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Overview

This project aims to study nonlinear dimensionality
reduction algorithms and the extent to which they
can improve classification. In other words, will we
be able to classify input data reliably after we have
reduced its dimensionality? Will the rate of success-
ful classifications drop? or it is possible to have the
best of both worlds and even improve the classification
rate? In this project, we consider different feature ex-
traction algorithms and investigate their performance
in classification tasks using Support Vector Machines
(SVMs) as the classifier. We consider supervised and
unsupervised feature extraction methods. In the unsu-
pervised approach studied in this work, the goal is to
extract a few features while maintaining the ability to
reconstruct the original data with high enough quality.
In the supervised approach, we extract those features
that enable us to achieve better performance in the
classification task. Thus, although we might lose the
ability to reconstruct the data from the features, we
potentially achieve better classification rates.

1 Introduction

Pattern classification algorithms usually have to deal
with high-dimensional data. As in other domains,
the ”curse of dimensionality” causes the algorithms
to be slower and sometimes even not being able to
achieve their objectives. For this reason, a ”feature

extraction” stage is often employed to reduce the
dimensionality of the input data before applying the
classification task. In this work we will focus on
the case of images but everything we will discuss is
applicable to other types of signals, unless explicitly
described as due to the nature of images. Dimension-
ality reduction encompasses all the methods which
provide a way to transform data from its original
dimensionality D to a smaller dimensionality d.

In its simplest form feature selection consists
of sub-sampling the original data, selecting the
dimensions, or features, which are the most relevant
or least redundant. However, more elaborate ap-
proaches also exist. Some such approaches are based
on applying pre-defined filters to the data. The
others ”learn” these filters as well, ensuring that the
features are selected in such a way that the original
data can be reconstructed from the features reliably
or the success rate of the classifier is increased.

In this work, we are concerned with the algo-
rithms of the second category, i.e. those that learn
which features to extract. This is achieved by
learning a mapping between the original and the
dimensionality-reduced data, which we refer to as the
feature-set. This mapping can be linear or non-linear.

The linear mapping is captured in a matrix W
that maps the D-dimensional input data ”"x” to a

d-dimensional feature vector y, with d << D. More



specifically, y = Wx + b, where y is the 1 x d feature
vector, = is the 1 x D data vector, b is the bias
and W is the D x d mapping. Various algorithms
exist, each with its advantages and pitfalls, PCA
(principal component analysis)[I9] is perhaps the
most well-known linear feature extraction method.

+b2

Linear mappings can be easily extended to non-
linear mappings by sending the feature vector y
through a nonlinear function (such as tanh(.)).
For instance, a linear mapping such as PCA
can be transformed to a non-linear mapping by
what is called the ”kernel trick” [TI0] or simply apply-
ing a non-linear function to the feature vectors[5] [11].

These mappings, whether linear or nonlinear,
can be performed using a neural network. Well
known machine learning algorithms that use neural
networks include MLP (multi-layer perceptron)[9]
and RBM (restricted boltzmann machines)[I5].
Each has its strengths and weaknesses and is better
suited to certain tasks than others. They also differ
in the architecture of the neural network they use,
e.g. single/multi layer, which affect the performance
of the algorithm as well. Algorithms that use several
layers are also known as ”deep networks” and fall
in the field of deep learning[l]. The optimal depth
and architecture of a neural network is outside the
scope of this project and is an aspect which could be
worked on in order to further optimize the classifier.

In spite of their differences, all these approaches
have a common part in that they learn the mapping

matrix W by minimizing (maximizing) an objec-
tive function. There are different approaches for
implementing this minimization (maximization) but
most of them rely on adjusting the weights towards
the desired direction. the most well-known of these
approaches is the gradient descent (ascent) where
the weights are updated based on the direction of the
gradient. One can either calculate the gradient over
the whole dataset first and then update the weights
or calculate the gradient sample-by-sample and
update the weights gradually. This later approach
is known as stochastic gradient descent and is the
focus of this work.

When an architecture has more than one layer,
the gradient has to be sent back through the network
starting at the final layer and working down to the
first layer. This is called backpropagation[4].

Any algorithm using backpropagation can put
aside a portion of the training dataset in order to
perform early stopping[8]. This subset of the initial
training set is called a validation set and its purpose
is to avoid overfitting the network to the training
data. Overfitting is when the network has adapted
too thoroughly to the training set, thus representing
the characteristics of the training set rather than the
actual characteristics of the whole set of data which
the network will have to classify. Early stopping
consists of following the gradient of the training
data set which attempts to minimize the error on
the training set but setting an end condition of
when the error computed on the validation set has
started to increase, stopping thus as soon as the
learning has started capturing training-set-specific
features. For instance: if the algorithm is trained to
identify "trees” in an image, overfitting corresponds
to only distinguishing those trees that have already
been seen as a "tree”, preventing the algorithm
to "generalize” what it has learned. On the other
hand, we have underfitting, which corresponds to,
for instance, assigning the label "tree” to any thing
that is green.

The rest of this report is organized as follows. In
Section 2 we will go over some related work. Section



3 is dedicated to explaining the methods we are
interested in. Experimental results are discussed in
Section 4. Finally, Section 5 concludes the report
and sheds some light on some on-going and future
work.

2 Related Work

2.1 Sparse Coding

Previous research on image recognition has involved
learning a dictionary of features, each trained on
small patches of the data (for example: a window of
6 pixels of an image), by an unsupervised algorithm
(i.e.  without information about the classes of
the data), and then learning an encoding which
passes all the small patches of an image through
the dictionary resulting in a list of features, before
finally learning a classifier on the features using class
information (supervised learning). Coates and Ng[3]
studied the performance of such a system using
various algorithms for training the dictionary and
training the encoder, including Sparse coding and
auto-encoders with a high emphasis on the former.

To learn the dictionary, the Sparse coding algo-
rithm uses coordinate descent to minimize, alterna-
tively over the sparse codes s(*) and the dictionary
D, the L1-penalized sparse coding formulation:

min
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where DU is the j-th column of D and X is the
sparsity penalty coefficient.

Learning the encoding is done by minimizing the
same formulation while the dictionary is fixed. In
terms of spare coding as encoder, Coates and Ng
found that it excelled at preparing small datasets for
the classifier, regardless of which method was used
to make the dictionary, even on random dictionaries.
However, in this work we are not interested in small

datasets.

2.2 Auto-encoders

Auto-encoders aim to learn a manifold over a dataset
in a coordinate system of a different dimensionality
in order to capture the manifold on which lies
the main variance of the data. The intermediate
mapped vector y is the sigmoid of a linear mapping;:
y = o(Wz + 1) and y is then mapped back to the
output vector z = o(W'y+ ') in which the following
constraint may be used: W’ = W7, This mapping is
achieved by minimizing the average reconstruction
error:

1 < ) )
{0°},{0”} = argmin =Y L(z®,2®)
{9*}’{9/*} n ;
Where 6 = {W, b}
1

and O'(IL') = W

In the reconstruction error, L is a loss func-
tion many of which exist, such as squared error
L(x,2) = ||z — z||%2. Tt should also be noted that
auto-encoders may be stacked to form a deep struc-
ture.
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Auto-encoders can also be trained to learn the
correct manifold, even if the data is noisy. This is
achieved by the means of densoising auto-encoders
[18]. In denoising auto-encoders, the input data
is deliberately contaminated with noise to achieve
robustness in feature extraction. It has been shown
that denoising autoencoders can actually perform
better than their standard counterparts[l4] as they



avoid overfitting. Finally, one should also note that
no class information is used during training and
auto-encoders are unsupervised.

2.3 Mutual Information Maximiza-

tion

The goal of MMI is to maximize the mutual informa-
tion between the class labels and the feature vectors,
i.e. try to extract those features that gives us more
information about class labels. MMI[I7] performs a
linear transformation of the data but can easily be
extended to become non-linear. This algorithm at-
tempts to overcome some of the limitations of other
algorithms (like PCA), namely by using higher-order
statistics and not just second-order statistics. This
is helped by the use of a more general criterion: the
mutual information between class labels and the
transformed data. Some issues MMI encounters lie
in computational complexity, indeed, MMI requires
all pair-wise interactions between training data
samples as in its discrete form mutual information
between transforms and classes is a function of the
interactions between classes, the interaction between
data of the same class and the interaction between
all data.

The function which MMI maximizes is:
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Where P(c) = /LD(C, y)dy
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Where C' is the class label and Y is the feature vector.

2.4 Support Vector Machines

Whereas the previous algorithms have been con-
cerned with encoding (i.e. finding transformations
that extract features), SVM[13], in its original form,
is designed to distinguish between two classes and
finds the hyper-plane which best separates the

training data of each of two classes.

SVM can be made non-linear through the ”kernel
trick” which consists of a non-linear mapping to a
higher-dimensional space and performing the dot
product over the data points.

3 Method

In this work, three approaches are implemented:
auto-encoder and MMI for dimensionality reduc-
tion, and SVM for classification. The data we
worked with was the CIFAR dataset, comprising ten
classes, each with 5000 training images and 1000
testing images. Each image is a 32 pixel square,
is in grayscale and is composed of 1024 pixels in total.

The idea behind this selection of algorithms
was that auto-encoders would remove redundant
information from the images and capture recurrent
features in the classes. It has the advantage that
a reverse mapping is also trained and that the
transformation could be reversed, for example
if one wanted to classify some images and store
them using less data while still allowing the initial
images to be reconstructed. The choice of MMI
was to learn features in such a way as to increase
the amount of information about the class the
transformed data contains. It was expected that
MMI would better prepare the data for classification.

For the classifier, we use SVM, extended to the
multi-class scenario.The reasons behind this choice
are, on the one hand, the ability to compare results
with state of the art research and on the other hand

to experiment with different implementations of the
multi-class SVM.

3.1 Auto-encoder

The auto-encoder implementation used in this work
is part of Laurens van der Maaten’s (Delft University
of Technology) Dimensionality Reduction Toolbox



[16] which is available online and is free to use,
change, or redistribute for non-commercial purposes.
In this implementation, four layers are used to create
y, the feature vector, and four more layers are used
to reconstruct x from y. We elected to reduce subsets
of the CIFAR dataset to 21 and 900 dimensions. In
the first layer the dimensionality is increased and
in subsequent layers the dimensionality is reduced.
This approach is flexible in allowing more features to
become apparent in the hidden layers of the network
and eventually make their way to the transformed
version.

The network is initialized with random low
weights of the order of 107*. Then, the network
is pretrained using denoising auto-encoder (i.e. by
adding noise to the data). To this effect, the data
is sent through the network in small batches (more
computationally efficient), the gradient to minimize
the reconstruction error is calculated and the weights
are updated and finally the MSE is computed be-
tween the original data and its reconstruction from
the network, providing a check for convergence.
After pretraining, the part of the network devoted to
reconstructing x from dimensionality reduced y (i.e.
the final four layers) are discarded. The first three
of these are set to the transpose of their counterpart
in the first half of the network, except the final layer
which is set to zeros. In this way, the lower layers
of the network, which are the furthest from the
backpropagation of the gradient, are initialized in a
favorable manner. Setting the final layer to zeros
is essential, otherwise the network is a complete
mirror function and further training will have no
effect. The final step of this implementation is to
perform backpropagation on the pretrained network,
finetuning it.

3.2 Maximization of Mutual Informa-
tion

The MMI is made in house, based on Torkkola

[I7] and was used to reduce CIFAR to 100 and

500 dimensions. It iterates over the training data,
taking a configurable number of samples every epoch

at random. This subset is then used to find the
mutual information and its gradient, which in turn
provides a basis for the derivation of the gradient
of the weights. A subset can be taken because it
will represent the whole dataset faithfully. It is even
recommended to perform stochastic gradient ascent
over mini-batches in order to reduce complexity. A
rule of thumb is that 4000 pairs in the subset is a
good compromise. This iteration continues until the
mutual information starts to decrease.

The equations for the mutual information and its
gradients from [I7] are:
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Where:

The constraint on the weight is taken into account
by updating it without constraint and then orthonor-
malizing it with Gram Schmidt orthonormalization.
Each iteration involves creating the Parzen density
estimation and the distance matrices for all sample
pairs in the current batch. This is why complexity
skyrockets when large training sets are used without
this subsampling.

3.3 Support Vector Machines

Matlab has a predefined and highly parametriz-
able SVM function inherently. However, a major
drawback of its implementation is that it does not
support more than two classes of data (i.e. it will
not create a classifier for more than two classes, it
creates a yes/no separation of the space).

In order to support more than two classes, two
SVM-training and two SVM-classifying implemen-
tations were devised. The first training method
consists simply of creating a classifier for each
class which learns to distinguish data of the class
and data not from the class. The second training
method consists of training a classifier ”Class(1) vs.

Not Class(1)” and then for every subsequent class
training a basic SVM on that class against all the
classes which do not yet have an SVM. The idea here
is to not use the same information several times:
when testing if one is classified as not belonging to
the first class by the first SVM, then we no longer
need to test belonging to the first class.

The first of the two testing functions for multi-
SVM checks the data in all the trained SVMs one
after another until it finds an SVM which successfully
classifies it. The second checks all the trained SVMs
exhaustively and applies the class whose SVM had
the highest accuracy, thus giving the data the class
which it most strongly fit. The second approach
aims to avoid premature classification.

The underlying 2-way SVMs have the following
model: linear kernel function, soft margin with
adaptative box constraint, quadratic programming
method and with an upper limit to the number of
iterations.

3.4 Datasets and preprocessing

In the experiments the following datasets were used:
CIFAR-10, Pima and Phoneme.

1. CIFAR-10 [2] was transformed to grayscale
and vectorized and was subsampled in the
experiments. Each image is comprised of 1024
pixels.

2. Phoneme [6]. It consists of 1962 train and
1962 test samples each of 20 dimensions and
belonging to one of 20 classes. In this work, the
classes were coded as follows: A = 1, [ = 2,
#=3, N=40=5 M=6,U=17,5=28,
E=9,D=10,L=11,[=12,V =13, J = 14,
H=15&=16,Y =17, R=18, \ =19, and
F = 20.



3. Pima [7] is a 2 class dataset and consists of 500
training samples and 200 testing samples. Each
sample is 8-dimensional.

4 Results

Fig. 1 illustrates the misclassification rate on the
Pima dataset when MMI encodes and our multi-
SVM classifiers on it. MMI encoding involved using
batches of 30 samples (around 1000 pair-wise interac-
tions) and the number of iterations was bounded to
1000. In the case of a dataset consisting of only two
classes,it appears that all the multi-SVM approaches
were equivalent to the ordinary 2-way SVM. This is
due to each multi-SVM method starting by training
a 2-class SVM capable of distinguishing ”Class 1”
data from all the other data, i.e. both multi-SVM
methods train the same classifier. S’VMt(fs)t gives
the class whose SVM scores highest to the data,
except for the last class, which is given when the
final SVM scores negatively but higher in absolute
value than all preceding SVMs. However, when there
are only two classes it will simply attribute a class
based on the sign of the data’s score. SVMt(els)t will
only check one 2-way SVM in the standard manner
and this involves simply checking the sign of the
SVM’s transformation of the data. As such, all the
multi-SVMs are indeed equivalent when the data
comprises 2 classes.

Fig. 2 shows irregular behaviour for
SVMffgm/SVMtfgt in the larger ds on Phe-
nome data encoded by MMI (batches of 30, max
epochs: 1000) and classified by our multi-SVM
methods. In fact, training the SVM with each class
against all subsequent classes and classifying with
the method which attributes a class based on which
classifier achieved the highest score encountered
a severe problem when the last two classes were
such that one was very far from all the other
classes and the other was relatively close. In this
case, either the last class or the penultimate class
received a very high score and was attributed to
the majority of the data. This can be seen in the

Error rates for pima dataset using MMl and different SWM methods
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Figure 1: Pima MMI misclassification rates

”phoneme” results. A work-around would consist of
reordering the classes but this severely reduces the
robustness of this approach. The other test method
for SVM was not affected since it attributed a class
to the first SVM which ”accepted” the data, this
would occur before the final 2-way SVM was checked.
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Figure 2: Phoneme MMI misclassification rates

It is also apparent in Fig. 2, that the multi-
SVM train/classify pair which surpassed the others
was training with SVMt(Tlgm
SVMt(ezs)t. It coped better than the other methods
especially when d, the dimensionality reduced to,

and classifying with



was close to D. Training with method 1 avoided the
problems with one of the two last classes being far
from the others by taking all the data into consider-
ation when training the 2-way SVMs. Furthermore,
the second test method outperformed the first test
method because instead of labelling the data with
the first class to "accept” it, it checked the extent
to which the data was close to the classes and gave
it the label of the closest class. It could be, for
example, that the SVM corresponding to Class-3 vs.
Other-Classes ended up with a hyper-plane with a
slight overlap with a class whose SVM is yet to be
trained. In this case, upon testing with method 1,
some data in class, let’s say 4, will be accepted by
SVM-Class-3. Thus, this data will never get tested
by SVM-Class-4 and will be misclassified.

Classification results from MMI encoding on the
MMI confirmation sets, Pima and Phoneme, were
slightly below those given in Torkkola [I7]. This is
due to an unoptimized selection of the o Gaussian
kernel variable. Indeed, no information can be found
on how they chose it and so we chose to make it
decay linearly from:

max; j Dist(y;, y;)
2

to:

avg; jDist(yi, y;)
2

All the same, our results follow the same trend as
theirs confirming the discrepancy is simply due to
a difference in choice of parameters, a sub-optimal
SVM model and the fact we limit the number of
epochs to 1000. It should be noted that the MMI is
part of on-going work and that the results may be
subject to improvement.

With respect to the CIFAR dataset, experiments
performed on randomly generated subsets of 100
(Fig. 3) and 500 (Fig. 4) images per class, both for
the train-set and for the test-set, resulted in very
promising results. Size of the batches used in each
iteration of the MMI had to be increased from that
used for the "Pima” and ”Phoneme” datasets, this

is due to a vast increase in number of samples. Pima
and Phoneme used batches of 30, giving around 1000
pair-wise calculations per batch, whereas CIFAR
needed 60 samples per batch, around 4000 pair-wise
calculations, in order to converge correctly. Like
in the previous experiments, MMI was limited to
1000 epochs. It is interesting that the error rates
achieved are competitive with state of the art results
for classification of CIFAR-10 (which reach as much
as 90.5% correct classification [I2]) and suggests
that the methods developed in this works may be
worth pursuing. However, the high precision results
may also be due to taking a random subset of the
entire CIFAR dataset and most probably given we
are working on grayscale images rather than color
images (i.e. using lower dimensionality data with
many fewer features).
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Figure 3: CIFAR(100) MMI misclassification rates

The auto-encoder, however, performed rather
poorly in comparison. The lower classification rate
is due to the algorithm’s objective function: max-
imizing reconstructability. This objective function
does not prepare data for classification tasks as well
as the MMI, which aims to increase the mutual
information between the transformation and class.
Moreover, we didn’t spend time on optimizing the
auto-encoder and svm.
the best SVM combination

Again, was



Error rates for CIFAR dataset, 500 samples per class using MMI and differant SWi methods
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Figure 4: CIFAR(500) MMI misclassification rates

SVMfrlgm/SVMt(fgt, achieving up to 27.2% suc-
cessful classification for d at 21 and 900. However,
for the SVM other methods, success rates increases
with d with rates ranging from 14.8% to 22.8%.
Auto-encoder encoded a subset of the CIFAR set
of 100 training images per class and 25 testing
images per class, this may also have led to poorer

performance.

In all cases, for all the CIFAR subsets, a successful
classification rate of 100% was achieved when no
dimensionality reduction was performed.

5 Conclusions and Future

Work

We have seen that of all the methods studied in this
work, the most promising is MMI with the multi-
SVM: SV M. sV M%), MMI could be improved
by selecting pairs at random instead of batches from
which pairs are made, the selected pairs would thus
be able to span more of the initial data samples. The
selection of o could be studied and optimized. The
size of the batches (or the number of pairs chosen
per epoch) could be studied in function of the size of
the dataset. A validation set could be used in order

to perform early stopping and avoid any possible
overfitting to the training-set (note that overfitting
was not a problem in this work as the number of
epochs was sufficiently bounded). Moreover, the
MMI implementation could be made nonlinear which
could potentially improve classification even further.

Furthermore, results suggest that dimensionality
may be reduced by up to half while retaining an
excellent classification rate and a perfect recon-
structability (see: Fig.3).

We have also seen that the auto-encoder approach
is outperformed and not suited to the goal of this
work.

Finally, a very promising idea for future work
is that of randomly subsampling each image by
selecting small patches of a few pixels (let’s say, to
begin with, 5-10) and map each of these patches
down to d = 2, 3, or 4. Then train a multi-SVM
classifier for each patch and performing classification
for each. Assign to the image the class to which
the most of its patches were assigned. The patches
could either be overlapping or spatially distinct. One
could play around with the number of patches and
the size of patches to optimize the performance of
the classification method.
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