj (i.e., αj)

is not yet known. To determine αj , we can then simply solve

f1

f2
(Pj) =

aαj + b

cαj + d
,

where the unknown is αj.
At this point, it is fairly easy to see how the cryptanalyst solves the complete

problem: First all the αi are found, for example by picking different pairs (f1, f2),
and repeating the procedure; then an arbitrary Q is selected such that Q /∈
{P1, . . . , Pn}. Then the constants ci have to be found. This problem is easy, it
suffices to solve an appropriate linear system; we omit the details of this step at
this point, since it is the same algorithm as the one studied in section 3.2.5.

3.1. THE SIDELNIKOV-SHESTAKOV ATTACK REVISITED 45

3.1.3 Subcodes of Reed-Solomon codes

The above description makes it clear that the attack also works for subcodes
C′ ⊆ C of Reed-Solomon codes if couples of minimum weight words of C can still
be found in C′. In the light of the subcoding trick as discussed in section 2.3.3,
the question of whether and to what extent the attack can be generalized to
subcodes of Reed-Solomon codes is obviously interesting.

We will consider random subcodes of a given Reed-Solomon code. Let

C := GRSF(k, (α1, . . . , αn), (c1, . . . , cn))

be an [n, k, d]-Reed Solomon code. Let 0 ≤ � < k be some integer, and let C′ ⊆ C
be a random [n, k − �]-subcode.

We will conservatively assume that finding words of weight close to d is
enough to break the system. Since couples of such words with only very few
differing zeros are needed, the attack will be somewhat harder in reality.

For simplicity we will analyze the cost of finding words of weight exactly d,
instead of just close to d. As we note below, an easy estimate for the other case
is then easy to deduce.

Let x ∈ C′ be a word obtained from diagonalizing on a random informa-
tion set. Then by construction, x has zeros on k − 1 − � positions within this
information set, say the positions 1, . . . , k − 1 − �.

Let f ∈ F[X]<k be the polynomial corresponding to x. Then f(α1) = · · · =
f(αk−1−�) = 0, therefore

f(x) = (x− α1) · · · (x− αk−1−�)g(x)

with deg(g(x)) ≤ �. Now f will be of minimum weight if g factors into a prod-
uct of linear factors which all have zeros on the positions αk−�+1, . . . , αn. The
probability for this to happen is thus

(3.2)

(
n−k−�

�

)
q�

≈ 1
�!

(1 −R)�
(
n

q

)�

for small �, where q = |F|. This shows that already comparatively small values of
� are enough to render any attack that involves finding minimum weight words
in C′ impractical. For example, if � = 20 and R = 1/2, the above probability is
less than 2−80.

Basically the same computation can be used to bound the probability that
a given row in the diagonalized generator matrix is of weight at most d + r for
some 0 ≤ r < �. The result is that the dimension should be further reduced
by r for approximately the same success probability. For example, if � = 24,
R = 1/2, then the probability that a random word considered by the information
set decoder is of weight ≤ d+ 4 is at most 2−80.

Berger and Loidreau have previously studied the subcoding trick in [BL2005].
They suggest that very small values of �, such as � = 4, are sufficient to provide

46 CHAPTER 3. AN ATTACK AGAINST ELLIPTIC CODES

structural security. We believe, however, that such codes are not secure. We will
provide a preliminary analysis of their proposal in section 5.2.

3.2 Elliptic codes

We have seen that trapdoors for algebraic geometry codes can be inverted if
g = 0 using the Sidelnikov-Shestakov attack. In this section the next harder
case will be studied, the case where g = 1. Elliptic codes are an interesting
target for the cryptanalyst: First, elliptic codes lead to very good parameters.
For example, our numbers in section 3.2.8 show that elliptic codes would lead
to much better key sizes than most other constructions, including the original
construction of McEliece, if they were not structurally weak. Second, it can be
hoped that we will be able to generalize such attacks to larger families of algebraic
geometry codes, and, eventually, to break the currently best known construction
of McEliece type cryptosystems (see section 5.1.1). Second, minimum weight
words are still trivial to find in such a code, since the elliptic codes are almost
maximum distance separable. Hence, they provide a promising angle of attack.

The code reconstruction problem for elliptic codes can be stated as follows:
we are given an arbitrary k × n generator matrix G of an elliptic code C, i.e.,

C = AGC(Ê, Δ̂, (P̂1, . . . , P̂n)),

where the elliptic curve Ê, the divisor Δ̂ and the points P̂1, . . . , P̂n are unknowns.
We want to find an elliptic curve E, a set of n rational points P1, . . . , Pn on

E, and a divisor Δ (on E) such that the code

AGC(E,Δ, (P1, . . . , Pn), (c1, . . . , cn))

is equal the code C generated by G.

3.2.1 Code invariance

As we have done for Reed-Solomon codes, the first goal is to study the invariants
of section 2.4.3 in our setting.

Choice of the divisor. We will first show that if

(3.3) gcd(k, |E(F)|) = 1,

then we can assume Δ = k〈O〉. (Assuming (3.3) is not a problem. The value of
k can be controlled by shortening the code by a few positions, if required.)

Let Q = sum(Δ). Equation (3.3) implies that there exists a point R ∈ E(F)
such that [k]R = Q. Now, since sum(Δ) = Q = sum(k〈R〉) and deg(Δ) = k =
deg(k〈R〉), we have

Δ ∼ k〈R〉.

3.2. ELLIPTIC CODES 47

Therefore, there exists a rational function f such that g �→ f ·g is an isomorphism
L(Δ) → L(k〈R〉).

Now let

τ : E → E

P �→ P −R

be the translation-by-(−R) map; this map is an isomorphism which induces the
isomorphism of linear spaces

L(k〈R〉) → L(k〈O〉)
f �→ f ◦ τ.

By translating the Pi accordingly, the evaluation map results again in the same
codewords after translation, and we can thus set Δ = k〈O〉.
Isomorphisms of curves. Let s, t, u, r ∈ F, then the mapping

Ê → P2(F)

(X : Y : 1) �→ (u2X + r : u3Y + su2X + t : 1)
O �→ O

is an isomorphism of elliptic curves (See [S1986, p. 49]). We seek F-isomorphisms,
i.e., isomorphisms preserving the rational points. If s, t, u, r ∈ F, then the given
mapping is an F-isomorphism.

Let P̂1, P̂2 ∈ Ê(F) be two distinct finite rational points of Ê. Select two
random finite rational points P1, P2 ∈ P2(F). We will now show that an F-
isomorphism of elliptic curves ϕ such that ϕ(P̂1) = P1 and ϕ(P̂2) = P2 exists
with probability 1/2.

The isomorphism can be explicitly computed by inserting the coordinate
values for P1, P̂1 and P2, P̂2 into the change of variables as given above, and
solving for u, r, s, t.

We can first solve the two equations corresponding to the constraints in X
in the unknowns u2 and r. Now, if the obtained value for u2 is not a square in
F, then no such isomorphism exists. Otherwise, we can compute u and r, and
then use the two other equations to solve for s and t.

Since 1/2 of the values in F are squares, this shows that such a change of
variable can be found with probability 1/2, namely whenever the solution for u2

is a square in F.

3.2.2 Outline of the algorithm

We will now present an algorithm to tackle the reconstruction problem. We start
by briefly summarizing the steps performed by the algorithm.

48 CHAPTER 3. AN ATTACK AGAINST ELLIPTIC CODES

1. Recover the group structure. By [BSS1999, p. 36], the F-rational
points on the elliptic curve form an Abelian group,

(3.4) E(F) ∼= Z/d1Z × Z/d2Z,

where d1 | gcd(q−1, d2) and d2 | E(F). The first step consists of recovering
d1 and d2 and group elements z1, . . . , zn ∈ Z/d1Z×Z/d2Z such that there
exists an (unknown) group isomorphism

ϕ : E(F) → Z/d1Z × Z/d2Z

satisfying ϕ(Pi) = zi.

2. Find an isomorphic curve. The fact that we know the zi then reveals
a great deal of information about the geometry of the curve. For example,
if zi + zj + zl = 0, then this implies that Pi, Pj and Pl are collinear.

We make use of this fact to deduce from a guess of the coordinates of three
points, say P1, P2, P3, the coordinates of a small number of additional
points that must lie on E.

Knowing such a small set of points, we can determine whether an elliptic
curve passing through those points exists. If no such curve exists, we can
conclude that the guess for the coordinates of P1, P2 and P3 was wrong,
and retry with another guess.

If a suitable curve exists, then with very high probability, it is the desired
curve, and we are done with this step.

3. Compute the Pi. Since E is known at this point, we can compute all the
rational points as well as the isomorphism

Z/d1Z × Z/d2Z → E(F)

that maps zi �→ Pi.

Using this isomorphism, we can compute the remaining unknown points
Pi given the known zi.

4. Compute the ci. At this point, we are able to construct the same code,
up to the stretching factors c1, . . . , cn, i.e., we know a curve E and points
P1, . . . , Pn such that the code

C0 := AGC(E, k〈O〉, (P1 , . . . , Pn))

is equal to C up to stretching factors c1, . . . , cn.

We compute the code C0, and seek the unknowns c1, . . . , cn, such that

(x1, . . . , xn) ∈ C0 ⇐⇒ (c1x1, . . . , cnxn) ∈ C.

3.2. ELLIPTIC CODES 49

This is done as follows. If (y1, . . . , yn) is any codeword in C⊥ and (z1, . . . ,
zn) is any codeword in C0, then we must have

n∑
i=1

ciziyi = 0,

which gives us a linear condition on the ci. This step can be repeated
for different z ∈ C0 and y ∈ C⊥, and eventually enough linear conditions
are collected to get a vector (c1, . . . , cn) that is unique up to a non-zero
multiplicative factor.

We often also have to make heuristic assumptions. In an attempt to focus on
the essential idea, we will generally just assume that these assumption hold with
high probability, and postpone the discussion of their impact to section 3.2.6.

3.2.3 Step I: Recovering the group structure

The idea is to use the fact that minimum weight codewords correspond to func-
tions whose divisor is exactly known. We assume that the minimum distance of
C is n − k. Let x := (x1, . . . , xn) a codeword of minimum weight (i.e., weight
n− k), and let f be the rational function corresponding to x, i.e.,

x = (c1f(P1), . . . , cnf(Pn)).

Now, without loss of generality, assume the zero positions of x are P1, . . . , Pk.
Then

f(P1) = · · · = f(Pk) = 0,

and so
div(f)
 〈P1〉 + · · · + 〈Pk〉 − k〈O〉,

where k〈O〉 is the divisor of the code, by our reasoning in section 3.2.1. The
divisor on the right hand side above is of degree 0, and therefore

(3.5) div(f) = 〈P1〉 + · · · + 〈Pk〉 − k〈O〉.

Since div(f) is principal, we have

(3.6) O = sum(div(f)) = P1 + · · · + Pk − [k]O.

Write
G := Z/d1Z × Z/d2Z

the Abelian group that is isomorphic to E(F). Denote by zi the images of Pi

under some group isomorphism E(F) → G. Then we can rewrite (3.6) as an
equation in G, and we get

z1 + · · · + zk = 0.

50 CHAPTER 3. AN ATTACK AGAINST ELLIPTIC CODES

If we knew the parameters d1 and d2 of G, we would have to collect n Q-linearly
independent such equations in order to be able to determine the zi.

We can collect more than n linear equations, and the resulting homogeneous
system will still have a nontrivial solution in G, and thus in particular also modulo
d1 and d2, if we consider the unknowns zi as variables in Z/d1Z, respectively
Z/d2Z.

Since in general, sufficiently overdetermined homogeneous systems of equa-
tions are very unlikely to have nontrivial solutions (see the discussion in section
3.2.6), this observation can be used to determine d1 and d2: the easiest way is to
attempt solve the system modulo different integers, and if a nontrivial solution
is found, conclude that the modulus is with high probability a divisor of d2.

It is, however, important to note that in our case, nontrivial solutions exist
not only mod d1 and d2, but also modulo k and its divisors: Since each linear
constraint is a sum of exactly k of the zi, we have the solution

z1 = · · · = zn = 1 mod k.

Fortunately these unhelpful solutions are easy to detect, since the value of k is
known.

Different techniques are conceivable to recover d1 and d2. As mentioned
before, a simple solution to this problem is to just try to solve the overdetermined
system for different moduli, and thus find moduli that lead to solutions. In the
most frequent case, we have d1 = 1, and so the sought value for d2 is an integer
in the interval [(q + 1) − 2

√
q, (q + 1) + 2

√
q] by the Hasse theorem (Theorem 2

of chapter 2); otherwise there are in fact few possibilities, given the conditions
d1 | gcd(d2, q − 1) and d1d2 ∈ [(q + 1) − 2

√
q, (q + 1) + 2

√
q].

By (3.3), we assume gcd(k, |G|) = 1, thus we can separate the solutions
modulo k from the other ones. If (3.3) is not fulfilled, then this will be detected
at this point, and appropriate measures can be taken (e.g., the code can be
shortened).

Once the values for d1 and d2 have been recovered, we can solve for the zi.

3.2.4 Step II: Finding an isomorphic curve

The knowledge of the group structure makes it possible to create minimum
weight words with special properties. We will make use of this fact to find an
elliptic curve E that is F-isomorphic to Ê.

We first find two codewords v and w corresponding to rational functions f1

and f2 that only differ in a small factor. The rational function f1/f2 is then a
fraction of two very low degree polynomials whose coefficients are not known.

Now assume that the coordinates of the point Pi are known, for some known
1 ≤ i ≤ n. Then the equality

vi

wi
=
f1

f2
(Pi)

3.2. ELLIPTIC CODES 51

gives a linear condition on the coefficients of the rational function f1/f2. Thus, if
sufficiently many points are known, and the degree of the constituting polynomi-
als of f1/f2 is sufficiently small, then all the coefficients of the rational function
f1/f2 can be determined.

We can then use the evaluations of f1/f2 on other points together with the
explicit formula for f1/f2 to deduce conditions on the coordinates of these points.

Together with geometric information of the points (in particular, that it is
possible to detect when three points are collinear), this information can be used
to compute the coordinates for a larger number of points. Once a sufficient
number of points have been reconstructed, we can solve for the coefficients of
the Weierstrass equation, and determine the curve equation.

This procedure can only be carried out if we can start out with sufficiently
many known points. We will see that by cleverly choosing the functions f1 and
f2, we can get the procedure started by knowing the coordinates of only three
points, say, P1, P2 and P3.

Since we do not know any points, a priori, the idea is thus to just guess
coordinate positions for those three points, and then to reconstruct a few points
assuming that the guess was correct. For a wrong guess of P1, P2 and P3, it is
very unlikely that all the reconstructed other points will lie on a common elliptic
curve, and thus we are able to detect wrong guesses.

If we were to guess all three points P1, P2 and P3, this would make for |F|6
guesses, which is impractical for interesting values of |F|. Given the curve iso-
morphisms as discussed in section 3.2.1, however, we can fix the coordinates of
P1 and P2 arbitrarily and then only have to try all the possible values for P3,
resulting in a successful recovery in 1/2 of the cases.

We therefore only have to test roughly |F|2 guesses, which is practical if a
single guess is inexpensive.

It is important to make the guessing fast, easy and reliable. For example,
the guessing procedure should be designed in a way so that pathological cases
do not occur.

One way to do this is to create a recovery schedule beforehand. The recovery
schedule contains the information about which points can be recovered, and how
this is done, independently of the initial guess.

Since the same recovery schedule can be applied regardless of the initial guess
for coordinates, and since most of the complexity and probabilistic algorithms
are moved to the schedule creation (which is only performed once) all we have to
provide is a rapid algorithm that executes the schedule and rejects false guesses.

We will now describe the procedure step by step.

Step IIa: Building the words f1 and f2

We first compute two codewords v and w corresponding to functions f1 and f2

such that the rational function f1/f2 is a fraction of two degree 1 polynomials,

52 CHAPTER 3. AN ATTACK AGAINST ELLIPTIC CODES

more precisely,
f1

f2
=
αx+ β

x+ γ
.

The key ingredient to be able to do this is again equation (3.5), that is, the
observation that if x is a word of minimum weight, then its divisor is known.

For this reason, the sought words v and w have to be minimum weight. We
will therefore find f1 and f2, such that

f1(P) = g(P) · �1(P)
f2(P) = g(P) · �2(P),

where �1 and �2 are polynomials of degree 1 that are zero on different vertical
lines, i.e.,

�1(x, y) = αx+ β

�2(x, y) = x+ γ,

for unknown coefficients α, β and γ. The function g must have k−2 zeros among
the Pi in order for the resulting codewords v and w to have minimum weight.

We first find two pairs of opposite points, i.e., four distinct integers 1 ≤
i1, i2, j1, j2 ≤ n, such that

zi1 = −zi2 and zj1 = −zj2 .
In order to construct a suitable set of zeros for the factor g, we find a set X ⊂
{1, . . . , n} \ {i1, i2, j1, j2} of size k − 2, such that∑

i∈X

zi = 0.

Then there exists a rational function g such that

div(g) =
∑
i∈X

〈Pi〉 − (k − 2)〈O〉.

The function g is unique up to a constant multiplicative factor.
Analogously, since

∑
i∈X∪{i1,i2} zi = 0 and

∑
i∈X∪{j1,j2} zi = 0, there are ra-

tional functions f1 and f2 and corresponding to codewords v and w that have
the zeros on the positions X ∪{i1, i2} and X ∪{j1, j2}, respectively. Those code-
words are unique by minimality and easy to construct by pivoting the generator
matrix suitably.

Let f1 and f2 be the functions corresponding to v and w. Then, again by
(3.5), we know that

div(f1) = div(g) + 〈Pi1〉 + 〈Pi2〉 − 2〈O〉
div(f2) = div(g) + 〈Pj1〉 + 〈Pj2〉 − 2〈O〉.

Hence, f1 = g · �1 and f2 = g · �2, where �1 is the vertical line passing through
Pi1 and Pi2 and �2 is the vertical line passing through Pj1 and Pj2.

Since we can compute the codewords v and w explicitly, we can evaluate
f1/f2 on the points on which f2 is not zero.

3.2. ELLIPTIC CODES 53

Step IIb: Creation of the recovery schedule

We keep a list of processable points (code coordinates) L, which initially contains
supp(w), i.e., the positions on which we can evaluate the function f1/f2 as
determined in the previous section.

The recovery schedule creation consists of two steps:

1. Select the initial triple. We select three coordinates in L, they will
correspond to the points that later will be guessed. The three points have
to satisfy a number of conditions.

First, the coordinate positions should be such that they are not collinear,
i.e., if we write i, j, � ∈ L the distinct coordinate positions to select, we
want

zi + zj + z� �= 0.

Second, we require that zi, zj and z� are not in a proper subgroup of G,
i.e.,

〈zi, zj , z�〉 = G.
Furthermore, it is convenient to require that each of the lines passing
through two of the three points in the triple pass through a third point in
L. (This condition can also be verified by looking at the zis.)

We add the triple to an array S, the recovery schedule. We also remove
the points from L.

2. Build the recovery schedule. Now we start adding other points to
the schedule according to the following rule: iteratively, any point can be
added to the schedule if it is collinear to two points that are already in the
schedule.

Each added point is recorded in the array S, which in addition also stores
with which points from the schedule it was aligned. The added points are
removed from L.

A graphical illustration of a possible recovery schedule is given in figure 3.1.
In the example, the three points P1, P2 and P3 surrounded by dotted lines are
the initial points, the coordinates of which are assumed to be known.

The recovery schedule S corresponding to Figure 3.1 would look as follows
in this case:

Point Aligned with
1 P1

2 P2

3 P3

4 P4 P1, P2

5 P5 P1, P3

6 P6 P3, P4

54 CHAPTER 3. AN ATTACK AGAINST ELLIPTIC CODES

5

6

P1

2P

P

P4

3

P

P

Figure 3.1: Example recovery schedule

Only a small number of points is needed in the recovery schedule: Six generic
points are enough to uniquely determine the elliptic curve, so we need just a few
more than six points. In practice eight to ten points are enough, but we will
discuss this point further in section 3.2.5. The schedule building will be stopped
as soon as a small predetermined number of points are in the schedule.

Step IIc: The guessing procedure

Without loss of generality assume the initial triple of the recovery schedule con-
sists of the points P1, P2 and P3. We will now show how to deduce the coordinates
for all points in the recovery schedule, once the coordinates for the first three
points have been fixed. Note that f2 is nonzero on any point in the recovery
schedule, and so the values

vi

wi
:=

cif1

cif2
(Pi) =

�1
�2

(Pi), 1 ≤ i ≤ 3,

are finite and can be determined, giving the three equations

(3.7)
vi

wi
=
αxi + β

xi + γ
1 ≤ i ≤ 3,

where xi is the x-coordinate of Pi, and the unknowns are α, β and γ. We can
write these equations as linear equations, and then solve for α, β and γ.

In a second step, we solve the linear equation

vi

wi
=
�1
�2

(Pi) =
αxi + β

xi + γ

for every point in the recovery schedule (except the initial triple). The equations
are again equations of the form (3.7), except that this time, the unknowns are

3.2. ELLIPTIC CODES 55

the xi. That way, we can determine the x-coordinates of all the points in the
recovery schedule.

To determine the y-coordinates, we use the schedule itself. We proceed in the
schedule order. Each point P in the schedule is aligned with two points Q and
R whose coordinates are already known. To determine the y-coordinate of P ,
compute the line that passes through Q and R, and determine its intersection
with the known vertical line passing through P : This intersection gives the
coordinates of P . Figure 3.1 illustrates this; in the drawing, the vertical dotted
lines are the lines that have been determined by evaluating �1/�2 on the Pi, and
the straight lines are those that align three points in the schedule.

Having determined the (x, y)-coordinates of all the points in the schedule, it
is of course easy to determine whether an elliptic curve passing through all the
given points exists, and, if yes, what its parameters are: It is enough to insert
the coordinate points into Weierstrass equations and solve for a1, a2, a3, a4, a6. If
we choose the recovery schedule large enough, i.e., such that it over-determines
the curve parameters by a few equations, wrong guesses of the coordinates for
the initial triple will be rejected with very high probability.

Step IId: Computing the curve isomorphism

We now know G and E. In order to determine the points Pi for all i, we determine
the isomorphism

Z/d1Z × Z/d2Z → E(F)

that maps zi �→ Pi.
To do this, we can proceed the following way. Pick two points whose coor-

dinates have been recovered, say P1 and P2. Write z1 = (r1, s1), z2 = (r2, s2),
where ri ∈ Z/d1Z and si ∈ Z/d2Z.

We can then try to determine two integers a, b ∈ Z such that

a(r1, s1) + b(r2, s2) = (0, 1) in G.

For example, compute a as a function of b modulo d2 using as1 + bs2 = 1, and
then use this solution to determine b modulo d1 by solving the corresponding
equation modulo d1. This works since d1 | d2. This computation fails if P1 and
P2 do not generate E(F). In this case, another couple of points has to be tried.
(Since we assumed that the initial triple generates G, it should contain such a
pair.)

Given a and b, we can compute the point S := [a]P1 +[b]P2 corresponding to
(0, 1) in G. In the same manner, R corresponding to (1, 0) in G can be computed.

Given the points R and S, we have the isomorphism

(a, b) ∈ G �→ [a]R + [b]S

that satisfies zi �→ Pi.

56 CHAPTER 3. AN ATTACK AGAINST ELLIPTIC CODES

We close this section by remarking that it is important that an isomorphism
G → E(F) is sought that maps zi �→ Pi, and not just any isomorphism G →
E(F). This is so because group isomorphisms of E(F) do not, in general, have
corresponding curve isomorphisms.

3.2.5 Step III: Reconstructing the ci

We can now construct the elliptic curve E, and the points P1, . . . , Pn, such that

(3.8) AGC(E, k〈O〉, (P1, . . . , Pn))

is, up to a multiplicative constant in each coordinate position, the same code as

AGC(Ê, Δ̂, (P̂1, . . . , P̂n)).

Thus, it remains to determine the constants c1, . . . , cn, such that

AGC(E, k〈O〉, (P1 , . . . , Pn), (c1, . . . , cn)) = AGC(Ê, Δ̂, (P̂1, . . . , P̂n)).

Let

(x1, . . . , xn) ∈ AGC(E, k〈O〉, (P1 , . . . , Pn), (1, . . . , 1))

and (y1, . . . , yn) ∈ AGC(Ê, Δ̂, (P̂1, . . . , P̂n))⊥.

Since
(c1x1, . . . , cnxn) ∈ AGC(Ê, Δ̂, (P̂1, . . . , P̂n)),

we have that (c1, . . . , cn) satisfies

n∑
i=1

cixiyi = 0,

giving a linear equation on the ci. By choosing arbitrary codewords x and y
in the appropriate codes, we can find > n linear conditions on the ci, and thus
solve the homogeneous system to get a vector (c1, . . . , cn).

We show that the solution to this system is unique with very high probability.
Assume there are two solutions ci and ĉi which are not equal up to a mul-

tiplicative factor. Then we can assume ĉi = 0 for some 1 ≤ i ≤ n, and ĉj �= 0
for some 1 ≤ j ≤ n. Let x ∈ AGC(E, k〈O〉, (P1 , . . . , Pn)) be a minimum weight
word such that i, j ∈ supp(x). The word

(ĉ1x1, . . . , ĉnxn)

is nonzero and has weight at most n − k − 1. Since the minimum distance of
AGC(Ê, Δ̂, (P̂1, . . . , P̂n)) has minimum distance at least n − k, its dual code
contains a parity check

y ∈ AGC(Ê, Δ̂, (P̂1, . . . , P̂n))⊥

3.2. ELLIPTIC CODES 57

that fails on (ĉ1x1, . . . , ĉnxn), i.e. such that

n∑
�=1

(ĉ�x�)y� �= 0,

as desired.
In the “proof” above we assumed that a suitable minimum weight word x

exists. In fact, this assumption is the same as assuming that the punctured code

AGC(E, k〈O〉, (P1, . . . , Pi−1, Pi+1, . . . , Pj−1, Pj+1, . . . , Pn))

has minimum distance (n − 2) − k. The arguments in section 3.2.6 justify this
assumption.

3.2.6 Assumptions

In the above algorithm, a number of assumptions were made which do not neces-
sarily hold in general for elliptic codes. We will now discuss the impact of these
assumptions on the practicality of the attack.

Large evaluated point set

We implicitly assumed that the point set {P1, . . . , Pn} contains many elements,
and in particular, most elements of E(F). In other words, we assumed that the
block length n is not much smaller than |E(F)|.

The two steps in the algorithm that are affected most by small point sets
are:

• Picking two pairs of opposite points, so that f1 and f2 can be constructed.

• Picking an initial triple in the recovery schedule.

In order to keep the pressure off these steps, it makes sense in practice to reorder
the steps of the algorithm we just presented, and to compute the recovery sched-
ule before computing the functions f1 and f2. We refrained from presenting the
algorithm this way, because it complicates the presentation considerably.

We now discuss the problem of finding opposite points if the point set is
small. This problem can be summarized as follows: Find 1 ≤ i < j ≤ n such
that zi + zj = 0.

To illustrate the problem, we start by showing how small point sets can cause
the algorithm to fail. Assume n < |E(F)|/2. Then a point set {P1, . . . , Pn} can
be constructed such that Q ∈ {P1, . . . , Pn} implies (−Q) /∈ {P1, . . . , Pn}. So
there is no pair i, j with Pi + Pj = O, and thus the problem that needs to be
solved in step IIa does not even have a solution.

For such a point set, obviously none of the vertical lines even exist.

58 CHAPTER 3. AN ATTACK AGAINST ELLIPTIC CODES

This construction shows that the proposed algorithm can be brought to a
halt by smartly choosing a small point set. On the other hand, it also shows
that whenever (|E(F)| − 1)/2 + 2 < n, then two such pairs exist, and they can
be found by exhaustive search, which is only O(n2) in this case.

If the small point set is chosen randomly, then a back-of-the-envelope com-
putation shows that large alphabets alone do not lead to efficient solutions: If
we choose

n = O(
√

|F|) = O(
√

|E(F)|),
then, since there are O(n2) pairs of points in the point set, there are still O(1)
pairs summing to zero, on the average. So we expect that pairs of opposite
points in the point set exist with constant probability.

We now turn to study the initial triple choosing under the small point set
assumption. We focus on the case where the point set is chosen randomly.

If G is cyclic, then for any i, the probability that zi generates G is ϕ(|G|)/|G|,
where ϕ is the Euler totient function. The quantity ϕ(|G|)/|G| is not typically
small. On the average, it converges to at least 3/π2, i.e., from the asymptotic
formula in [AS1970, p. 826] it is trivially deduced that

lim
n→∞n−1

n∑
i=1

ϕ(i)
i

≥ 3
π2
.

Moreover, it can be bounded from below. We have, from [BS1996, Theorem
8.8.7],

ϕ(n)
n

>
1

eγ log(log(n)) + 3
log(log(n))

,

for n ≥ 3. This estimate is > 0.2 for 100 < n < 1000, and so the probability
that three randomly selected points do not contain a generator of G is certainly
< 0.488. Thus, in this case, the probability that a random triple is in a proper
subgroup is certainly < 0.512 for those values of n.

We would therefore expect to only have to select roughly two triples at ran-
dom to have this condition satisfied.

The condition that each pair of points is collinear with a third point in the
point set, is satisfied per pair with probability

n− 3
|E(F)| ≈

n

|E(F)| =: λ,

so the probability that this condition is satisfied for the three points is roughly
λ3, and roughly λ−3 triples would have to be randomly selected, until a good one
is found. Since there are roughly n3/6 such triples, one would expect at least
one triple verifying all the conditions to exist as long as

1
12

(nλ)3 � 1.

3.2. ELLIPTIC CODES 59

So, asymptotically, as long as n ∈ Ω(|E(F)|1/2+ε), such a triple is expected to
exist.

In summary, the cost of a sufficiently small random point set is that the block
length in symbols has to be roughly halved for the same block length in bits.

Since we have seen how to break the algorithm with small point sets, and
since good parameters are obtained with large point sets, we will assume that
the point set is linear in the sequel, i.e.,

n ≥ μ|E(F)|
for some fixed μ.

Minimum distance

We have assumed that words of weight n − k do exist and can be efficiently
sampled. Rigorously speaking, we only know that d ≥ n− k, so it could well be
that the elliptic code is in fact maximum distance separable, i.e., has distance
d = n− k + 1.

In practice, we have never seen that happen, so a distance larger than the
one provided by the bound apparently happens only in very particular cases,
and is especially unlikely under the large point set assumption, as we will see
now.

Consider the problem of finding words of weight n− k and assume that the
set of evaluated points on the elliptic curve has been selected randomly. Then,
by diagonalizing the generator on a random information set, we get words of
weight n − k + 1 at most. What is the probability that the word has weight
n− k? Without loss of generality, consider a codeword having zeros in the first
k− 1 entries. The jth position (with j > k− 1) will be a zero position as well if
and only if

P1 + · · · + Pk−1 + Pj = O.
Since the Pi are random in E(F), this probability is equal to the probability that
a random set of size n−k in E(F) contains a certain fixed value. This probability
is

n− k

|E(F)| = μ(1 −R)

Thus, words of weight n−k are frequent in our setting, and sampling them is not
a big problem, as each diagonalization of the generator matrix on an information
set will yield a number proportional in n of them.

The algorithm to find such words is thus probabilistic polynomial time.

Stray solutions in linear systems

We did not prove that the overdetermined linear systems we solve do not have
any undesired, systematic wrong solutions for our guesses in several places, in
particular:

60 CHAPTER 3. AN ATTACK AGAINST ELLIPTIC CODES

• In step I, when solving for the group.

• In the guessing procedure of step II, when solving for the Weierstrass equa-
tion.

The underlying heuristic argument assumes that these matrices are random ma-
trices. Under the random matrix model, we can use the Markov inequality to
estimate the probability that an overdetermined homogeneous system of equa-
tions has nontrivial solutions: Let A be an � × r matrix with random entries.
The probability that the system

Axt = 0

has nontrivial solutions is

Prob(|rker(A)| > 1) = Prob(|rker(A)| ≥ q)

= Prob
(|rker(A)|

q
≥ 1

)
≤ q−1E(|rker(A)|)
= q−1

(
qr

(1
q

)�)
= qr−�−1,

where q = |F| and rker(A) denotes the right kernel of A, thus each added con-
straint reduces the failure probability by a factor q−1.

There is always the risk with heuristic arguments that the practical results
turn out to be much worse than what we predict. In our case, the findings are
the following.

For the guessing procedure, we could not detect any degenerate behavior,
and, in fact, recovery schedules of size 8 seem to work just fine.

Step I, however, does not behave so nicely. It turns out that if we take n
of the sampled constraints, the determinant (over Q) of the solution is often 0,
causing frequent failures for large n. Other results on ranks of random matrices
like [BKW1996] suggest that the problem is not the relative sparsity of the
constraint matrix, but the fact that we do not sample minimum weight words
independently: For each diagonalization we take all minimum weight words that
appear to build a random matrix.

There are several solutions to this problem. The most rigorous, but also the
most awkward one is to just find one minimum weight word per information
set, and discard the other ones, thus arranging for independent minimum weight
words. It is much better, from a computational point of view to sample, say,
4n minimum weight words in the usual way, and modify the way the constraint
matrix is built instead: each row in the matrix can be chosen to be a random
linear combination of just a few (say, 3) of the sampled constraints, causing the
matrix to be more random.

3.2. ELLIPTIC CODES 61

It is not clear how exactly this second approach must be generalized to make
it work for asymptotic n, but as we will see in the results for the practical running
time, even for very large n, this slight modification caused all practical problems
to disappear.

3.2.7 Running time

We give an analysis of the running time under the aforementioned assumptions;
e.g., we assume the size of the point set is ≥ μ · |E(F)|. We write q = |F|.

As previously discussed, any word in a diagonalization has weight n−k with
a probability that only depends on the rate R and μ. In order to collect O(n)
relations, we thus need O(1) diagonalizations, resulting in total a cost of O(n3)
to collect enough relations.

Finding the group structure requires solving at most q+2
√
q = O(q) systems

of equations in n variables, where q = |F|. This step costs thus O(qn3). (In the
common case, where G = Z/d2Z, it is O(

√
qn3).)

The steps IIa and IIb are negligible in practice, but note that a number of
subset sum problems have to be solved. The probabilistic arguments of section
3.2.6 suggest that for interesting parameters, the subset sum problems are O(q).
Two diagonalizations of matrices are needed, so this is O(q + n3).

The guessing step IIc takes O(q2) operations in F. For practical values of q,
this is best modeled as O(q2).

Thus, the total probabilistic running time of this algorithm is O(qn3).

3.2.8 Experimental running time

In order to see how well an attack works out in practice, it is of course customary
to compute the actual obtained running times of the attack algorithm. Also, and
perhaps more importantly, practical running time results allow us to verify that
the heuristic assumptions from section 3.2.6 are reasonable in practice.

It should be noted that our implementation is not completely general; in
order of importance, we lived with the following restrictions.

1. We assume |E(F)| is a prime. This implies in particular also that the group
E(F) is cyclic.

2. The divisor is always of the form k〈P 〉 for some rational point not of order
2.

3. We work on a prime field, i.e., F = GF (p) for some prime p.

4. We put ourselves in the setting gcd(|E(F)|, k) = 1, conforming to (3.3).

These assumptions were made to keep the implementation reasonably simple.
For example, if |E(F)| is not a prime, we have to do linear algebra operations on
non-fields, which is tedious to implement.

62 CHAPTER 3. AN ATTACK AGAINST ELLIPTIC CODES

Running times for different code sizes

We will now give a few samples of the running time of the attack against elliptic
curves that we implemented in C++, and ran on a PC (Pentium IV, 2.4 GHz),
though it should be noted that the implementation is not optimized.

It is of course not obvious against what instances the attack should be real-
istically run. As a first experiment, we picked a [178, 89, 89] code over GF (149)
that is comparable to the Goppa code that McEliece had originally proposed:

Goppa code (McEliece) Elliptic
[n, k, d] [1024, 524,≥ 101] [178, 89, 89]
field GF (2) GF (157)
correctable errors 50 44
rate ∼ 1/2 1/2
IS success probability 2−53 2−54

canonical key size 537 kbits 116 kbits
smallest key size 250 kbits 58 kbits

In this table, IS success probability denotes the probability that a random infor-
mation set is error free, and gives a measure of the security level under general
decoding. The canonical key size is the size of a random generator matrix in bits,
given by nk log2(|F|). The smallest key size is the size of a systematic generator
matrix of the code or the dual, whichever is smaller.

In our setup, the running time over 10 runs of the algorithm to compute
private keys from the given public keys, were 38.89 seconds on the average, 49
at most, and at least 34.

By today’s standards, the security level of the original McEliece cryptosystem
is much too weak. The following table lists attack times (again averages of 10
runs) for larger codes:

[n, k, d] [326, 163, 163] [500, 250, 250] [1008, 504, 504]
field GF (307) GF (467) GF (953)
correctable errors 81 124 251
IS success probability 2−100 2−154 2−313

smallest key size 220 kbits 554 kbits 2514 kbits
average time 3 min 36 sec 12 min 4 sec 1 h 51 min
max time 5 min 4 sec 13 min 36 sec 2 h 1 min

Most likely, the [1008, 504, 504]-code over GF (953) is larger than anything one
would ever want to consider for a McEliece type cryptosystem. We note that
for this range of parameters, the dominating computation factor appears to be
O(n3).

Chapter 4

An attack against Sidelnikov’s
cryptosystem

c© 2007 International Association of Cryptological Research, IACR.
The contents of this chapter have been published as a paper [MS2007]
at Eurocrypt 2007, and are republished here with permission.

The Sidelnikov cryptosystem was proposed 1994 by Sidelnikov [S1994]. It
is a McEliece-type cryptosystem using Reed-Muller codes in combination with
powerful decoding algorithms.

In this section, we present our attack against the Sidelnikov cryptosystem.
This attack was published in [MS2007], and our presentation here follows the
original publication, although with a number of improvements.

Reed-Muller codes are low-rate if any interesting error-correction capability
is to be obtained. This makes it easy to apply algorithms such as the Canteaut-
Chabaud-algorithm [CC1998] to find low weight words, and also to decode if
the number of errors is less than d/2 (half the minimum distance). However,
this disadvantage is mitigated by the fact that there are decoding algorithms
for Reed-Muller codes which decode many more errors (with high probability)
than even the minimum distance of the code, rendering direct decoding attacks
impractical.

Low weight word finding algorithms can still be used to find minimum weight
words in codes with suitable parameters, though. It turns out that because of
this, the Sidelnikov-cryptosystem is not secure: The goal of this chapter is to
show how to use minimum weight codewords to invert trapdoors in Reed-Muller
codes. More precisely, if G is the k × n generator matrix of a Reed-Muller
code, S is an n × n permutation matrix and A is a k × k random invertible
scrambler matrix, and the product AGS is public knowledge, we show how to
find a permutation matrix S̃ such that the codes generated by

GS̃

63

64CHAPTER 4. AN ATTACK AGAINST SIDELNIKOV’S CRYPTOSYSTEM

and
AGS

are the same. Since G is not secret (there is only one binary Reed-Muller code
for given dimensions), this means that trapdoors of this cryptosystem can be
inverted.

4.1 Outline of the attack

We now present an algorithm which, given a permuted, scrambled Reed-Muller
code C, constructs a permutation τ such that if the positions of C are permuted
accordingly, the resulting code is a Reed-Muller code.

The sketch of the attack is as follows. Let C = R(r,m)σ for some unknown
permutation σ, given by an arbitrary generator matrix.

1. Find codewords in C which also belong to the subcode R(r− 1,m)σ . Find
enough such vectors to build a basis of R(r − 1,m)σ .

2. Iterate the previous step (with decreasing r) until obtaining R(1,m)σ .

3. Determine a permutation τ such that R(1,m)τ◦σ = R(1,m). Then

R(r,m)τ◦σ = R(r,m),

and this fact can then be used to decode.

The meat of the attack lies in the first step, which is based on Proposition 2
of section 2.4.1.

4.2 Finding the subcode R(r − 1, m)σ ⊆ R(r, m)σ

The basic idea of this step is to find a codeword for which we know that it is a
product of other codewords, and then to split off a factor lying in the R(r−1,m)σ

subcode.
By Proposition 2, we know that a minimum weight codeword is a product of

several codewords of R(1,m)σ . Hence, we do the following: We find a minimum
weight codeword x and split off a factor of this word.

To this end, we shorten the code on supp(x), and use the structure of the
shortened code to find a factor of x which lies in R(r − 1,m)σ .

Finding enough words in R(r− 1,m)σ will result in a basis of R(r− 1,m)σ .

4.2.1 Finding factors of minimum weight words

We drop the permutation σ in this section, since our ideas do not depend on σ.
For concreteness, we will first study the case r = 2 and generalize later on.

4.2. FINDING THE SUBCODE R(R− 1,M)σ ⊆ R(R,M)σ 65

Let x ∈ R(2,m) be a minimum weight codeword. Using Proposition 2, and
changing the basis, we can assume that x = v1v2. (We identify codewords with
Boolean functions, as explained in section 2.4.1.)

Let Csupp(x) be the shortened code obtained from shortening R(2,m) on the
support of x. In other words, Csupp(x) is the subcode of R(2,m) containing
only the words which are zero on supp(x), and with these positions punctured
afterwards. Let f ∈ B(2, {v1, . . . , vm}) be any codeword in this shortened code.
Using the notation v̄ = (v3, . . . , vm), we can then write

(4.1) f(v1, v2, v̄) = λv1v2 + v1f1(v̄) + v2f2(v̄) + h(v̄),

where λ ∈ F2, f1, f2 ∈ B(1, {v3, . . . , vm}), and h ∈ B(2, {v3, . . . , vm}). Now, the
condition that f is in the shortened code means that f(1, 1, v̄) = 0 for all v̄.
Rewriting this condition using (4.1) gives

(4.2) 0 = λ+ f1(v̄) + f2(v̄) + h(v̄),

which implies in particular that h ∈ B(1, {v3, . . . , vm}).
The value of f on the (disjoint) sets {v1 = 0, v2 = 0}, {v1 = 1, v2 = 0} and

{v1 = 0, v2 = 1} is
v1 v2 f on that set
0 0 h(v̄)
1 0 f1(v̄) + h(v̄)
0 1 f2(v̄) + h(v̄)

So in particular, each of these sets contains a codeword of a R(1,m − 2), and
they are related by the condition (4.2). So, up to permutation of coordinate
positions, we have

R(2,m)supp(x) ⊆ R(1,m− 2) ×R(1,m− 2) ×R(1,m − 2),

where the factors R(1,m− 2) correspond to the positions with {v1 = 0, v2 = 0},
{v1 = 1, v2 = 0} and {v1 = 0, v2 = 1} respectively.

Codes that are subspaces of Cartesian products of nontrivial codes are called
concatenated codes, and their block decomposition can be recovered with algo-
rithms that will be discussed later on.

In our case, by recovering the block decomposition of the code, we get the
sets {v1 = 0, v2 = 0}, {v1 = 1, v2 = 0} and {v1 = 0, v2 = 1}. Now consider the
words of length 2m that have ones exactly on the support of x and on one of the
three sets. These words can be expressed as Boolean functions:

Ones on the set Corresponding function
{v1 = v2 = 1} ∪ {v1 = 1, v2 = 0} v1
{v1 = v2 = 1} ∪ {v1 = 0, v2 = 1} v2
{v1 = v2 = 1} ∪ {v1 = 0, v2 = 0} 1 + v1 + v2

66CHAPTER 4. AN ATTACK AGAINST SIDELNIKOV’S CRYPTOSYSTEM

Note that whatever the choice of the selected set is, the corresponding function
is in B(1, {v1, v2}), so the constructed word is a codeword of R(1,m); this shows
how the reduction works in the case r = 2.

We now look at the general case r > 1, being slightly more formal this time.
Let x = v1 · · · vr be a minimum weight codeword in R(r,m), and Csupp(x) the
code R(r,m) shortened on the support of x. Write v̄ = (vr+1, . . . , vm), and let
f be a codeword in Csupp(x). Then we can write f as

f(v1, . . . , vr, v̄) =
∑

I∈2{1,...,r}
fI(v̄) ·

∏
i∈I

vi,

where for each I ⊆ {1, . . . , r}, we have fI ∈ B(r − |I|, {vr+1, . . . , vm}). The
condition that f be 0 on {v1 = v2 = · · · = vr = 1} implies

(4.3) 0 =
∑

I∈2{1,...,r}
fI(v̄),

and shows in particular that f∅(v̄) ∈ B(r − 1, {vr+1, . . . , vm}). Therefore, the
shortened code is in fact a concatenated code with the inner codewords being on
the disjoint sets determined by the value of (v1, . . . , vr), that is, up to permuta-
tion, we have

Csupp(x) ⊆ R(r − 1,m− r) × · · · × R(r − 1,m− r)︸ ︷︷ ︸
2r − 1 times

.

There are, however, more conditions to the concatenation than just the one
implied by (4.3).

We shorten on supp(x), i.e., the set {v1 = · · · = vr = 1}, so there are 2r − 1
sets, and each is of length 2m−r.

We apply the algorithm to recover concatenated codes of the next section
(Algorithm 1) to find the sets and then construct a word y of length 2m that
has ones exactly on the points {v1 = · · · = vr = 1} ∪ S, where S is one of the
determined sets, say, the set S verifying

{v1 = v2 = · · · = v� = 0, v�+1 = v�+2 = · · · = vr = 1}.
We can write supp(x) ∪ S as follows:

{v1 = v2 = · · · = v� = 0, v�+1 = v�+2 = · · · = vr = 1},
or, even more explicitly,

{v1 = v2 ∧ v2 = v3 ∧ · · · ∧ v�−1 = v� ∧ v�+1 = 1 ∧ · · · ∧ vr = 1}.
Translating conditions of the form “a = b” to the expression (1 + a+ b), we see
that this set is equal to the support of

y := (1 + v1 + v2)(1 + v2 + v3) · · · (1 + v�−1 + v�)v�+1 · · · vr.

4.3. FINDING INNER WORDS IN THE SHORTENED CODE 67

Now, deg(y) ≤ 1 · (�− 1) + 1 · (r − �) = r − 1 (in fact, we have equality), which
shows that y ∈ B(r − 1, {v1, . . . , vr}). So we have constructed a word of order
r − 1, as desired. Note that one can write x = viy for any 1 ≤ i ≤ �, giving
factorizations of the sought form.

4.3 Finding inner words in the shortened code

To distinguishing the sets with different values of (v1, . . . , vr), we use the fact
that the code is a concatenated code, with an inner codeword on each of these
sets.

Several approaches to recover concatenated codes are conceivable, for exam-
ple in the paper [MS2007], we gave a solution that works on the code itself. In
this presentation, we will make use of Sendrier’s algorithm from [S1994] instead.

The idea of Sendrier’s algorithm is as follows: If a code is concatenated,
then any parity check on one of the inner blocks is a valid parity check for that
code. Since the inner blocks are comparatively short, such parity checks have low
weight. Now, assume that all the sufficiently low weight words in the dual code
have their support within one inner block, and let x = (x1, . . . , xn) be such a low
weight word in the dual code. Then if xi = 1 = xj for some indices 1 ≤ i, j ≤ n,
this implies that position i and j are in the same inner block. By collecting
enough such witnesses, the concatenated structure of the code can therefore be
recovered.

Of course, for this to work, we must show that the lowest weight words in
the dual have their support within a single inner word. In order to apply the
algorithm in our setting, we need to check the following:

Proposition 6 The dual code of the shortened code has minimum distance at
most 2r, and any word of weight 2r or less has support within a single inner
block.

To prove this, we first note that by equations (2.3) and (2.9), the dual code
is the puncturing on the positions {v1 = · · · = vr = 1} of R(m− r − 1,m). The
code R(m− r− 1,m) has minimum distance 2r+1. The dual of any of the inner
codes is R(m−2r,m− r), and has minimum distance 2r. Since any parity check
for an inner block is also a parity check for the complete code, this shows that
the puncturing of R(m− r − 1,m) has minimum distance at most 2r.

We now need to show that any word of weight (at most) 2r has support
within a single inner block. Let f ∈ B(m − r − 1, {v1, . . . vm}) be a nonzero
codeword.

The function f can be written as a polynomial in {vr+1, . . . , vm} with each
coefficient being a polynomial in {v1, . . . , vr}. With this notation, pick a mono-
mial of f that has maximum degree in {vr+1, . . . , vm}. Let o be its degree. The
coefficient of this monomial is a Boolean function g(v1, . . . , vr) in the variables

68CHAPTER 4. AN ATTACK AGAINST SIDELNIKOV’S CRYPTOSYSTEM

{v1, . . . , vr}. Let � be the degree of g. We can assume � < r, since otherwise the
factor v1 · · · vr appears in g, but this factor can be removed, since the positions
where v1 · · · vr = 1 have been punctured.

Now fix a vector (c1, . . . , cr) ∈ Fr
2 such that g(c) is nonzero. Then the restric-

tion f |{v1=c1,...,vr=cr} is nonzero. Since f |{v1=c1,...,vr=cr} ∈ B(o, {vr+1, . . . , vm}),
the weight of f on {v1 = c1, . . . , vr = cr} is therefore at least 2m−r−o.

Since g ∈ B(�, {v1, . . . , vr}), the function f is nonzero on at least 2r−� − 1
inner sets in the punctured code. We have �+ o ≤ deg(f), and so the following
estimate for the weight of f on the punctured code holds:

wt(f) ≥ 2m−r−o(2r−� − 1) ≥ 2�+1(2r−� − 1) = 2r+1(1 − 2�−r).

As noted before, we have � < r. If � = r − 1, we have the guarantee that any
nonzero inner word will have weight at least 2r, proving the result in this case.
If � < r − 1, the above weight bound is > 2r, proving the result in this case.

Because of Proposition 6, we can apply Sendrier’s algorithm (Algorithm 1).

Algorithm 1 Sendrier’s algorithm
Require: C⊥ = (R(r,m)σsupp(x))

⊥

Ensure: Block decomposition represented as connected components of C.
Let V = {1, . . . , 2m−r(2r − 1)} and E = ∅.
while the graph (V,E) has more than 2r − 1 connected components do

Sample a word x of weight ≤ 2r in the punctured dual code.
for each (i, j) such that xi = 1 = xj do

Add (i, j) to E
end for

end while

At the end of the execution, each connected component in this algorithm
corresponds to an inner set.

4.4 The case r = 1

Consider the matrix A formed by the rows corresponding to the codewords vm,
vm−1, . . . , v1 of the (unpermuted) R(1,m). By construction, the i-th column of
this matrix is just the number i − 1, if we read the vector as a binary number.
Any possible binary vector of length m appears exactly once among the columns
of this matrix, and if we add the all-one row, we get a generator matrix for a
first-order Reed-Muller code.

Now, let f1, f2, . . . , fm, fm+1 be a random basis of R(1,m)σ . If the all-one
codeword is not a linear combination of f1, . . . , fm only, then in the matrix Aσ

formed by the rows f1, . . . , fm, each column-vector is distinct.

4.5. RUNNING TIME ANALYSIS 69

Thus, we can just reorder the columns by moving the zero vector to the first
position, etc., and thus obtain the matrix A. The same permutation applied to
the positions of R(1,m)σ will then yield R(1,m).

In order to make sure that the linear combination of the all-one word has a
nonzero coefficient for fm+1, it is enough to build the matrix Aσ as follows: First
write the matrix G having as rows the vectors f1, . . . , fm+1. Then pivot this ma-
trix on some non-zero element in the lowest column, i.e., the one corresponding
to fm+1. Now, by removing this last row, we get the matrix Aσ.

4.5 Running time analysis

In the analysis, we will take the quantity n = 2m (the block length) as the input
length, and we will assume r to be small with respect to m which leads to a
low rate setting. This assumption is based on the fact that Reed-Muller codes
behave very poorly when r is large, and are therefore practically useless in these
instances. For this reason, we will assume r/m → 0 and r < m/2. In practice,
r is usually a small constant. See [DS2006] for trade-offs between r, m and
decoding thresholds.

The only computationally hard operation of the attack is the one of finding
low weight words in a code, everything else is polynomial time. Thus, in order
to determine the running time up to a polynomial factor, it is sufficient to verify
that only a polynomial number of low weight words is needed, and then to restrict
attention to the low weight word finding algorithm.

Checking that only a polynomial number of low weight words has to be found
is straightforward: In order to find a single vector in R(r − 1,m)σ , a minimum
weight word in the original code has to be found, and then the concatenated
structure of the shortened code has to be recovered. Sendrier’s algorithm is
typically done after any position in the dual code is being covered by the support
of at least one minimum weight codeword, so O(n log(n)) such minimum weight
codewords have to be sampled.

Thus, finding a single vector of R(r − 1,m)σ needs the sampling of a poly-
nomial number of low weight words. But then, since k ≤ n, so does clearly
the sampling for a complete basis of R(r − 1,m)σ . And given that r � n, the
reduction to R(1,m)σ requires still only a polynomial number of samples.

Because of this, we conclude that, in the exponent, only the complexity of the
low weight word finding algorithm matters asymptotically, and we restrict our
attention to this algorithm. In practice, those polynomial factors do of course
matter to some extent, but notice that the degree of the polynomial is not very
large.

70CHAPTER 4. AN ATTACK AGAINST SIDELNIKOV’S CRYPTOSYSTEM

4.5.1 Finding very low weight codewords

As we have seen in section 2.2, the problem of finding very low weight words is
generally intractable for linear codes, but can be doable in certain settings.

In our case, we have to consider two low weight word finding instances; the
first one is that of finding minimum weight words in R(r,m), and the second one
is invoked when recovering the concatenated structure, where we have to find
minimum weight words in the dual of the shortened code.

We first consider the minimum weight word finding problem in R(r,m). We
use the information set decoding algorithm. Let G be a generator matrix of
R(r,m) diagonalized on some information set I.

The condition for a specific word in G of weight w to pop up as a row in such
a diagonalized matrix is that exactly one of its bits is inside the information set
and the other ones are outside. To simplify, we instead compute the probability
that none of its bits are in the information set, a probability which is a bit
smaller. In the low rate setting, we can approximate this by noting that if k is
small compared to n, the probability that none of the positions of I match with
the support of the word of weight w is roughly

(4.4)
(
1 − w

n

)k
.

This probability becomes large if k is very small with respect to n (i.e., the rate
is very low), or if w is very small.

Note that (4.4) estimates the probability of finding a single word of the
given weight given a random set I. If many words of the desired weight exist,
the probability has to be multiplied with the number of such words.

The second problem, that of finding low weight words in the dual code, is
much easier: In this case, we are in the high-rate setting and we seek words
of weight 2r. For fixed r we can invoke the arguments from section 2.2.2 to
conclude that this problem is polynomial time.

4.5.2 Finite-length analysis

The goal of this section is to specialize (4.4) to the case of Reed-Muller codes,
and to derive a crude bound which allows to estimate the feasibility of the low
weight word finding problems (and thus the attack) for different values of r and
m.

We first study the hardness of the minimum weight word finding procedure
for Reed-Muller codes. In this case, we have w = 2m−r and

k =
r∑

i=0

(
m

i

)
≤ m− r + 1
m− 2r + 1

· m
r

r!
.

If we plug this into (4.4), we get the hit probability of at least

(4.5) exp
{
m− r + 1
m− 2r + 1

· m
r

r!
· ln (

1 − 2−r
)}

4.5. RUNNING TIME ANALYSIS 71

for a single codeword per information set. By Proposition 3, there are at least
2mr−r(r−1) such words, and so the cost for finding any one of them can be esti-
mated to be at most

(4.6) 2−
m−r+1
m−2r+1

·mr

r!
·log2(1−2−r)−mr+r(r−1)

diagonalizations of the generator matrix. This rough estimate predicts, for ex-
ample, that finding a minimum weight word in R(3, 11) would cost roughly 237

diagonalizations, and thus finding such words is feasible in that case.
As expected and easily seen by comparing to real running times, the bound

(4.6) is somewhat pessimistic, i.e., it overestimates the running time. For exam-
ple, finding a minimum weight word in R(3, 11) needs only about 217 diagonal-
izations in practice. More precise estimates are of course possible, but result in
uglier formulas.

The other low weight word finding problem, that of finding minimum weight
words in the dual code, can be estimated with (2.7) if the value of r is small,
giving the running time estimate

22r
(
m−log(m−r+1

m−2r+1
)−r log(m)+log(r!)

)
,

which is O(n2r
) if regarded as a function of n = 2m only.

4.5.3 Asymptotic analysis

Asymptotically, the running time for the algorithm is

(4.7) O(poly(n)) · eO(poly(log(n)))

for any fixed value of r.
To see this, we start again with (4.5). Using the assumption that r/m → 0,

and writing the expression in terms of the block length n = 2m instead of m, we
see that this probability behaves like

exp {− log2(n)rCr(1 + o(1))} ,

where Cr is a constant depending only on r. This time, we assume there is just
a single minimum weight codeword, and thus a conservative estimate for the
number of trials to find a minimum weight word is

k =
r∑

i=0

(
m

i

)
≤ m− r + 1
m− 2r + 1

· m
r

r!
,

thus we can bound (4.4) by

exp
{
m− r + 1
m− 2r + 1

· m
r

r!
· log (

1 − 2−r
)}

.

72CHAPTER 4. AN ATTACK AGAINST SIDELNIKOV’S CRYPTOSYSTEM

Using the assumption that r/m→ 0, and writing the expression in terms of the
block length n = 2m instead of m, we get that this probability behaves like

exp {− log2(n)rCr(1 + o(1))} ,

where Cr is a constant depending only on r. Therefore, the number of trials to
find a minimum weight word can be estimated to be at most

(4.8) Clw := exp {log2(n)rCr(1 + o(1))} .

Using the fact that only a polynomial (in n) number of samplings is needed, we
conclude that (4.7) is is indeed a bound for the running time of the algorithm.

For large r, the numbers become very large. That is not an artifact: If the
code is not sufficiently low-rate, then finding minimum weight becomes a very
hard problem; since the algorithm depends on the feasibility of this.

4.6 Experimental running time

To observe the behavior of the algorithm in real life, we did a number of test-runs
on our implementation on a PC with a 2.4GHz processor. Our implementation
uses rather simple low weight word finding algorithms, and not elaborate ones
like, e.g., the ones described in [CC1998]. The following table lists obtained
averages for ten runs, except for the case (*), that is (m = 11, r = 4), which is
the data of a single run.

We only computed the values for m > 2r; in the other case, the attack can
be carried out more efficiently on the dual code.

r = 2 r = 3 r = 4
m = 5 (n = 32) 0.0015s
m = 6 (n = 64) 0.0023s
m = 7 (n = 128) 0.009s 0.03s
m = 8 (n = 256) 0.04s 0.18s
m = 9 (n = 512) 0.24s 1.26s 2m 57s
m = 10 (n = 1024) 1.77s 16.15s 22h 49m 57s
m = 11 (n = 2048) 12.14s 5m 20.8s 10d 11h 55m (*)

As predicted by the analysis, the performance changes a lot with r, and
degrades quickly for larger such values. This does indeed exhibit a limit of our
attack, but note that since the performance of Reed-Muller codes degrades with
large r, choosing such values would very likely open the doors to other attacks.

Chapter 5

Final thoughts

5.1 Algebraic curves of genus g > 1

We have seen that algebraic codes of genus g ≤ 1 do not lead to a viable cryp-
tosystem, what about the case g > 1? The question is still open, and of consid-
erable interest, as we will now show.

5.1.1 Why algebraic geometry codes?

Algebraic geometry codes have a number of stunning properties. We start by
citing the result that algebraic geometry codes over a sufficiently large alphabet
have an extremely good relative minimum distance for fixed rate.

Theorem 3 (Tfasman, Vlăduţ, Zink) Set q = p2m for some prime p, and
let F = GF (q). Then, asymptotically, there exist algebraic geometry codes over
F of relative distance δ and rate R such that

R ≥ 1 − δ − 1√
q − 1

− ε

for any ε > 0.

In particular, if q ≥ 72, these codes exceed the Gilbert-Varshamov bound (2.1)
for certain non-trivial rates. For more details, see [TVZ1982].

A good minimum distance is of course not sufficient to make codes interesting
for McEliece type cryptosystems: Rather, we want the codes also to correct a
large number of errors. The good news is that there are polynomial time decoders
that can decode algebraic geometry codes to up to half the minimum distance
using, e.g., the algorithm by Vlăduţ [V1990], and beyond, using the decoder by
Shokrollahi and Wasserman, [SW1999].

It follows that algebraic geometry codes lead to a McEliece type cryptosystem
for which the direct decoding attack is fully exponential in the block length. In
other words, they provide the best possible construction for such cryptosystems.

73

74 CHAPTER 5. FINAL THOUGHTS

At the current state of affairs, algebraic codes appear to be the only family of
codes which are known to have this property and that have not been broken in
other respects: Some other codes, such as many graph codes and concatenated
codes also correct a fixed fraction of errors, but they cannot be used in the
McEliece cryptosystem due to other weaknesses. None of the other constructions
of codes are currently known to correct a constant fraction of errors.

We note that while the argument we just gave is asymptotic, it is also ap-
plicable to reasonable, finite block lengths. Theorem 3 exists in non-asymptotic
formulation, and Janwa and Moreno gave a number of examples [JM1996] of
codes that compare favorably to most other constructions in terms of key size
for a fixed security level.

5.1.2 Structural weaknesses of algebraic geometry codes

We will now examine whether, and to what extent, the proposed methods for
elliptic codes can be generalized to the case of algebraic geometry codes. Some
of the steps of the attack against elliptic codes can can be generalized in a
straightforward way, but there are also a number of problems.

For the sake of concreteness, we will not try to do a general analysis, but
focus on algebraic geometry codes defined over plane, smooth curves instead.

Thus, we are given an arbitrary basis of an algebraic geometry code

C := AGC(X̂ , Δ̂, (P̂1, . . . , P̂n)),

where X̂ is an unknown, smooth, plane, projective curve, Δ̂ is an unknown
divisor, and P̂1, . . . , P̂n are unknown points on X̂ . We wish to determine a
curve X that is F-isomorphic to X̂ , a divisor Δ, points P1, . . . , Pn, and constants
c1, . . . , cn such that

C = AGC(X ,Δ, (P1, . . . , Pn), (c1, . . . , cn)).

Recovering Pic0
F
(X)

Our first task is to determine the degree 0 part of the divisor class group, Pic0
F
(X).

Note that in general, the divisor class group can not be identified with the points
on the curve.

We need an assumption corresponding to (3.3) for elliptic codes. Namely, we
will assume

(5.1) gcd(|Pic0(X)|,deg(Δ)) = 1.

We use (5.1) in the following way: Fix a rational point Q ∈ X . Then

Δ − deg(Δ)〈Q〉 = Δ′

∼ deg(Δ)Δ′′,

5.1. ALGEBRAIC CURVES OF GENUS G > 1 75

for some divisors Δ′ and Δ′′ of degree 0, and the equivalence follows from the
fact that multiplication by deg(Δ) is invertible in Pic0(X), given (5.1). Then

Δ ∼ deg(Δ)Δ′′ + deg(Δ)〈Q〉
= deg(Δ)

(
Δ′′ + 〈Q〉)︸ ︷︷ ︸

=:Δ0

,

where deg(Δ0) = 1. Therefore,

C = AGC(X ,deg(Δ)Δ0, (P1, . . . , Pn), (c1, . . . , cn)).

We seek a representation of the divisor class group. The group Pic0
F
(X) does

not in general have a structure as simple as the one given by (3.4), and it will
typically also be much larger than |X (F)|. However, even on more complicated
curves, Pic0

F
(X) is a finite Abelian group, and so it is isomorphic to a direct sum

of groups of the form Z/diZ with different dis. So, there is a Z-module G that
is isomorphic to Pic0

F
(X). Our task is to reconstruct G (i.e., determine the di),

and to compute, for each Pi, an element zi ∈ G corresponding to 〈Pi〉−Δ0 in G.
As before, a minimum weight codeword in C yields a relation among the zi

in the Z-module G.
Finding minimum weight words grows harder as the genus increases, since the

minimum distance then moves away from the Singleton bound. If the genus is not
too large, which is the setting of interest in practice, minimum weight words can
still be collected, although the effort to do so is larger. In the elliptic curves case,
we could give fairly accurate measures of the hardness of these problems. Doing
the same here would need better knowledge of the group Pic0

F
(X). A guess can

be made by invoking a random code argument, however: We consider a codeword
that we obtained by diagonalizing the generator matrix on an information set.
Apart from the zero positions implied by the information set, we need g more
zeros, so for random codes, this would lead to a success probability of(

n− k

g

)
q−g(1 − q−1)n−k.

To get a rough estimate for small g, we set n ≈ q, and find that the probability
that a given row in this generator matrix is minimum weight is then roughly

(1 −R)geR−1

g!
,

which shows that for small g, this step is likely doable.
Since the values of di may be very large in practice, the approach to use

different trial moduli that we suggested in the case of elliptic curves does not
lead to a satisfactory solution. The candidate values for di can be found with
the following strategy instead: Select n Q-linearly independent constraints (from

76 CHAPTER 5. FINAL THOUGHTS

n minimum weight codewords), and compute the determinant of the resulting
n× n constraint matrix. That determinant must be zero modulo any di. A few
such determinants could be collected, with each di being a divisor of the greatest
common divisor of all these determinants. Call this greatest common divisor M .

Factoring M then yields the relevant primes appearing in the Z-module. For
each factor p of M , try to find a solution modulo p of all constraints: If no such
solution exists, there is no component Z/pZ in the group. Otherwise, we get
r, say, linearly independent solutions. Each of these solutions corresponds to a
factor Z/pmZ for varying powers m. For each such component, detect the right
power m by lifting the solution.

We estimate the hardness of the determinant computation as follows. Each
relation has Euclidean norm n − k − g + 1, so the determinant can be at most
(n − k − g + 1)n ≈ nn(1 − R)n, and can thus be represented in n log(n(1 − R))
bits. Assuming the intermediate values in the computation are not much larger
than that, one can conclude that the running time should be O(n4 log(n)), with
a memory usage of O(n3 log3(n)).

Since several determinants have to be computed, it is probably worthwhile
just to compute the first one exactly, and all the successive ones modulo the
greatest common divisor of the previous ones only. That way, the first determi-
nant computation is hopefully by far the most expensive one.

Recovering the curve

The rule to detect collinear points on an elliptic curve can be generalized. The
following form of Bezout’s theorem (see [H2003, p. 182]) is useful:

Theorem 4 (Bezout) Let C and C ′ two plane, smooth, projective curves over
an algebraically closed field F of degrees d and d′ respectively. Assume that C
is smooth, and that C is not a component of C ′. Then C and C ′ intersect in
precisely dd′ points, counting multiplicities.

So lines will cross the curve at d points, where d is the degree of X .
For simplicity, we sidestep the recovery schedule. Instead we seek minimum

weight codewords u, v and w corresponding to three functions f1, f2 and f3, such
that

f1 = g · �1,
f2 = g · �2,
f3 = g · �3,

where the �i are polynomials of degree 1, and thus have collinear zeros.
Henceforth, we will restrict generality and assume that the curve has a unique

point at infinity O and that Δ0 = 〈O〉. This latter assumption is rather restric-
tive assumption, and we will discuss it later on.

5.1. ALGEBRAIC CURVES OF GENUS G > 1 77

If it holds true, we can again try to solve the appropriate subset sum problems
over the zi to find the minimum weight codewords u, v and w: For each �i find
a sum of ≤ d variables zj summing to zero, and for g find a sum of deg(Δ) − d
such zi.

The function f1/f3 = �1/�3 is a fraction of polynomials of degree one (in
two variables), and can thus be determined if its value on five points is known.
The same points can be used to determine f2/f3. Now, since we know the
evaluations of �1/�3 and �2/�3 on some points, we can use this to compute the
exact coordinates of those points: The equation

�1
�3

(Pi) =
ui

wi

provides a linear relation on the coordinates (xi, yi) of Pi, and so does the corre-
sponding equation with �2/�3, resulting in an unique solution (xi, yi), if the lines
corresponding to �1 and �2 are not parallel.

Once enough coordinate pairs have been recovered, we can again solve for
the curve equation.

Restrictions

Once the curve is reconstructed, a few more steps are needed to reconstruct the
code completely. For the sake of brevity, though, we will omit a discussion of
these further steps and concentrate on the curve recovery problem.

The algorithm as we presented it above may not work in all cases: We made
a number of assumptions that deserve more attention. In particular we assumed:

1. Δ = deg(Δ)〈O〉,
2. The implied subset sum problems can be solved.

We will now discuss these points.

Divisor choice, Δ = deg(Δ)〈O〉. We assumed we could pick Δ = deg(Δ)〈O〉,
i.e., Δ0 = 〈O〉.

Recall that in the case of elliptic curves, this assumption can always be made
because the points on the curve can be suitably translated. In general, no such
translation map exists.

The linear system that yields G ∼= Pic0
F
(X) and finds a representative of

〈P 〉 − Δ0 for each evaluated point P , can be slightly modified so that Δ0 can
be freely selected: It is enough to add an unknown corresponding to Δ0 to
the system of equations. (We skip the technicalities to show that this works.
Note that deg(Δ0) = +1 �= 0, so Δ0 does not trivially have a representative in
Pic0

F
(X). But there is a surjective homomorphism PicF(X) → Pic0

F
(X) that fixes

Pic0
F
(X).)

The fact that Δ0 can be freely selected can be used in the following ways:
First, one may want to run through the choices of Δ0 by adding another unknown

78 CHAPTER 5. FINAL THOUGHTS

to the system where the solution for the group is sought. Without further tweaks,
this is however impractical given the rapid growth of the cardinality of Pic0

F
(X)

with g.
Second, if the curve in question has specific geometric features, one may be

able to find the Δ0 corresponding to 〈O〉 much quicker. For example, hyper-
elliptic curves have the property that each generic point has a corresponding
opposite, and the line passing through these two points passes through no other
finite point. Under the large point set assumption, it should therefore be often
easy to detect the correct Δ0 by seeking the solution such that for most zi, there
is a zj with zi = −zj . This can be done probabilistically in O(n) time.

Subset sum problems. We assumed that the subset sum problems that need
solving can be solved. So, we assume first that those solutions exist, and, second,
that they are easy to find.

In the case of the attack against elliptic curves, we used the fact that the
number of choices we had exceeded the size of Pic0

F
(X), and that we could

therefore make a choice almost randomly.
This is not true for higher genus curves: The group Pic0

F
(X) grows very

quickly with g, which makes it very questionable whether such solutions even
exist for large g.

Geometrically speaking, the problem can be restated as follows: We assumed
that there are many sets of d (where d is the degree of the curve) collinear rational
points on the curve. For elliptic curves, this is indeed true: Given two rational
points on the curve, we know that the third point on the curve that is collinear
with the first two is indeed rational as well.

In general, this does not hold: For an arbitrary curve, if we pick 2 rational
points on X , then there is little reason to believe that the d−2 remaining collinear
points on X are all rational as well.

We will now give a rough analysis of this problem in the case of hyperelliptic
curves. We have already mentioned that vertical lines have special properties in
this case. We will exclude them, and note that to make the given algorithm work,
we only need to find one non-vertical line passing through d points. Hyperelliptic
curves have degree d = 2g + 1. Let

(5.2) y = αx+ β

be a rational line, i.e., with α, β ∈ F. If we substitute αx+ β for y in the curve
equation, we get a polynomial in x only that has its zeros on the coordinate
positions where the line crosses the curve. Therefore, the line will cross the
curve on rational points if and only if this polynomial factors into linear factors
in F.

To estimate the number of such lines, we make the heuristic assumption that
substituting (5.2) into the curve equation yields a random polynomial of degree
d. Therefore, we expect the probability that a random line is purely rational to

5.1. ALGEBRAIC CURVES OF GENUS G > 1 79

be approximately equal to

#{products linear factors of degree ≤ d}
#{polynomials of degree ≤ d} .

The numerator is roughly equal to q · qd

d! , and the denominator is equal to qd+1,
giving a total hit probability of 1/d!. Since there are q2 lines, we would expect
a random hyperelliptic curve to contain

(5.3)
q2

d!

such rational lines; in particular, if this quantity is much larger than 1, we can
hope that such lines exist.

For the case where q = 131, we obtain the following numbers:

genus degree Eq. (5.3) avg over 10 curves
g = 1 d = 3 2860 3156
g = 2 d = 5 143 168
g = 3 d = 7 3.4 4.5
g = 4 d = 9 0.04 0

The numbers have been rounded. The experimental average above was ob-
tained by taking random curves and exhaustively testing all the non-vertical
lines.

These computations suggest that for g ≤ 3, it is reasonable to expect that
good lines exist, but for curves of higher degree, this will not usually be the case.
It should be noted, though, that the evaluated point set should be very large
even for moderate g.

Note that finding appropriate collinear points, if they exist, is not a bottle-
neck. Even for g = 3, a baby-step-giant-step like approach should solve this
problem in O(n4) once the structure of Pic0

F
(X) has been determined.

This discussion suggests that for specific curves, such as hyperelliptic curves
of small genus, the algorithm can be made to work. A definite answer can only
be given after a more extensive analysis, though. Evidently, without further
improvements, the algorithm will not work for larger genera or general curves.

Several methods to sidestep the problems are conceivable. For example, in-
stead of limiting the focus to linear functions, small degree polynomials may
be worth considering. Unfortunately, this modification increases the number of
points that have to be guessed drastically. It may be the case, but appears
unlikely, that for larger degree curves there are significantly more curve isomor-
phisms, which would again reduce the search space.

To summarize, more research is needed to make this algorithm work in gen-
eral. My feeling is that especially the behavior of the group Pic0

F
(X) would need

more attention in order to construct an algorithm that would work in general.

80 CHAPTER 5. FINAL THOUGHTS

5.2 Large subcodes of Reed-Solomon codes

In Section 3.1.3 we discussed the effect of subcode constructions in the setting
of Reed-Solomon codes. The essential observation was that if the subcode is
sufficiently small so that words having weight very close to minimum weight
cannot efficiently be found, then attacks relying on finding minimum weight
words in the supercode can no longer be practically carried out. It is however
not known whether other practical attacks can be constructed.

Berger and Loidreau have previously studied the subcoding trick in [BL2005].
They conclude that reducing the dimension by 4 is sufficient to provide structural
safety. We will now present a modified Sidelnikov-Shestakov attack that appears
to break this case in a feasible amount of time.

It should be noted that our attack is not the first one on this scheme. After
having handed this thesis in, I have been informed that the Loidreau-Berger
scheme has already been attacked by Wieschebrink [W2006]. The algorithm of
Wieschebrink appears to be a different one than the algorithm presented here.

5.2.1 An algorithm for breaking subcodes of dimension k − 4

We now discuss the algorithm step by step. Let

C0 := GRSF(k, (α1, . . . , αn), (c1, . . . , cn))

be an [n, k, n−k+1] generalized Reed-Solomon code. Let C be a random subcode
of C0 of dimension k − 4.

1. Find a suitable pair f1, f2. Diagonalize the generator matrix on random
information sets, until a generator matrix is found which contains two rows
u and v with three common zeros off the information set.

Assume without loss of generality that the information set was on {1, . . . ,
k − 4}, and that the three common zeros are k − 3, k − 2 and k − 1.
Furthermore, u1 = 1, and v2 = 1, i.e., the nonzero positions of u and v
within the information set are 1 and 2 respectively.

Let f1(x) be the polynomial corresponding to u and f2(x) the polynomial
corresponding to v, then

(x− α2) · · · (x− αk−4)(x− αk−3) · · · (x− αk−1) divides f1(x),

and thus, since deg(f1) < k,

f1(x) = (x− α2) · · · (x− αk−4)(x− αk−3) · · · (x− αk−1) · h1(x),

where deg(h1) ≤ 1. Similarly,

f2(x) = (x− α1)(x− α3) · · · (x− αk−1) · h2(x)

5.2. LARGE SUBCODES OF REED-SOLOMON CODES 81

with deg(h2) ≤ 1. Therefore,

f1

f2
=

(x− α2)h1(x)
(x− α1)h2(x)

is a fraction of two quadratic polynomials.

2. Find a second pair g1, g2. Find a pair g1 and g2 having the same prop-
erties as (f1, f2). Typically (g1, g2) will be constructed with a different
information set.

3. Pick the guessing set. Pick a set L of 5 positions on which both f1/f2

and g1/g2 can be evaluated, i.e., positions such that the words correspond-
ing to f2 and g2 are nonzero.

4. Guess and reject. For each i ∈ L, guess an arbitrary value for αi. Solve
for the 6 coefficients of f1/f2, i.e., determine a, b, c, d, e, f such that

aα2
i + bαi + c

dα2
i + eαi + f

=
vi

wi

for all i ∈ L. (Note that this is a homogeneous linear system.) Analogously,
determine the coefficients of g1/g2.

Use the knowledge of f1/f2 to determine candidate αi for positions i where
αi is not yet known. This requires solving a quadratic equation, and typ-
ically there may be up to two candidates. Check whether doing so with
g1/g2 yields a common solution. If not, reject the guess and try with a
new one.

5. Complete. Now that a significant number of the αi’s are known, use
similar techniques to compute the remaining values of αi. Note that since
at this point, many of the αi’s are already known, pairs with more differing
zeros may be used as well.

6. Recover the ci. We can again use the same solution used for the elliptic
codes recovering algorithm to do this. One has to be careful not to make
use of C⊥, though. For example, recover the constants for the parity check
matrix instead.

5.2.2 Running time analysis

We give a rough, sketchy running time analysis of the algorithm.
We first estimate the probability of finding a suitable pair in a given in-

formation set. Each polynomial corresponding to a row u in such a suitably
diagonalized generator matrix corresponds to a product of k − 5 linear factors

82 CHAPTER 5. FINAL THOUGHTS

multiplied by some polynomial ru(x) of degree 4 at most. We seek a pair of rows
v,w such that

ru(x) = (x− αi1)(x− αi2)(x− αi3)(aux− bu)
rv(x) = (x− αi1)(x− αi2)(x− αi3)(avx− bv).

There are roughly

1
3!

(n− k − 4)3(q2 − 1)(q2 − 1) ≈ 1
6
(n− k − 4)3q4

suitable such pairs. Since the total number of possible pairs (ru, rv) is

(q5 − 1)2 ≈ q10,

and the selected subcode is random, we would expect a random pair to match
with probability roughly equal to

(n− k − 4)3

6q6

Since this probability is small, the probability for a matching pair given an
information set can then be estimated to be

(k − 4)(k − 5)(n − k − 4)3

2 · 6 · q6

We assume that checking for matches is much cheaper than diagonalizing, so we
will omit estimating the cost of this step. The total number of diagonalizations
to find v,w would thus be roughly

2 · 6 · q6
(k − 4)(k − 5)(n − k − 4)3

.

Of course, it is much better to just pivot the matrix on one entry at each step,
instead of diagonalizing each time anew; the hit probability would then decrease
slightly, but this makes one diagonalization an

O(n(k − 4))

operation.
For the guessing step, note that three of the 5 values for αi, i ∈ L can be

arbitrarily fixed due to curve isomorphisms, so roughly q2 guesses will have to
be checked, each of which can be rejected probabilistically in O(1) time.

The remaining steps are very similar to the corresponding steps in the Sidel-
nikov-Shestakov attacks, and we will thus not reiterate the discussion here.

The effectiveness of this approach is probably best seen by considering the
concrete example suggested by Berger and Loidreau in [BL2005].

5.2. LARGE SUBCODES OF REED-SOLOMON CODES 83

5.2.3 The example of Berger and Loidreau

The example considered in [BL2005] is the [255, 133, 123] generalized Reed So-
lomon code over GF (256). They take a random [255, 129, 123] subcode of this
code.

The above computations suggest that finding a pair f1, f2 in this code takes
217 diagonalizations. For a matrix of the given size with entries in GF (256) this
step can be executed in a few minutes on a PC. The guessing then takes merely
216 steps of O(1) cost, and should be much cheaper than finding the pairs.

5.2.4 Smaller subcodes

The strategy above can of course, with modifications, in principle be applied to
subcodes of dimension < k−4 as well. We will briefly study the question of how
small the subcode can be made, until this type of attack becomes impractical.

For simplicity, it is useful to assume n ≈ q, i.e. make the large point set
assumption. We also forget small additive constants in the factors and write
k = Rn.

A design idea of the attack above was to find a good tradeoff between the cost
of finding a suitable pair of codewords and the cost of the guessing procedure:
if fewer common zeros off the information set are needed, finding pairs becomes
easier, but the guessing cost increases. We introduce a variable 0 ≤ r ≤ � to
choose the tradeoff.

The probability that a random of rows in a diagonalized generator matrix
has �− r common zeros off the information set is roughly

(1−R)�−rq�−r

(�−r)! qr+1qr+1

q2(�+1)
= qr−� (1 −R)�−r

(�− r)!
,

and so the probability that a hit is found in a random information set is approx-
imately

q2+r−�R
2(1 −R)�−r

(�− r)!
.

Let f1, f2 be the polynomials corresponding to the codewords in a found pair.
The rational function f1/f2 is then a fraction of two polynomials of degree r+1,
and so, taking into account that three points can be arbitrarily fixed, we get
that 2r points have to be guessed until the correct solution is found.

If we count a pivoting in the generator matrix as R(1−R)q2 operations, this
would result in a very approximate cost of

2q�−r (�− r)!
R(1 −R)�−r−1

+ q2r

operations of cost O(1) for a break.

84 CHAPTER 5. FINAL THOUGHTS

As an example, consider q = 256. If we set the infeasibility threshold to
roughly 272 operations of cost O(1), then we see that we need r ≤ 4, and the
attack will be feasible as long as � < 13, if R = 1/2.

5.3 Structural weaknesses of codes

We now turn to the bigger picture. In the light of the existence of structural
attacks on McEliece cryptosystem based on some codes, an obviously vitally
important question is:

What makes codes weak against structural attacks?

At this point, every attack we have studied made use of low weight words in
either the code itself or in its dual: First, we have seen in section 2.2.2 that
for graph based codes, low weight words in the dual code render those systems
weak, and Sendrier’s attack on concatenated codes [S1994] uses the very same
fact. Second, our study of the Sidelnikov-Shestakov [SS1992] attack in section
3.1 makes crucial use of minimum weight words and their structure. Third, the
attack on elliptic codes, being modeled after the same attack, also makes use
of minimum weight words. Fourth, the Sidelnikov cryptosystem is also broken
using minimum weight words.

Given the state of affairs, I think it is fair to say that low weight words have
proved extremely useful to devise practical attacks on code based cryptosystems.
On the other hand, the way how such minimum weight words are exploited
differs from code to code. So, why are minimum weight words dangerous in such
systems?

In a nutshell, I think the answer is that they are witnesses for the non-
randomness of a code, i.e., they can be used to distinguish random codes from
codes that are based on a particular construction, especially if the given construc-
tion has a tight guarantee for the minimum distance of the code: The structural
hardness assumption for McEliece type systems can be stated as the assumption
that a random generator matrix for a code is indistinguishable from a generator
matrix of a random code. Therefore, witnesses of non-randomness violate that
assumption.

Minimum weight words are not the only witnesses for non-randomness. In
some cases, the automorphism group of a code is another one: Random codes
have generally a very small automorphism group, but for some particular Goppa
codes the automorphism group is much larger. This group can often be found,
and Loidreau and Sendrier have used this fact to construct attacks against certain
weak keys coming from Goppa codes with large automorphism groups [LS2001].

These thoughts lead to a number of interesting research problems in the
domain of McEliece type cryptosystems.

First, it would be beneficial to systematically study algebraic codes for struc-
tural weaknesses. On the one hand, it can certainly be hoped that many of the

5.3. STRUCTURAL WEAKNESSES OF CODES 85

techniques that work on some families can be adapted or generalized to other
families. On the other hand, example breaks may well offer a lot of new insight
into structural weaknesses or strengths, information that is indispensable for
the designer of such cryptosystems. As far as I know, many potentially useful
families have not seen much attention from the cryptographic community.

Second, low-weight word finding algorithms can surprisingly also be usefully
applied in many structural attacks. Thus, faster low weight word finding algo-
rithms might have much more impact on the security of McEliece type systems
than what was previously thought.

Third, other measures for structure in codes than the two examples we men-
tioned should be sought, even if it is a priori not clear how they can be exploited
to cryptanalyze McEliece type systems. Given that the two witnesses that were
cited above (that is, automorphism groups, and low weight words), have both
led to successful attacks, it appears that results in this domain would likely lead
to more discoveries, eventually.

86 CHAPTER 5. FINAL THOUGHTS

Bibliography

[AS1970] M. Abramowitz, I. A. Stegun (ed.) Handbook of mathematical func-
tions, Dover, 1970

[AM1987] C. M. Adams, H. Meijer Security-Related Comments Regarding Mc-
Eliece’s Public-Key Cryptosystem, CRYPTO ’87, LNCS 293, Springer, 1987

[BS1996] E. Bach, J. Shallit Algorithmic Number Theory, Volume 1, MIT Press,
1996

[BL2005] T. Berger, P. Loidreau How to Mask the Structure of Codes for a
Cryptographic Use, Designs, Codes and Cryptography, 35, 63-79, 2005

[BMEvT1978] E. Berlekamp, R. J. McEliece, H. van Tilborg, On the inherent
intractability of certain coding problems, IEEE Transactions on Information
Theory, 24(3):384–386, 1978

[BSS1999] I. Blake, G. Seroussi, N. Smart, Elliptic Curves in Cryptography,
Cambridge University Press, 1999

[BKW1996] J. Bloemer, R. Karp, W. Welzl, The Rank of Sparse Random Ma-
trices over Finite Fields, ICSI Technical Report tr-96-004, 1996

[BN1990] J. Bruck, M. Naor, The Hardness of Decoding Linear Codes with Pre-
processing, IEEE Transactions on Information Theory, 36(2):381–385, 1990

[C1996] A. Canteaut, Attaques de cryptosystèmes à mots de poids faible et con-
struction de fonctions t-résilientes,
http://www-rocq.inria.fr/codes/Anne.Canteaut/
Publications/pub.html, PhD thesis, Université Paris 6, 1996 (in French)

[CC1998] A. Canteaut, F. Chabaut, A new algorithm for finding minimum-
weight words in a linear code: application to primitive narrow-sense BCH-
codes of length 511, 1998, IEEE Transactions on Information Theory,
44(1):367-378

[CS1998] A. Canteaut, N. Sendrier, Cryptanalysis of the original McEliece cryp-
tosystem, Advances in Cryptology - ASIACRYPT’98 , LNCS 1514, pages
187-199, Springer, 1998.

87

88 BIBLIOGRAPHY

[C1992] F. Chabaud Asymptotic analysis of probabilistic algorithms for finding
short codewords, EUROCODE 1992, Springer, 1993

[C1995] F. Chabaud, On the security of some cryptosystems based on error-
correcting codes, Advances in Cryptology: Proceedings of EUROCRYPT’94,
LNCS 950, Springer, 1995

[D1941] M. Deuring, Die Typen der Multiplikatorenringe elliptischer Funktio-
nenkörper, Abhandlungen aus dem mathematischen Seminar der Universität
Hamburg, 14, pages 197–272, 1941

[DH1976] W. Diffie, M. E. Hellman, New directions in cryptography., IEEE
Transactions on Information Theory, IT-22(6).644–654, 1976

[DMS2003] I. Dumer, D. Micciancio, M. Sudan, Hardness of approximating the
minimum distance of a linear code, IEEE Transactions on Information The-
ory, 49(1):22–37, 2003

[DS2006] I. Dumer, K. Shabunov, Soft-decision decoding of Reed-Muller codes: a
simplified algorithm, 2006, IEEE Transactions on Information Theory 52(3):
954–963

[EOS2006] D. Engelbert, R. Overbeck, A. Schmidt A Summary of McEliece-
Type Cryptosystems and their Security Cryptology e-print archive,
http://eprint.iacr.org/2006/162, 2006

[G2005] P. Gaborit Shorter keys for code based cryptography, Proceedings of
Workshop on Codes and Cryptography, Bergen, p. 81–90, 2005

[G1977] V. D. Goppa Codes associated with divisors, Problems of Information
Transmission, 13: 22–26, 1977

[HP2003] W. Carey Huffman, V. Pless Fundamentals of Error-Correcting Codes
Cambridge University Press, 2003

[H2003] K. Hulek Elementary Algebraic Geometry American Mathematical So-
ciety, 2003

[JM1996] H. Janwa, O. Moreno McEliece Public Key Cryptosystems Using
Algebraic-Geometric Codes, Designs, Codes and Cryptography 8(3): 293–
307, 1996

[KT1970] T. Kasami, N. Tokura, On the Weight Structure of Reed-Muller Codes,
IEEE Transactions on Information Theory, 16(6): 752-759, 1970

[LB1988] P. J. Lee, E. F. Brickell An Observation on the Security of McEliece’s
Public-Key Cryptosystem, EUROCRYPT 1988

BIBLIOGRAPHY 89

[L1987] H. W. Lenstra, Jr., Factoring integers with elliptic curves, Annals of
Mathematics, 126, pages 649–673, 1987

[L1988] J. S. Leon A probabilitstic algorithm for computing minimum weights of
large error-correcting codes, IEEE Transactions on Information Theory, IT
34(5).1354–1359, 1988

[LDW1994] Y. X. Li, R. H. Deng, X. M. Wang, On the Equivalence of Mc-
Eliece’s and Niederreiter’s Public-Key Cryptosystems, IEEE Transactions on
Information Theory, Vol. 40, No. 1, 1994

[LS2001] P. Loidreau, N. Sendrier Weak Keys in the McEliece Public-Key Cryp-
tosystem, IEEE Transactions on Information Theory, Vol. 47, No. 3, 2001

[MS1977] F. J. MacWilliams, N. J. A. Sloane The Theory of Error-Correcting
Codes, Elsevier, 1977

[MS2007] L. Minder, A. Shokrollahi Cryptanalysis of the Sidelnikov cryptosys-
tem, To appear in Advances in Cryptology: Proceedings of EUROCRYPT
2007, LNCS

[ME1978] R. J. McEliece, A public key cryptosystem based on algebraic coding
theory, DSN progress report, 42-44:114-116, 1978

[N1986] H. Niederreiter, Knapsack-type cryptosystems and algebraic coding the-
ory, Problems of Control and Information Theory 15, 159-166, 1986

[P1975] N. J. Patterson, The Algebraic Decoding of Goppa Codes, IEEE Trans-
actions on Information Theory, Vol. 21, No. 2, 1975

[S1994] N. Sendrier, On the Structure of a randomly permuted concatenated code,
EUROCODE 94, October 1994.

[S2000] N. Sendrier, Finding the Permutation Between Equivalent Linear Codes:
The Support Splitting Algorithm, IEEE Transactions on Information Theory,
Vol. 46, No. 4, 2000

[S2002] A. Shokrollahi, LDPC Codes: An Introduction,
http://algo.epfl.ch/index.php?p=output pubs-XX&
db=pubs ldpc.txt, 2002

[SW1999] A. Shokrollahi, H. Wasserman, List decoding of algebraic-geometric
codes, IEEE Transactions on Information Theory, Vol. 45, No. 2, 1999

[S1997] P. Shor, Polynomial-Time Algorithms for Prime Factorization and Dis-
crete Logarithms on a Quantum Computer, SIAM J.Sci.Statist.Comput. 26
1484, 1997

90 BIBLIOGRAPHY

[S1994] V. M. Sidelnikov, A public-key cryptosystem based on binary Reed-Muller
codes, Discrete Mathematics and Applications, 4 No. 3, 1994

[SS1992] V. M. Sidelnikov, S. O. Shestakov, On insecurity of cryptosystems based
on generalized Reed-Solomon codes, Discrete Mathematics and Applications,
2, No. 4:439–444, 1992

[S1986] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, 1986

[S1989] J. Stern, A method for finding codewords of small weight, Coding Theory
and Applications, LNCS 388, 106–113, Springer, 1989

[TVZ1982] M. Tsfasman, S. Vlăduţ, Th. Zink, Modular curves, Shimura curves,
and Goppa codes, better than Varshamov-Gilbert bound, Mathematische
Nachrichten, Vol. 109, 1982

[U2001] R. Urbanke et al, LDPC-opt, a degree distribution optimizer for LDPC-
codes, accessible on the web:
http://lthcwww.epfl.ch/research/ldpcopt/index.php

[vT1988] J. van Tilburg, On the McEliece public-key cryptosystem, Advances in
Cryptology–CRYPTO’ 88, pages 119—131, Springer, 1988

[V1990] S. G. Vlăduţ On the decoding of algebraic-geometric codes over Fq for
q ≥ 16, IEEE Transactions on Information Theory, Vol. 36, No. 6, 1990

[W2006] C. Wieschebrink An attack on a modified Niederreiter encryption
scheme, Public Key Cryptography, LNCS 3958, pages 14–26, 2006

Curriculum Vitae of Lorenz Minder

Address Rue Mercerie 5
CH-1003 Lausanne
Switzerland

Phone Numbers +41 21 693 12 04 (office)
+41 76 458 27 18 (mobile)

E-mail Lorenz.Minder@epfl.ch

Born the 19th of December 1977 in Kitchener (Ontario, Canada). Swiss and
Canadian citizen. Single.

Professional
I am currently a PhD student in mathematics in the Laboratory for Al-

gorithmic Mathematics at EPFL (Ecole Polytechnique Fédérale de Lausanne).
My PhD advisor is Prof. Amin Shokrollahi. I am planning to finish my PhD in
Summer 2007.

Educational background:
• Diploma of Engineering Mathematics at EPFL in 2003. (Master of Sciences.)
• Matura (science) at the Deutsches Gymnasium Biel in 1998.

Research interests, work, talks and publications
My mathematical interests are centered around cryptography, codes and al-

gorithmics. My research domain is the application of coding theory to cryptog-
raphy. Publications, preprints, talks and unpublished work:

• The structure of Reed-Muller codes and the Sidelnikov cryptosystem, invited
gradutation day talk at ITA workshop 2007.

• L. Minder, Cryptanalysis of the Sidelnikov cryptosystem. Proceedings of Eu-
rocrypt 2007, LNCS 4515, Springer, 2007

• A. Brown, L. Minder, A. Shokrollahi, Improved Decoding of Interleaved AG
Codes, IMA Int. Conf. 2005

• G. Maze, L. Minder, A New Family of Almost Identities, to appear in Elemente
der Mathematik.

• A. Brown, L. Minder, A. Shokrollahi, Probabilistic Decoding of Interleaved
RS-Codes on the Q-ary symmetric channel, ISIT 2004.

• Diploma work: Algorithmes pour compter le nombre de points sur une courbe
elliptique définie sur un corps fini, 2003.

Internships
In Summer 2005, I was for two months at Digital Fountain in California.

Digital Fountain is a company developing state-of-the-art error-correcting codes.

I was intern in the R&D department of the company, testing new improvements
to these codes.

Teaching and other activities
I am and was teaching assistant for different courses, notably algorithmics,

analysis and linear algebra courses (the latter when I was undergrad). I regularily
supervise semester projects, and also supervised a master thesis.

I have semi-regularly reviewed papers for ISIT, CRYPTO, and also for other
conferences and journals.

Computer skills

• Computer programming : Excellent knowledge in C, C++ and Objective-C.
(I also know, but rarely use, other languages such as Java.) Good knowledge
and regular use of numerous scripting languages (sh, awk, sed, etc.). I have
contributed patches to a number of open source projects, most recently cdrkit,
NetBSD pkgsrc, libstdc++.
I write software as part of my PhD studies, mostly mathematical software, for
example, programs to attack the cryptosystems I analyze.
I privately wrote other pieces of software, such as a tool to recover data from
broken NTFS Volumes (which was used to recover data from a broken drive),
or special-purpose backup utilities. These programs are typically of the order
of a few thousand lines of C or C++ code in size.

• Operating Systems : I have in-depth knowledge of Unix-like operating systems,
in particular BSD and Linux. I also use Mac OS X and occasionally Windows.

Languages
My native language is German. I speak and write both French and English

very well. (I did my undergrad studies purely in French, and have lived for eight
years in a French-speaking city now.)

