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Abstract

This report describes a method for estimating the effective bandwidth of the internet
connection between two peers based on packet latency. The method is intended to
be used for efficient data transmission in combination with forward error correcting
codes.

1 Introduction

Reliable data distribution over the internet is mostly based on TCP (transmission
control protocol). With TCP, the rate of data transmission between two nodes de-
creases as the distance between the two nodes increases. In a globalized internet, it
becomes more and more difficult to make optimal use of the broad bandwidth now
commonly available in private households. In the case of one-to-many data distri-
bution, large content providers do fix the problem by deploying expensive content
delivery networks.

The success of new bandwidth-demanding peer-to-peer applications such as tele-
presence and high definition video-conference will have to rely on transmission pro-
tocols that make more effective use of the available bandwidth. Extensions to the
TCP protocol have also been proposed (for instance FAST TCP [1]) showing that
monitoring packet latency can improve the effectiveness of bandwidth usage.

Forward error correcting codes (FEC) on top of standard UDP protocol have proved
to provide reliable and efficient data transmission over long distance and/or lossy
networks. In particular, using fountain codes it is possible to saturate any available
bandwidth by flooding the connection with an arbitrary (large) number of repair
packets. Although optimal for the two peers, this method is not very fair to the
users sharing the same link and will end up wasting resources. In fact, the sender
transmission rate should not exceed the effective bandwidth linking the two peers.

This report will focus on the algorithmic and modeling aspects of this project as
the software engineering issues are better described directly in the documentation
of the computer codes. Nevertheless, the latter is equally (or even more) important
because our method requires a reliable measurement of packet latency and precise
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control over transmission rates that can only be achieved with a very careful design
of the programs.

2 Model

In the internet, two peers are connected through a series of physical links. The
maximum speed at which the two peers can communicate (capacity of the channel)
is at most the speed of the slowest link. As the network is a shared medium, the
effective capacity of the connection may change at any time: there can be changes in
the concurrent usage of the slowest link, or a different link can be affected by heavy
load and hence become the new link with the smallest available bandwidth. The
routes could also be reconfigured during transmission.

We model the network connection between the sender S and the receiver R at any
given time t as in figure 1 using two parameters.

1. the effective bandwidth α(t) which corresponds to the speed of the slowest link
(bottleneck in the figure);

2. the size B(t) of a packet buffer located just before the slowest link;

S buffer
bottleneck

R

Figure 1: The channel model

The packet buffer is not always present and its size can range from very small (barely
measurable) to as large as a few seconds worth of data at the speed of the correspond-
ing link. Large buffers can avoid packet loss when data is transferred in short bursts,
but they can also have a negative effect on the performance of TCP for large data
transfers and on application requiring real time data transmission (small jitter).

We assume that the channel parameters do not significantly change too often over
time. In particular, we assume that they will remain reasonably constant over a
period of time that is considerably larger than the time we need to run our mea-
surements. The measurements should also take only a fraction of the transmission
time and be repeated periodically. In practice, as we are mostly interested in usages
when at least one of the peers is in a private household, the weak link is often the
broadband connection of either the sender or the receiver, and the parameters will
change only when someone else in the same household is using the same broadband
connection.

We also assume that, when the channel is running below capacity, the packet loss rate
and latency are roughly constant1. Finally, we assume that all network buffers are

1More precisely, we assume that their values are normally distributed with small dispersion
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simple FIFO queues so that there is no systematic packet reordering. Nevertheless,
our implementation is indeed quite robust and will work also in the presence of
sporadic packet reordering.

In the remainder of the report we will discuss the case in which there is an observable
packet buffer. The case with very small or absent packet buffer can be treated in a
similar way using the packet loss rate instead of the packet latency.

3 The method

The idea is to determine at what rate we are sending relative to the channel capacity
by observing the latency of received packets. If we are sending at a rate that is below
capacity, the buffer queue is kept empty and all packets should arrive with minimal
latency. On the other hand, if we are sending at a rate that is higher than the channel
capacity, the packets will be queued in the buffer and latency will increase. When
the buffer is full, new packets are discarded.2

3.1 Probe

t0 t1 =t0 +δ t2 =t1 +δ

β

β+ =β+h

β− =β−h

α

Sender rate

Available bandwidth

Figure 2: Changing sender rate to probe packet latency

Consider the case depicted in figure 2 where the sender is transmitting at a rate β,
lower than the available bandwidth3 α.

While keeping the average rate unchanged, we probe the packet latency by varying
the instantaneous rate as a square wave pulse such that for a short period of time

2As a matter of fact, some network appliances are configured to start dropping a fraction of the arriving
packets as soon as the buffer starts filling.

3The case where β > α is essentially symmetrical
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δ, we are actually sending at higher rate than the available bandwidth (β+ > α).
We expect the latency to increase in the first time interval while the buffer is being
filled and then decrease when the rate is lowered until the buffer is empty again. Of
course, if the rate step h is too small and β+ < α we will not observe any change in
the latency and will repeat the experiment with a larger step.

The packet latency is obtained on the receiver by comparing the time instants at
which packet where received tri relative to the time at which packets where sent tri :

∆l
.
= ∆tr −∆ts

.
= (tr2 − tr1)− (ts2 − ts1) (1)

where all time intervals are relative so that there is no need to synchronize the clocks
of the two peers. Similarly, the receiver will communicate back to the sender only
rate values that are measured in terms of the known rate β. Therefore, there is no
need to negotiate the units used to express β.

3.2 Expected outcome

In the figures in page 15 and 16, we represent how we expect the latency and the
packet loss rate to change during the probing experiment in the case β ≤ α, and
β > α respectively. Since for each experiment we expect two time intervals where
the latency is not constant, we have two independent measures that can be combined
to increase the precision or to discard the experiment if the two measures are not
consistent.

The key idea is that if the link bandwidth remains constant during the experiment,
then the buffer will fill (or empty) at a rate equal to the difference between the
transmission rate and the available bandwidth α. In the β ≤ α case, during a time
interval ∆1 after the beginning of the experiment t0, the amount of data b in the
buffer will increase linearly in time at a rate equal to the excess rate g+

.
= β+ − α:

b(t) = g+(t− t0) + b(t0) (2)

Assuming that the queue is a simple FIFO, a packet entering the queue will experience
an extra latency equal to the time needed by the slow link to dispatch the data already
queued:

l(t) =
b(t)

α
=
g+

α
(t− t0)

.
=
β+ − α
α

(t− t0) (3)

Therefore, with a linear regression on the measured latency, we can estimate g+ and
hence the available bandwidth α. The formulas for the quantities of interest are easily
determined and are summarized in the tables on pages 15 and 16 in the appendix as
a reference for the implementation.
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4 Method details

4.1 Protocol

There are two channels: the data channel, and the service channel.

The data channel is supposed to transport the actual transmission data using some
FEC on top of standard UDP. The packets are tagged with a timestamp and with a
monotonic increasing packet id that is used to compute blocks and symbol index for
FEC and also to eventually avoid packet reordering problems.

The service channel makes use of TCP for reliably transferring short messages (sig-
nals) between the two peers. For example, the service channel is used by the sender
S to communicate β to the receiver R. The following is an example session flowing in
the service channel (> is from S to R, and < is from R to S)

> At <timestamp t in the future>, I’ll set the rate to X

> At <timestamp t’ in the future>, I’ll set the rate to Y

> At <timestamp t’’ in the future>, I’ll set the rate to Z

[...]

< At <relative timestamp (i.e. +10s)>, set the rate to U

> At <corresponding timestamp>, I’ll set the rate to U

Note that the sender communicates to the receiver the time instant when the rate β
is changed. These are expressed in the sender’s internal clock that is the same used
for time stamping the packets. In this way the receiver knows what was the actual β
when a given packet was sent. On the other hand, the receiver sends instructions to
the sender using relative time intervals so that the actual time is always computed
by the sender for consistency.

4.2 Algorithm overview

The procedure to estimate the available bandwidth consists of five steps.

1. Detect change-point candidates;

2. Merge change-points that are too close;

3. Compute linear regression parameters on all the intervals between change-
points;

4. Combine and refine regressions to get the final fit of the response to the probe;

5. Estimate the bandwidth combining the information from the various slopes;
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4.3 Algorithm

4.3.1 Data preparation

The probing experiment consists in varying the sending rate as a square wave pulse.
We define a time segment as a time interval where the sending rate is constant. When
the receiver R gets the data concerning β, it builds a list of time segments that will be
used as a base for all calculations. Received packets are assigned to the active time
segment and stored together with their ids as well as sent and received timestamps.
Assuming no (or very little) packet reordering, as soon as a packet belonging to
the next time segment is received, the current (active) segment is closed, and the
algorithm for bandwidth estimation is executed.

Most of the change point algorithms are detecting changes on the mean value. As
we are interested in the points where the slope of the latency changes, we use the
derivative of the data. Therefore, we first compute the relative latency for each
packet, and then do a numerical derivative with respect to the packet id.4

We feed the change point detection algorithm with the sequence of derivatives,
{t}1≤i≤n by (t1 = 0):

ti :=
yi+1 − yi
pi+1 − pi

where {p}1≤i≤n ∈ N the sorted sequence of packet ids, and {y}1≤i≤n ∈ N the sequence
of relative latencies.

4.3.2 Change-points detection

Usually, change point algorithms consist of two parts. At first, a list of possible
change-points is generated. Afterward, the good change-points are selected by mean
of statistical tests. We are only interested in the first step, because we do not have
a guess on how the data is distributed around its average value. On the other hand,
we have a very strong a-priori information about how the latency should behave, and
we can use this knowledge to decide whether a change-point can be considered as
“valid” or not. The filtering of change-points is performed on-line and has to run
as fast as possible in order to avoid disturbing the latency measurement. Statistical
tests can be too expensive to compute.

After testing several alternatives, we have chosen to base our algorithm on the first
part of the binary segmentation algorithm [2], with normal distribution. In practice,
for the sequence {ti}1≤i≤n and 1 ≤ k, l ≤ n, we define the following likelihood
function:

M(k, l) 7→ −1

2
(
l∑

j=k

t2j −
(
∑l

j=k tj)
2

l − k + 1
)

4we use the packet id instead of timestamp because it avoids floating point exceptions by construction.
At this stage, we are not interested in the actual value of the slope.
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and we use the following algorithm to return the change-points candidates:

Algorithm 1 Returns at most Q change-points in {ti}1≤i≤n
1: τ ← {n}
2: ω ← 1
3: while |τ | − 2 < Q and ω 6∈ τ do
4: τ ← τ ∪ {ω}
5: λmax = −∞
6: ω = 1
7: for i = 1→ n do
8: k− ← maxj∈τ,j≤i j
9: k+ ← minj∈τ,j>i j

10: λ← M(k−, i) + M(i+ 1, k+)−M(k−, k+)
11: if λmax < λ then
12: λmax ← λ
13: ω ← i
14: end if
15: end for
16: end while
17: return τ

The value of Q should be large enough to be sure to find all potentially interesting
change-points, but also not too large because we need to keep the running time rea-
sonable even in the worst case. In our case, Q = 10 seems to be a good compromise.

It’s important to note that it is possible to write a very efficient implementation
where line 10 is vectorized by pre-computing the partial sums and redefining M as
follows:

M(k, l) 7→ −1

2

(
(vl − vk−1)−

(ul − uk−1)2

l − k + 1

)
(4)

where ui :=
∑i

j=1 ti, vi :=
∑i

j=1 t
2
i , u0 := 0, and v0 := 0.

4.3.3 Filtering change-points

Let’s call {ck}1≤k≤m the sorted list of change-points (i.e. ck ≤ ck+1) including the
two time interval boundaries c1 = 1 and cm = n. Each pair of successive change
points determines a time interval on which we are going to run a linear regression.

Too short time intervals are merged with their respective shortest neighbor hence
discarding the change point between them. The algorithm used is the following:
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Algorithm 2 Remove change-points from {ck}1≤k≤m which interval is smaller than some
constant ξ, the number of points

1: while ∃k such that ck+1 − ck < ξ do
2: if ck−1 − ck < ck+2 − ck (assume c0 = 1 and cm+1 = n) then
3: Delete ck from the sequence
4: m← m− 1
5: end if
6: end while
7: return {ck}1≤k≤m

4.3.4 Linear regression

We fit the n = ck+1 − ck + 1 latency measures {(xi, yi), i ∈ [1, n]} between two
successive change points ck, and ck+1 with a straight line f(x) = mx + h. In this
simple case, the least square method reduces to computing the regression parameters
m and h by solving the 2× 2 linear system Ap = b where

p =

[
h
m

]
, A =

[
n

∑
i xi∑

i xi
∑

i x
2
i

]
, b =

[ ∑
i yi∑
i xiyi

]
(5)

Note that merging two regressions (e.g., for joining two subsequent time intervals
into a single one) is an inexpensive operation if we keep the As and bs in memory
because we just have to cumulate the sums by adding the corresponding matrices.

Algorithm 3 Compute A ∈ R2×2 and b ∈ R2 such that A · [h,m]T = b, where y = mx+ h
is the least square regression line between ck and ck+1

a11 ← ck+1 − ck + 1
a12 ← 0, a22 ← 0, b1 ← 0, b2 ← 0
for i = ck → ck+1 do
a22 ← a22 + x2i
a12 ← a12 + xi
b1 ← b1 + yi
b2 ← b2 + xi · yi

end for

return A =

[
a11 a12
a12 a22

]
, b =

[
b1
b2

]
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4.3.5 Refinement

Figure 3: Selection of the line best fitting the latency data. First the two lines with three
segments are selected, then the one with the smallest Γ is kept. As expected, the selected
line is the one having the smallest sum of square residuals S.
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The next step consists in refining the set of change-points based on how the response
of the latency to the probe is expected to be. An example of our procedure is depicted
in figure 3.

Consider, for example, the first time segment of an experiment where β < α (the
case α > β is essentially symmetrical). We expect the latency to immediately start
increasing and then eventually stay constant once the buffer is full. In fact, we
have observed situations in which the latency remains constant for a short time
before starting to increase.5 Therefore, we model our response on the latency with a
continuous line consisting of up to three straight segments:

1. an optional flat segment (when an excess traffic burst is tolerated);

2. a mandatory oblique segment (while the buffer is filling up);

3. an optional flat segment (once the buffer is full).

where a segment is considered flat if its slope is smaller thans a given threshold.

We first enumerate all possible combinations that are compatible with our response
model and then we sort them according to the following criteria:

1. those with highest number of segments are selected;

2. those with smallest Γ (see figure 4) are selected;

3. those with steepest slope are selected;

4. the one with largest memory address is selected.

The criteria are applied one after the other till there remains only one candidate. In
practice step 3 and 4 are almost never used.

The selection between two lines with the same number of segment is done by com-
paring the distance Γ between the selected change point and the crossing point of
the two segment as described in figure 4.

This procedure gives very good results and is considerably less expensive than com-
puting the sum of square residuals for each candidate.

5This is the case when the bandwidth of the slowest link is limited artificially (as for most of the ADSL
or cable connections) but the limitation is enforced with a little delay, hence allowing for short traffic
bursts.
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Figure 4: The time interval Γ is defined as the distance between the change point indicated
by the red line, and the intersection between the purple and green lines that are obtained
fitting the data before and after the change point.

5 Examples

In this section, we present two examples to show the algorithm in action.

5.1 Real-world cable connection

The first example is shown in figure 5. The data was measured on a household
cable internet connection providing a nominal upload bandwidth of 7 Mb/s (which
corresponds to about 910 packets/s). It is interesting because it presents most of the
features discussed above. In particular,

• there is a burst between 50ms and 300ms (this justifies the need of a changepoint
detecting algorithm),

• the change-point candidate at 170ms was discarded because of the large Γ value,
and

• the bandwidth estimate is in close agreement with the nominal value also veri-
fied by a saturation test.
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Figure 5: Measurement of the upload bandwidth of a cablecom internet connection

5.2 Controlled case using the simulator

The second example is shown in figure 6 and is based on a test case generated by an
ad-hoc simulator where we can control the parameters of the model (bandwidth and
buffer size) as well as the noise. With this example we can show how the bandwidth
estimation converges to the actual value after few probing experiments.

The channel bandwidth is fixed at 100 KB/s while the initial send rate is set at 110
KB/s. Since in this case β > α, at the very beginning of the simulation the buffer is
already filling and the latency is increasing.

Note that although we obtain a very good estimation of the bandwidth by fitting the
very first latency increase, we deliberately keep the initial rate till the buffer is full
in order to show (test) how the algorithm behaves in the saturated case.
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Figure 6: Results of the algorithm run on-line in the simulator

6 Conclusion

We presented an on-line algorithm to estimate the bandwidth effectively available
between two peers. The method is based on latency and can be implemented very
efficiently. We believe that, combined with other methods (as those based on packet
loss), it could make a robust and reliable system.

Future improvement will consist in implementing fallback methods, improving de-
tection of changes between experiments, and defining more precise criteria to detect
imprecisions in the results.

We also plan to test our system in many different situations by providing a web
service where the software can be downloaded and the measurement results can be
accumulated.

Finally, an element that remains to be studied is how our system behaves in presence
of other systems for improving bandwidth usage.
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Appendix

In this appendix we explain some of the notations and formulas used for the imple-
mentation of our system.

The time intervals are obtained from the following expressions (note how the two
cases considered are in fact very similar):

case β ≤ α case β > α
max fill level: ω = min(B, g+δ)
min fill level: ψ = max(0, B + g−δ)

time for filling: ∆1 = min( B
g+
, δ) ∆2 = B−ψ

g+

= ω
g+

time for emptying: ∆2 = ω
−g− ≤ δ ∆1 = min( B

−g− , δ)

= B−ψ
−g−

where

δ is the width (duration) of the send rate step;

h is the height of the send rate step;

B is the available buffer size;

α is the available bandwidth;

β is the average (steady state) transmission rate and
β+

.
= β + h, β−

.
= β − h, g+

.
= β+ − α, g−

.
= β− − α
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