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Abstract

Many different algorithms developed in statistical physics, coding theory, signal
processing, and artificial intelligence can be expressed by graphical models and
solved (either exactly or approximately) with iterative message-passing algorithms

on the model.

One quantity of interest in these algorithms is the partition function. In graphical
models without cycle (trees), the partition function can be computed efficiently by
means of message-passing algorithms, like GDL or the sum-product algorithm. In
contrast, when graphical models contain cycles, the computation of the partition
function is in general intractable. Our contributions in this dissertation are: deriv-
ing deterministic upper and lower bounds on partition function, and developing

methods to approximate this quantity with Monte Carlo methods.

Specifically, we obtain subtree-based upper and lower bounds which lead to the-
oretical results on optimality properties of the minimum entropy sub-tree and fi-
nally lead to a greedy algorithm. At last, we introduce and analyze a number of
estimators that use Gibbs sampling to draw samples from different target distribu-
tions to estimate the value of the partition function. In one estimator, we demon-
strate a novel strategy which combines Gibbs sampling and message-passing al-

gorithms on trees.

Keywords: Probabilistic Inference, The Graphical Models, Generalized Distributive Law,

Statistical Physics, Partition Function, Deterministic Bounds, Gibbs Sampling.
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Résumé

La plupart des algorithmes dans les domaines de la physique statistique, de la théorie du
codage, du traitement des signaux, et de 'intelligence artificielle peuvent étre représentés
par des modeles graphiques et étre résolus par des algorithmes itératifs, de maniere exacte

ou approximative.

La quantité qui nous intéresse est la fonction de partition de ces algorithmes. Dans la
famille des modeles graphiques sans cycles (arbres), cette fonction de partition peut étre
évaluée de facon efficace par des algorithmes itératifs. Par contre, quand les modeles
graphiques possedent des cycles, 1’évaluation de cette fonction est en général algorith-
miquement difficile. Notre contribution dans ce travail de these a été double: d"une part,
nous avons obtenu des bornes déterministes pour la fonction de partition; d’autre part,
nous avons développé des méthodes d’approximation de cette quantité basées sur les

méthodes Monte-Carlo.

Plus spécifiquement, nous avons obtenu, a partir des sous-arbres du modele, des bornes
inférieures et supérieures conduisant a des résultats théoriques d’optimalité du sous-arbre
d’entropie minimale ainsi qu’a un algorithme glouton. Nous avons introduit et analysé des
estimateurs basés sur 1’échantillonnage de Gibbs afin d’obtenir des échantillons a partir de
différentes distributions de probabilités. Nous avons enfin développé un estimateur qui

combine 1’échantillonnage de Gibbs avec des algorithmes itératifs sur les arbres.

Mots clés: Inférence Probabiliste, Modeles Graphiques, Loi Distributive Généralisée,

Physique Statistique, Fonction de Partition, Bornes déterministes, Echantillonnage de Gibbs.
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Chapter 1

Introduction

1.1 Motivation

The central topic in this dissertation is Z, the partition function. The most obvi-
ous role of this quantity is normalizing a distribution. The partition function is a
quantity of interest in a wide variety of algorithms developed in different fields,
including statistical physics, approximate inference, Bayesian model comparison,
large deviations bounds, and combinatorial enumeration. In statistical physics Z
typically carries information about all the thermodynamic properties of a system.
In Bayesian model comparison Z is a crucial quantity and can be interpreted as
the likelihood of observing a set of data given the model. In the context of large
deviations, Z specifies (exponential) error rates.

Graphical models provide an attractive framework to formulate problems com-
mon to all these algorithms and to solve them with efficient iterative message-
passig algorithms described on such models. For graphical models without cycles,
Z can be computed efficiently with message-passing algorithms. However, when
the graphical model contains cycles, the computation of the partition function is
in general intractable. Therefore, approximating and obtaining low-complexity
bounds on this quantity is important.

Our contributions in this dissertation are twofold
1. Subtree-based deterministic upper and lower bounds on Z.
2. Simulation-based estimation of Z with Monte Carlo methods.

The methods we use are also twofold. In the first part, we use iterative message-
passing algorithms on sub-trees of a given graphical model to derive deterministic

1



upper and lower bounds on the partition function. In the second part, we use
Monte Carlo methods to estimate the partition function and propose various esti-
mators. In one estimator, we demonstrate how to combine Monte Carlo methods
and message-passing algorithms on trees.

Next we present an overview of this dissertation.

1.2 Overview

In Chapter 2 we give a brief introduction of a probabilistic inference problem,
graphical models, and the generalized distributive law. A probabilistic inference
problem is concerned with computing the partition function and the marginals of
a global function of many variables. The global function often factors as a product
of local functions, each of which depends on a subset of the variables.

Consider a set { X1, Xs,..., Xy} of N discrete random variables. Suppose x; rep-
resents the possible realizations of X; and x represents {z,zs,...,zy}. Suppose
Ri,Rs, ..., Ry aresubsetsof {1,2,..., N} and R = {Ry, Ry, ..., Ry} is a collection
of subsets of the indices of the random variables. Also suppose p(x), the global
probability function, factors into a product of non-negative and finite local kernels
as

p(x) = % H ar(Xg), (1.1)
RER
where each local kernel oz (xp) is a function of the variables whose indices appear
in R and Z is the partition function. In a probabilistic inference problem we are
interested in computing the partition function Z, defined by

Z = Z H O-/R<XR)’ (12)

x ReR
and marginal densities pr(xp), defined by

pr(xR) = ) p(x). (1.3)

x\xp

The factorization in a probabilistic inference problem can be visualized with a
graphical model. A graphical model is a family of probability distributions that
factorize according to the structure of an underlying graph. They are used and
studied in various applied statistical and computational fields such as signal pro-
cessing, information theory, statistical physics, and artificial intelligence. The two



most common forms of graphical models are directed graphical models and undi-
rected graphical models. Here we consider undirected graphical models and focus
on graphical models defined in terms of junction graphs/trees. According to The-
orem 1.1, for any probabilistic inference problem there is always a junction graph
representation [AMO1].

Theorem 1.1. For any collection R = {R1, R, ..., Ry} of subsets of {1,2,...,n}
there is a junction graph for R.

Having a junction graph representation of a probabilistic inference problem allows
us to use a general and low-complexity message passing algorithm, called the gen-
eralized distributive law (GDL), to solve or approximate a probabilistic inference
problem. Some of the best (approximate) decoding algorithms (i.e., for decoding
Turbo codes and low-density parity-check codes) involve message passing meth-
ods on graphical models. When the problem can be organized into a junction tree,
according to Theorem 2.9, GDL gives an exact message passing solution to the
probabilistic inference problem .

In Chapter 3, we give a brief introduction of statistical physics and its connections
to the probabilistic inference problem. We give definitions of the partition function
and free energy.

Consider { X, X5,..., Xy} a set of N identical particles and suppose x represents
the state {z1, z, ..., zy}. Also suppose that each state has energy £(x). In thermal
equilibrium, the probability of a state is given by the Boltzmann distribution as

p(x) = le*E(x). (1.4)

The partition function is defined as
Z =Y e (1.5)

And the free energy is defined as
Fy = —In(2). (1.6)

We explain variational methods to compute the free energy of a system and ap-
proximations to these methods. We describe one such approximation, namely the
Bethe-Kikuchi approximation to the variational free energy with respect to G and
denote by HY,.(q). In Theorem 1.2 we show that for a given collection of random



variables the Bethe-Kikuchi approximation on a junction tree representation is an
upper bound to the exact value of the entropy function denoted by H(q).

Theorem 1.2. Let ¢(y) be an arbitrary probability distribution on
Y = {¥1,Ys,...,Yy} and 7 any collection of subsets of the index set {1,2,--- , N}
for which a junction tree exists. Then the following bound holds

H(q) < Hpr(q). (1.7)

The message passing decoding algorithms on graphical models are deeply related
to different energy approximations developed in statistical physics. We explain
how the Bethe-Kikuchi approximation to the free energy is related to GDL on junc-
tion graphs.

In Chapter 4, we introduce deterministic bounds on the partition function and de-
rive subtree-based upper and lower bounds. For a probabilistic inference problem
defined by R = {Ri, Ry, ..., Ry}, we suppose Ry C R has a junction tree repre-
sentation with probability distribution ¢ (x) and partition function Z;. Therefore,
rewrite p(x) as

p(x) = % qr(x) H ar(xg). (1.8)
ReER\Rr

With this reformulation we derive the following upper and lower bounds

Z ZqT )Inag(xg) < ln ) < Z Zp xg)Inag(xg). (1.9)

RER\RT X RER\Rr XR

We denote the lower bound computed using ¢r by £,, and in Theorem 1.3 we
present an inequality to compare lower bounds derived from different sub-junction
trees according to their entropies.

Theorem 1.3. Consider R, and R, subsets of R with junction tree representations.
Suppose that ¢,(x), Z1, ¢2(x), and Z, denote the global probability distributions
and the partition functions over R, and R respectively. Without loss of generality
suppose H(q1) < H(q2), then the following inequality holds

Ly, < Ly + min (D(¢1][q,) — D(g2lla1), D(ai]lg2) + D(ai|[a,)), (1.10)

where G, and g, denote the global probability distributions on R \ Ry and R \ R,
respectively.



Using the results of Theorem 1.3, we study the properties of the lower bound ob-
tained from the minimum entropy sub-tree and show that this sub-tree has some
optimality properties.

In Chapter 5, by simplifying the upper and lower bounds obtained in Chapter 3,
we present new and low-complexity bounds for the partition function. In a the-
orem we prove that the new bounds only need to be optimized on maximal sub-
junction trees of a given junction graph. We propose a greedy algorithm to find
such a sub-tree and compute the bounds. We study some properties of our greedy
algorithm and apply it to two-dimensional grids. Simulation results are reported
at the end of the chapter.

In Chapter 6, we use Monte Carlo methods to estimate the value of the partition
function. Monte Carlo methods were first used by Metropolis, et al. in simulation
of liquids in statistical physics [Fre04]. The term Monte Carlo was also invented
by Metropolis because of the similarity of statistical simulation to games of chance.

Sampling from a high-dimensional distribution (which is known up to a normal-
izing constant) is the central problem in Monte Carlo methods. Here we focus
on Gibbs sampling, one of the simplest and widely used Monte carlo methods,
and propose various estimators that use Gibbs sampling to estimate the partition
function of a given probabilistic inference problem. We propose three types of es-
timators.

Let X stand for {X;, Xs,..., Xy} and let X’ represent the sample space, assume
that p(x) has the same factorization as in (1.1) and that the local kernels are posi-

tive.

Let us define

a(x) £ ] er(xs), (1.11)
RER
v &2 % (1.12)
Then, we can rewrite (1.1) as
p(x) = a(x) = 0 () (1.13)

With these assumptions we can define Z as



Z=> ax) (1.14)

xeX

In (6.7), we propose an estimator that uses samples drawn according to the proba-
bility distribution p(x) and prove that

Theorem 1.4. If x®V x® ... x®) are ii.d. samples drawn with distribution p(x)
from X, 74 is an unbiased estimator for vy, where

1 < 1
= IR 2 i) o

Suppose z is a subset of x. In (6.28) propose an estimator for the partition function
that uses samples drawn according to p(z) with sample space Z.

Theorem 1.5. If zV) 2z ... z) be iid. samples drawn with distribution p(z)
from Z, 7 is an unbiased estimator for y, where

K

Z e (k (1.16)

We show how a clever choice the variables in z enables us to use the ideas from
message passing algorithms on trees for this estimator. Finally, in (6.34), we pro-
pose an estimator that uses samples drawn uniformly from X’.

Theorem 1.6. If x"),x® ... xU) be i.i.d. samples drawn uniformly from X, Z is
an unbiased estimator for Z, where

K
7 = % D alx (1.17)
k=1

We estimate the value of the partition function of two-dimensional grids with dif-
ferent estimators. We show how to choose the variables in z with examples of grids
with different sizes and report the simulation results.



Chapter 2

The Probabilistic Inference Problem
and the GDL Algorithm

In this chapter we give an introduction to the probabilistic inference problem,
graphical models, and the generalized distributive law. We discuss two main tasks
in a probabilistic inference problem, namely computing the partition function and
the set of desired marginals of a product function. These tasks lie at the heart of
many algorithms in coding theory, statistical physics, signal processing, and ma-
chine learning. Graphical models provide a way to view all these algorithms in a
common framework [Dau06], [W]93].

We focus on graphical models defined in terms of junction graphs and describe
a general procedure, called the generalized distributive law, that gives a message
passing solution for a probabilistic inference problem on junction trees.

The outline of this chapter is as follows. In Section 2.1, we introduce the prob-
abilistic inference problem. In Section 2.2, we show how graphical models, partic-
ularly junction graphs, are used to visualize a probabilistic inference problem. In
Section 2.3, we review the generalized distributive law.

2.1 The Probabilistic Inference Problem

Suppose a global function defined over several random variables, e.g., a probabil-
ity mass function, factors as a product of a series of non-negative and finite local
kernels. Also suppose each kernel depends on a subset of the set of all random
variables. The goal is to compute the partition function and the marginals of the
global function according to those subsets.

More formally, consider a set { X7, X5, ..., Xy} of N discrete random variables
each of which taking their values in a finite set 4, e.g. A = {0,1,2,...,a — 1}.

7



Let x; represent the possible realizations of X; and let x stand for {zy, zs, ..., zx}.
Suppose Ry, Ry, ..., Ry are subsets of {1,2,...,N} and R = {Ry,Ry,..., Ry} isa
collection of subsets of the indices of the random variables X; through Xy. Let us
also suppose that p(x), the joint probability mass function, factors into a product
of non-negative and finite local kernels as

p(x) = % H ar(Xg), (2.1)
RER
where each local kernel az(xg) is a function of the variables whose indices appear
in R and Z is the partition function, also known as the global normalization constant
whose role is simply normalizing the probability distribution.
Let us define

alx) £ H ar(Xg). (2.2)
RER
With the above definition, we can rewrite (2.1) as

p(x) = Za(x). (2.3)

In a probabilistic inference problem we are interested in computing

1. The partition function Z, defined by

Z = Z H ar(Xg) = Za(x). (2.4)

x ReR X
2. Marginal densities pr(xp), defined by
pr(xr) = Y p(x), (2.5)
x\xp

where x \ xp means all variables except for xp

The problem of finding the marginal densities is usually called the MPF (marginal-

ize a product function) problem.

Both computations involve a summation over all possible combinations for the
values of a large number of random variables and in general grow exponentially
with the number of variables.

An efficient way to solve (or find approximate solutions for) a probabilistic
inference problem is to exploit the factorization of a(x) by graphical models and
use message passing algorithms on the model.



2.2 Graphical Models

The graphical model framework provides a suitable tool to visualize and formu-
late a probabilistic inference problem. This framework allows us to visualize the
factorization in (2.1) with a graph. Having such a graphical representation for a
probabilistic inference problem, we can express the computations in (2.4) and (2.5)
with operations on this graph [Mur(01], [W]93].

There are many graphical models in literature such as Markov random fields,
factor graphs [KFLO01], and Forney-style factor graphs (normal graphs) [For01]. We
focus on graphical models defined in terms of junction graphs [AMO00]. Our results
can easily be re-expressed with other graphical models. (For example in [WF01,
Appendix], the authors show how to convert junction graphs and factor graphs to
Markov random fields)

2.2.1 Junction Graphs

Definition 2.1. A junction graph is an undirected graph G = (V, E, L) where each
vertex v € V and each edge e € E is labeled with a subset of {1,2,...,n}. We de-
note the set of labels for vertex v € V and edge e € E by L(v), and L(e) respectively.
The labels on the edges must be a subset of the labels of their corresponding ver-
tices. In other words, if an edge e joins the vertices vy and v,, we write e = (vy, v2)
and require that

L(e) € L(vy) N L{vs). (2.6)

Furthermore, we require that the induced subgraph of G consisting only of the
vertices and edges which contain a particular label, must be a tree.

Figs. 2.1-a and 2.1-b show two junction graphs.

° 125 25 235
oJololorc
4

() (b)

Figure 2.1: Two Junction Graphs
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For a probabilistic inference problem, we say that G = (V, E, L) is a junction
graph for R, if {L(v1), L(vs), ..., L(va)} = R. We denote vertex labels by L(v;) and
edge labels by L(v;, v;) Fig. 2.2 shows a junction graph for R = {{1,2},{1,3}, {1,4},
{2,3,4}}.

Figure 2.2: Junction Graph Representing R = {{1,2},{1,3},{1,4},{2,3,4}}

Theorem 2.2. For any collection R = {Ri, Rs,..., Ry} of subsets of {1,2,...,n}
there is a junction graph for R [AMO01, Theorem 4].

Proof: Begin with a complete graph G with vertex set V' = {vy, v, ..., v,,}, vertex
labels L(v;) = R; and edge labels L(v;,v;) = R; N R,;. Foreach k € {1,2,...,n}, let
Gr = (Vi, E)) be the subgraph of G consisting of those vertices and edges whose
labels contain k. Clearly G is a complete graph, since if £ € L(v;) = R;, then
k € L(v;) N L(v;) = R; N R;. Now let 7 be any spanning tree of G, and delete &
from the labels of all edges in Ej, except those in 7. The resulting labeled graph is
ajunction graph for R. 1

Using the fact that a complete graph with m vertices has exactly m™ 2 spanning
trees we can conclude that if m; denotes the number of sets R such that: € R; then
the number of junction graphs for R is [[I_, m/" >. Therefore, in general there
might be many junction graphs representing the same inference problem.

Example 2.3. For R = {{1,2,5},{2,3,5},{3,4,5},{1,4,5} }, there are in total six-
teen junction graph representations. Fig. 2.3 shows four such junction graphs.

According to Theorem 2.2, for any probabilistic inference problem there is al-
ways a junction graph representation but not necessarily a junction tree representa-
tion.

Definition 2.4. A junction tree is an undirected tree 7 = (V, E/, L) where each vertex
and each edge have labels, denoted by L(v), and L(e) respectively, such that for any
label the induced subgraph of 7 consisting only of the vertices and edges which
contain that label, is connected.
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Figure 2.3: Four Junction Graphs for {{1,2,5},{2,3,5},{3,4,5},{1,4,5}}

Therefore, Fig. 2.1-a shows a junction tree for R = {{1,2,3},{1,4},{2,5},{3,6} }.

It is easy to decide whether for R = {R;, Rs, ..., Ry} a junction tree exists or
not. The key is the local domain graph Gp, which is a weighted complete graph
with M vertices vy, vq, ..., vy, One for each R; € R, with the weight of the edge
e;; defined by w; ; = |R; N R;|. Denote by w,,,, the weight of the maximal-weight
spanning tree of G p. Also define

M
w =3 |R| - N 2.7)
=1

where N is the number of variables (indices).

Theorem 2.5. w,,., < w*, with equality if and only if there is a junction tree. If
Wmae = W*, then any maximal-weight spanning tree of G 1,p is a junction tree [AMOO,
Theorem 4.1].

Example 2.6. For R = {{1,2,3},{1,4},{2,5},{3,6}}, it is easy to see that w* =
(3+2+2+2)—6 = 3 and the weight of a maximal spanning tree is also 3. Therefore
according to Theorem 2.5, for R = {{1,2,3},{1,4},{2,5},{3,6}} a junction tree
representation exists, Fig 2.1-a.

Example 2.7. For R = {{1,2,3},{2,3,4},{3,4,5}}, we can see that w* = (3 + 3 +
3) — 5 = 4 and Wiy, is also 4. Therefore according to Theorem 2.5, a junction tree
representation exists for R.
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Example 2.8. For R = {{1,2}, {1,3},{1,4}, {2,3,4}}, we can verify that Wy, =
(34 242+ 2) — 4 =5 and the weight of a maximal spanning tree is 3. Therefore
according to Theorem 2.5, a junction tree representation does not exist.

We will see in Section 2.3 that if junction tree representation for a probabilistic
inference problem exists, there is a message passing algorithm to compute the par-
tition function and the marginal densities efficiently. This is the topic of the next
section.

2.3 The Generalized Distributive Law (GDL)

The generalized distributive law (GDL) is an iterative message passing algorithm,
described by its messages and beliefs, to solve the probabilistic inference problem on
a junction graph [AMOO0]. In [SS90], the authors describe a general framework sim-
ilar to GDL, here we prefer to follow the more convenient and recent framework
presented in [AMOO].

GDL is a local message passing algorithm. Roughly speaking, GDL uses the
distributive law of the product operation over summation to reduce the complexity
of the calculations.

On a junction graph G, if vertices u and v are connected by an edge e, the mes-
sage sent from wu to v is a function of the variables whose indices are on ¢, and is
denoted by m,, (XL (uv)), where L(u, v) denotes the labels on e = (u, v).

When a particular message m, (X1 v)) is updated, the following rule is used

My (XL(u,v)) = Z Oy, (XL(U)) H My u (XL(u/,u))a (28)

XL(u)\L(u,v) u' €N (u)\v

where N(u) denotes the neighbors of w.

In words, the message from u to v is formed by the product of the local kernel
at v with all the messages u has received from its neighbors other than v when
marginalized properly.

Initially, all messages are defined to be identically 1 :

Myy(Xpe)) =1, foralle € E. (2.9)

The beliefs on vertices and edges are denoted by b, (x,)) and b.(xr(.)), respec-
tively. At any stage of the algorithm, the beliefs can be computed as
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1

bv<XL(v)) = 7 H mquL(uv (210)
v uEN (v)
1

be(XL(e)) = 7mu,v(XL(e))mv,u(XL(e))7 (211)

where Z, and Z, are the local normalizing constants, defined as

Zy = Z Oév XL(v H muv X L(uw) (212)
X1, (0) uwEN (v)

Ze = ) mua(Xe)muu(Xi)- (2.13)
XL(e)

In words, when normalized properly, the belief on vertex v is the product of its
local kernel with all the messages it has received from its neighbors, and the belief
on edge ¢, the edge between v and w, is the product of the messages passed in both
directions on ¢, i.e. from u to v and from v to w.

Theorem 2.9. On a junction tree the beliefs in (2.10) and (2.11) converge to the
exact desired local marginal probabilities after a finite number of steps, [AMO00,
Theorem 3.1], [Pea88].

Therefore, the GDL algorithm gives a message passing solution to the MPF
problem, stated in Section 2.1, when the sets {R;, R, ..., Ry} can be organized
into a junction tree.

Theorem 2.10. On a junction tree defined by (2.1) p(x) factors as the product of
local probabilities on the vertices over the product of local probabilities on the
edges [Cow98]

H cv Pu (XL(U))
p(x) = 5- . (2.14)
HeEE De (XL(E))
In this case, the entropy decomposes as the sum of the entropies of the vertices
minus the sum of the entropies on the edges. This gives (see Theorem 3.2).

= Hpo(xew)) = Y Hpe(xue (2.15)

veV eckE

Similarly, the global normalization constant Z can be expressed in terms of the
local normalization constants as follows

H’UEV ZU

4 = ==
HeGE Ze

(2.16)
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Therefore, if G is a tree, there is an efficient algorithm to compute the marginals
of p(x), the entropy of p(x), and the partition function. If G is not a tree, the above
algorithm is not guaranteed to give the exact solution or even to converge, al-
though empirically it performs very well in various applications such as decoding
error-correcting codes.

New theoretical results show that there is a close connection between the mes-
sage passing algorithms on graphical models and certain approximations to the
energy function in statistical physics, thus establishing a link between message
passing algorithms and approximations from physics. This is the topic of the next
chapter.

We finish this section by stating the following remarks.

Remark 2.11. Similar to GDL (but with a slightly different notation), there is a lo-
cal message passing algorithm, called the sum-product algorithm, that solves the
probabilistic inference problem on factor graphs, see [KFLO1]. The results devel-
oped in our setting can be translated into an equivalent setting using factor graphs
and be solved by the sum-product algorithm.

Remark 2.12. In order to compute the beliefs at all vertices, GDL can be scheduled in
a fully parallel manner. In this case, at every iteration, every belief is updated, and
every message is computed and sent simultaneously. Alternatively, the GDL can
be scheduled fully serially. In this case, each message is sent only once, and each
belief is computed only once. A vertex sends a message to a neighbor when, for
the first time, it has received messages from all its neighbors. See [AMO00, Section
3], for more details on parallel, serial, and hybrid GDL scheduling.

Remark 2.13. In Section 2.2.1, we stated that for a valid junction graph G, it is re-
quired that the induced subgraph of G consisting only of the vertices and edges
which contain a particular label be a tree. In [YFWO05], this concept has been gen-
eralized to introduce valid region-based approximations and the generalized belief
propagation algorithm. The junction graph introduced in this chapter is a special
case of the junction graph method described in [YFWO05, Appendix A].

Remark 2.14. In [PA04], the authors develop a measure-theoretic version of GDL
where the desired marginals are viewed as conditional expectations of a product
of random variables.



Chapter 3

Connection to Statistical Physics

In this chapter, we study the connection between the probabilistic inference prob-
lem, stated in Section 2.1, and statistical physics. The connection has been noted
by several authors and in different contexts. Also many methods from statistical
physics have been used for probabilistic inference, information theory, combinato-
rial optimization, and vice versa [MMO6], [Nea93]. The recent paper by Yedidia et
al [YFWO05] showed that there is a close connection between message passing algo-
rithms in probabilistic inference and certain approximations in statistical physics.

The outline of the chapter is as follows. In Section 3.1 we review some basic
ideas from statistical mechanics, especially the Boltzmann distribution, partition
function, and free energy. Variational free energy, in Section 3.2, suggests a method
for computing the free energy. In Section 3.2 we also discuss the Bethe-Kikuchi
approximation to the free energy and its connection to the probabilistic inference
problem. In Section 3.3 we prove that if an arbitrary probability distribution has
the same marginals as the Boltzmann distribution on a junction tree, its entropy is
upper bounded by the entropy of the Boltzmann distribution.

3.1 Some Statistical Mechanics

Consider { X, Xy, ..., Xy} aset of N identical particles each of which taking their
states in a finite set A with a elements as A = {0,1,2,...,a — 1}. Let z; represent
the state of the ith particle and let the overall state x stand for {z, 3, x3,...,2x}.
Also suppose that each state of the system has a corresponding energy E(x).

A well-known result from statistical physics says that in thermal equilibrium,
the probability of a state will be given by Boltzmann distribution as follows

1
p(x) = e PO (3.1)
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where T is the temperature and Z(T') is the corresponding partition function.

As T increases, i.e., at high temperature, the Boltzmann distribution is close to
uniform, while as 7" decreases, i.e., at low temperature, the system is called to be
in disordered configuration and typically finds itself in low energy states.

In our case, T"is only a scale for the units in which one measures energy. We set
T = 1 and define the partition function as

Z=> et (3.2)

xeX

where X is the space of all possibles states x of a system.
The free energy of a system is defined as

Fy = —In(2). (3.3)

The free energy is of fundamental importance in statistical mechanics because
most macroscopic thermodynamic properties of a system follow from differentiat-
ing this quantity and many problems can be recast as free energy computation.

Exact calculation of the partition function and the free energy of a system is
computationally intractable due to the exponential number of terms in (3.2), there-
fore physicists have developed a number of techniques which give good approxi-
mations to these quantities. One is the variational free energy technique.

3.2 Variational Free Energy

Suppose that p(x) is the Boltzmann distribution and ¢(x) represents a trial prob-
ability distribution which represents the probability that the system is in state x.
The corresponding variational free energy (also called Gibbs free energy) is defined by

F(q) = E(q) — H(q), (3.4)

where FE(q) is the variational average energy and H(q) is the variational entropy de-
fined by

E(q) = > q(z)E(x), (3.5)
H(q) = =) q(z)Ing(x). (3.6)

It follows from the above definitions that



17

Flo) = Y a@EE + Y a@) ng() (3.7)
= —In(Z) - Z )Inp(z) + Z )Ing(x (3.8)

= —W(2)+ Y ¢lx)In Z— (3.9)
— —1(Z)+ Digllp). 3.10)

where (3.8) follows from the definition of the Boltzmann distribution in (3.1) and
(3.10) follows from the definition of relative entropy.

The relative entropy between two distributions, say ¢ and p, is always non-
negative and it is zero if and only if ¢(x) = p(x). We see that F(q) > Fy, with
equality when ¢(x) = p(x). Therefore, one exact technique for computing the free
energy and recovering p(x) is to minimize the variational free energy with respect
to trial probability distributions. The minimum that we find is the free energy and
the distribution that gives this minimum is the Boltzmann distribution.

{ F = min,x F(g)
p(x) = argminq(x)ﬁ(q)

However this method is also intractable as N becomes large. One practical
method is to minimize the variational free energy not over all the probability distri-
butions but over a restricted subspace of trial distributions. This subspace should
be simple enough so that the free energy can be computed, but should also contain
distributions which are able to give a good approximation to the true behavior of
the system [YFWO05], [MMO6].

This is the idea behind the Bethe-Kikuchi approximation (and similar approxima-
tions) to the variational free energy.

3.2.1 Bethe-Kikuchi Approximation to the Variational Free En-
ergy

Usually, and in fact in many cases of interest, the energy function - that so far has
been arbitrary - is determined by short-range interactions and decomposes as the
sum of the energies of the subsets of the particles.

More formally, suppose R, Rs,...,Ry are subsets of {1,2,...,N} and
R = {R1, Ry, ..., Ry} is a collection of subsets of the indices of the particles X,
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through Xy. Let us also suppose that £ (x) decomposes into a sum of local ener-
gies as

E(x) =Y _ Eg(xp), (3.11)

where each local energy Er(xp) is a function of the particles with indices in R.
With these assumptions, the Boltzmann distribution defined in (3.1) factors into
the product of local kernels as

p(x) = % 1T arxz). (3.12)

ReR

where a(xg) = eFrixr)

The role of the partition function is to normalize the probability distribution.
Therefore calculating the partition function is very closely related to the proba-
bilistic inference problem stated in Section 2.1.

If the energy decomposes into sums so does the average energy. In this case the
variational average energy will only depend on the marginals of the probability
distribution

E(q) = ZZQR(XR)ER(XR> (3.13)
= > Er(qn). (3.14)

where Er(qr) = > qr(xr)Er(X).

XR
The aim is to minimize the variational free energy over all distributions ¢(x),

but according to (3.14) the variational average energy (3.5) depends on ¢(x) only
through the marginals of ¢(x). The remaining term is the variational entropy.

Question 3.1. Does the variational entropy (3.6) also depend only on the marginals
of q(x)?
The following theorem partially answers this question.

Theorem 3.2. If G = (V, E, L) is a junction tree for R, at Boltzmann equilibrium,
then the entropy decomposes as sum of the entropies of the vertices minus sum of
the entropies of the edges, as

H(p) =Y H(p,(x)) — > H(pe(xe)). (3.15)

veV eeE
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Proof: Start from (2.14); take logarithms of both sides, multiply both sides by ¢(x),
and sum over x. 1

One can continue to use the decomposition of Theorem 3.2, as an approxima-
tion to the variational entropy, in the case of junction graphs with cycles. We call
this approximation the Bethe-Kikuchi approximation to the variational entropy with
respect to G and denote it by HY,(q).

Recall that junction graphs have local tree structures and that, in a tree, the
number of vertices always exceeds the number of edges by one; this property guar-
antees that on both sides of (3.15) each variable is counted only once. Therefore
HY . (q) - which is exact on trees - also seems plausible as an approximation on
junction graphs with cycles.

Example 3.3. For the junction tree in Fig. 2.1-a, H},(q) is exact and can be ex-
pressed as sum of the entropies of the vertices minus sum of the entropies of the
edges

HgK(q) = H(zy,x9,23)+ H(x1,24) + H(xo, x5) + H(x3,26) — H(x1) — H(22) — H(x3).
(3.16)

Example 3.4. For both junction graphs in Fig. 3.1, H%,,.(¢) is an approximation to
the exact value of the entropy and can be decomposed as

ﬁg}((@) = H(wy,x9,25)+H (v, 73, 25) + H (21, 24, T5) + H (23, 24, 05)+ H (21, 74, 5)
—H(l'l, IE5) — H(l’g, lL‘5) — H(Ig) — H(ZL‘4) — I{(.I'5)7 (317)

which sounds plausible as an approximation since each variable is counted just
once. For example, on the left hand side x5 has appeared once with positive sign,
and on the right hand side has appeared four times with positive sign and three
times with negative sign.

Now in (3.4), we can substitute the variational average energy from (3.14) and
the variational entropy from (3.15) to get an approximation to the free energy
which depends on ¢(x) only through its marginals. We call this Bethe-Kikuchi
approximation to the free energy with respect to G and denote it by F§,(q)

Ffea) = Y Bulan(x) = (D Hau(x) = 3 Hlge(x)).  (3.18)

veV veV eckE

Therefore, one plausible technique to approximate the free energy and recover
approximate marginals of p(x), is to minimize the Bethe-Kikuchi free energy with
respect to trial marginal probability distributions. The minimum that we find is a
plausible estimate of the free energy and the marginal distributions that gives this
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Figure 3.1: H%,.(¢) on junction graphs is an approximation to H.

minimum are plausible approximates for the marginals of the Boltzmann distribu-
tion.

{ FBK = min{qv(xv),qe(xe)}FBK(qv(XU>7 qe(Xe>>
{g0(x0), ge(xc)} = argming, .\ o Fpr(g(X0), ge(xe))

New theoretical results show that the stationary points of the Bethe-Kikuchi
energy function (3.18) subject to some consistency constraints coincide with the
fixed points of the GDL message passing algorithm with local kernels defined as
ag(xg) = e Prr) [YFWO05], [AMO1], [PA0O5]. Therefore, establishing a link be-
tween message passing algorithms and certain approximations in statistical physics.
The idea is that having plausible approximations to the energy function gives hope
that the minimizing arguments are also reasonable approximations to the exact
marginals.

3.3 Entropy Decomposition on Junction Trees

According to Theorem 3.2, at the Boltzmann equilibrium there is a simple decom-
position for the entropy on junction trees. This decomposition is not correct in
general. The following theorem shows that for a given collection of random vari-
ables the Bethe-Kikuchi approximation on any junction tree representation is an
upper bound to the exact value of the entropy function.

Theorem 3.5. Let ¢(y) be an arbitrary probability distribution on
Y ={Y1,Y5,...,Yn} and S any collection of subsets of the index set {1,2,--- ,N}
for which a junction tree T = (V, E, L) exists. Then, the following bound holds

H(q) < Hgi(q), (3.19)
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with equality if and only if ¢(x) factors on 7 as

[loev (yrw)

. 3.20
[eer 4e(Yio) (320

qly) =

Proof: The proof is by induction on M the number of vertices of the junction tree.
The only inequality we will use throughout the proof is the positivity of the condi-
tional mutual information.

For the base M = 2, consider 7, = (V4 Es,Ly) a junction tree for
S = {51, 52}. This tree consists of two vertices and one connecting edge with in-
dices in S; and Sy, and S} N S5 respectively. Define S| = S; \ Sz and S, = S5 \ 54,
we have

I(Ys;; Yy Ysins,) = H(Ys,) + H(Ys,) — H(Ysns,) — H(Ys,0s,)- (3.21)

Hence by the positivitiy of the conditional mutual information, we have

H<Y) < H(YS1) + H(YSQ) - H<YS1052)' (322)
In other words, H(q) < HZ,(q) with equality if and only if g(y) = 2¥5)4¥s2),

q(yslﬁSQ)

For the induction step, consider 7),_;, the junction tree representing
S ={51,5,...,Su-1}. Induction hypothesison 7);_1 = (Vas—1, Enr—1, La—1) yields

HYuoag) < > HY 1y o) = Y HY 1y 1) (3.23)

veVar_1 ecEn 1

Build the new junction tree 7y; = (Vas, Eum, Ly) by adding a new vertex to
Tr—1. Without loss of generality we assume that Sy; N S # 0 and we connect the
new vertex with indices in Sy, to the vertex with indices in S;. See Fig 3.2

Now if we define S5, = Sy \ UM;'Si and 8" = JY[' S, \ Sy, positivity of
I(Ys,,; Yo |Yru g ) allows us to write

H(Yuﬁl Si) < H(Yui”ifl Si) + H(YSM) — H(YS Mmn(UMTL S, )) (3.24)
The induction hypothesis in (3.23) together with (3.24) yield

H(Y 5) < > H(Ypy @)= > H(Y 1y ) + H(Ys,) = H(Yg 1 s)-

vEVM 1 e€EN 1

(3.25)
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Figure 3.2: Junction Graph in Theorem 3.5

The junction tree property, stated in Section 2.2.1, guarantees that
Sy N (Uf\il_l S;) = 0 and the label on the edge between S; and Sy, in 7y, is pre-
cisely equal to Sy N (UY " S;). Thus, we can rewrite (3.25) as

H(Y\y, s,) < Z H(Y Ly ) — ZH(YLM(e))~ (3.26)

ISA%Y: e€FEy

Hence we have shown that H(q) < H 2} (¢) with equality if and only if

H’UGV]\/[ Q’U (YLM(U))
HeGEM Ge (YLM(e))

qy) =

Remark 3.6. Alternative proofs for Theorem 3.5 can be found in [DLMO04], [WJWO05,
Appendix A], and [W]93, Section 8.4] for its extension to hypertrees. However, our
proof that first appeared in [MP05] is different.

Remark 3.7. We finish this section by stating one direct implication of Theorem 3.5.
If an arbitrary probability distribution ¢(x) has the same marginals as the Boltz-
mann distribution on a junction tree, its entropy is upper bounded by the entropy
of the Boltzmann distribution. For the proof just consider the fact that the Bethe-
Kikuchi approximation takes the same value for both distributions while it is an
upper bound for H(q) and is tight for the Boltzmann distribution.



Chapter 4

Subtree-Based Upper and Lower
Bound on the Partition Function

For a general junction graph, i.e., with cycles, calculating the partition function in a
straightforward manner, as expressed in (2.4), involves a sum with an exponential
number of terms. Therefore it is desirable to have upper and lower bounds on
partition function which can be obtained with low complexity.

In the context of deterministic bounds on the partition function, mean field
theory provides a popular lower bound, see [YFWO05], [JS93]. A general optimiza-
tion framework for deriving and examining various mean field approximations is
proposed in [Zha96]. In [LKO1], the authors derive lower bounds that are tighter
than the mean field bounds. For the special case of Ising models, [JJ96] proposes
a recursive procedure to derive upper bounds on the partition function. Based on
concepts from convex duality and information geometry, in [WJWO05] a new class
of upper bounds are derived. In this chapter, considering the sub-junction trees of
a junction graph, we derive upper and lower bounds on the partition function.

The outline of this chapter is as follows. In Section 4.1, we derive subtree-
based upper and lower bounds on the partition function. In Section 4.2, using the
entropies of the sub-junction trees, we prove an inequality that compares the lower
bounds obtained from different sub-trees. In Section 4.3, we show that among all
sub-trees, the minimum entropy sub-tree has some optimality properties.

4.1 Subtree-Based Upper and Lower Bounds
In this section, for a general junction graph G we derive upper and lower bounds
on the partition function. In this set-up, the key observation is that any junction

graph has a large number of sub-junction trees on which the partition function can
be computed efficiently, using the GDL or any other message passing algorithm,

23
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see (2.16). The bounds depend on the partition function of Gr a sub-junction tree
of G.

Consider a probabilistic inference problem defined by R = {Ri, Rs,..., Rum}.
Suppose Ry is a subset of R that has a junction tree representation. Also suppose
that ¢r(x) denotes the global probability distribution and Z, the partition function
on Gy respectively.

With these assumptions, we can rewrite p(x), the global probability distribution
on G defined in (2.1) as

p(x) = % [Terxr) [] orxs)

RERT RER\Rr

= T [T entxn) @)

ReER\Rr

ZT = Z H CYR(XR).

x ReRTr

where

In the following, using the positivity of D(p(x)||¢r(x)) and D(gr(x)||p(x)) and
our reformulation in (4.1), we derive upper and lower bounds on Z.

4.1.1 Upper Bounds
To derive the upper bound, (4.1) allows us to write D (p(x)||¢r(x)) as

DOpElar®) = Dpe)llZ =P 42)

Zr HReR\R ar(Xpg)

- Zp(x)ln(p(x))—m(ZiT)—Zp(x)ln(p(x)) (4.3)

—i—Zp lnH ar(xg)

RER\Rr

— ZT _1_2 Z p(xg) Inagr(xg). (4.4)

xp RER\Rr

Hence by the non-negativity of relative entropy we obtain

In(Z) < In(Zr) —1—2 Z p(Xgr) Inag(xg). 4.5)

xp RER\Rr
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41.2 Lower Bounds

To derive the lower bound, we take logarithms of both sides of (4.1), multiply both
sides by ¢r(x), and sum over x to obtain.

ZQT lnp

—|—ZqT )In gr(x +Z Z gr(x) Inagr(xg). (4.6)

X ReER\Rr
Rearranging (4.6) gives
Z
~D(@(lpx) = T+ Y a0 mantx).  @7)
X ReR\Rr

Again, by non-negativity of relative entropy, we obtain

Z Z qr(x) Inag(xg) + In(Z7) < In(Z2). (4.8)

X ReR\Rr

4.1.3 Upper and Lower Bounds

From (4.5) and (4.8), we have the following upper and lower bounds on the parti-
tion function, see [MP05], [MP06]

Z Z qT IIlOéR XR <1H < Z Z XR théR XR) (49)

X RER\RrT Xr RER\Rr

Let us denote the lower bound computed using ¢r, i.e., the left hand side of
(4.8) by L,,. It follows immediately that

Ly, =W(Z) — D(gr(x)|p(x)) (4.10)

4.2 Comparing Lower Bounds

According to (4.9) every sub-junction tree gives upper and lower bounds on the
partition function. Let us recall that according to Theorem 3.2, on junction trees
the entropy can be efficiently computed as the sum of the entropies of the vertices
minus sum of the entropies of the edges.

In the following we prove a Theorem that suggests a method to compare the
lower bounds derived in (4.8) according to the entropies of the sub-trees.
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Theorem 4.1. Consider R, and R, subsets of R with junction tree representations.
Suppose that ¢,(x), Z1, ¢2(x), and Z, denote the global probability distributions
and the partition functions over R, and R, respectively. Without loss of generality
suppose H(q1) < H(qz). Then the following inequality holds

Ly, < Ly + min (D(¢1][q,) — D(g2lla1), D(ai]|g2) + D(a1|[a,)), (4.11)

where G, and §, denote the global probability distributions defined on R \ R, and
R \ R, respectively, [MP05, Theorem 2] .

Proof: Asin (4.1), we can rewrite p(x) in the following forms

p(x) = —q1 ) TI arxz) (4.12)
RER\R,

= —q2 ) TI en(xr). (4.13)
RER\R

Plugging (4.12) into D(¢:(x)||p(x)), we have

D(aq1llp) = ) =Y > qi(x)Inag(xg). (4.14)

x RER\R1

And by plugging (4.12) into D(g2(x)||p(x)), we have

D(q2|lp) = D(ga||q1) — Z Z ¢2(x) In ag(xR)- (4.15)

x RER\R1

We now substitute In(Z) from (4.15) into (4.14) to obtain

D(q:1|lp) = D(qz|lp) — D(q2||a1) +Z Z ) — 1(x)) Inag(xg). (4.16)

x ReR\RT1

After a little calculation

D(a1llp) = D(g2|lp) — D(gzllg1) +Z g2(x) — q1(x)) Ing, (x). (4.17)

Jensen’s inequality allows us to write

ZQQ x)Ing, (x ZQQ ) Inga(x (4.18)
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We can now add (4.17) and (4.18) to obtain

D(q1llp) < D(@llp) — D(g2llq1) +Z 32(x) In go(x —Z ¢ (x)Ing(x).  (419)

Now since H(q1) < H(g2) we can write

Z g2(x) In g2 (x Z q1(x) Inqi(x (4.20)

We can now add (4.19) and (4.20) to obtam

D(aillp) < D(g2|lp) = D(gzllar) + D(ai|[@1)- (4.21)

Using the definition of £, in (4.7), we have
Ly =In(Z2) = D(ailp) (4.22)
Ly, = In(Z) = D(ga[p) (4.23)

We can substitute D(q;||p) and D(g2||p) from (4.22) and (4.23) into (4.21) to de-
rive

Loy < Ly + D(arllg,) — Dlgallgn)- (4.24)
Similarly, by plugging (4.13) into D(¢2(x)||p(x)), we have

D(qql|p) _—111 Z Z ¢2(X) In ag(xR). (4.25)

x RER\Ra

And by plugging (4.13) into D(q¢;(x)||p(x)), we have

D(a:llp) = D(a1lgz) — )=> > ax)Inag(xg). (4.26)

X REeR\R2

We now substitute In(2) from (4.26) into (4.25) to obtain

D(g2llp) = D(a1llp) — D(q1llg2) +Z Z ¢1(x) — @2(x)) In ag(xg). (4.27)

x RER\Ra

After a little calculation

D(g|lp) = D(q1llp) — D(a1llg2) + Z (1(x) — q2(x)) In,(x) (4.28)
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Jensen’s inequality allows us to write

Z G2(x) Ingy(x Z 2(x) In go(x (4.29)

We can now add (4.28) and (4.29) to obtain

D(q1llp) — D(a1llg2) +Z ¢1(x) Ingy(x ZQQ ) Ing2(x) < D(gq|p)- (4.30)

Now since H(q1) < H(g2) we can write

ZQQ ) Inga(x qu )In g (x (4.31)

We can now add (4.30) and (4.31) to obtain

D(a1|lp) = D(qilla2) — D(a1][72) < D(ga||p)- (4.32)
Using the definition of £, in (4.7) and (4.22) and (4.23), we derive the following
inequality
Loy < Ly + Darllgz) + D(a:1[[35)- (4.33)
From (4.24) and (4.33), we conclude that

Ly, < Ly + min (D(¢1][q,) — D(g2llq1), D(ai]lg2) + D(a1][q,))- (4.34)

Corollary 4.2. In the case that Ry = R \ R, namely when the junction graph
decomposes into two junction trees (for example this can be the case when we
choose a sub-tree in a graph with only one cycle); if H(q1) < H(q2), the inequality
in (4.11) simplifies to

£II2 + D(Q2HQ1) < ‘Cth + D(QIHQQ)' (435)

Note that, in general, the relative entropy is not symmetric therefore equation
(4.35) does not tell if one bound is better than the other.

Substituting £,, and £, from (4.22) and (4.23) we can rewrite (4.35) in the fol-
lowing form

D(g|lq1) + D(a1llp) < D(aillg2) + D(gz||p). (4.36)
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q,

q,

Figure 4.1: To p via ¢; or via ¢,

In other words the distance from ¢ to p via ¢, is shorter than the distance from
¢ to p via ¢o. See Fig. 4.1.

Note that, in general, the relative entropy does not satisfy the triangular in-
equality therefore equation (4.36) does not tell if one bound is better than the other
either.

From (4.36) and the positivity of D(g:||¢:) one concludes that the distance from
¢1 to p is shorter than the distance from ¢; to p via ¢, since

D(aqllp) < D(aillaz) + D(gllp)- (4.37)

4.3 On Properties of the Minimum Entropy Sub-tree
to Compute Lower Bounds on Partition Function

In this section we investigate the properties of one specific lower bound on the
partition function, namely the lower bound computed by the minimum entropy
sub-tree. By extending the results of Theorem 4.1 and stating new theorems and
corollaries we prove that there is an upper bound on how much any other lower
bound can be better than the one obtained from that the minimum entropy sub-
tree. We also show that the probability distribution over the sub-tree that gives the
best lower bound and the one with minimum entropy are close in divergence.

Corollary 4.3. Consider a subset Rs of R with junction tree representation. Also
suppose that the probability distribution gs over Rgs, has the smallest entropy
among all the probability distributions on sub-trees. Then for any subset Ry of
R with junction tree representation the following inequality holds

‘CQT < ‘CQS + D(QSHGS)' (4-38)
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Proof: According to Theorem 4.1

Ly, < Lyg+ min (D(gs|lgs)—D(grllas), D(gsllar)+D(gslar)). (4.39)
Hence
‘CQT < ‘Cqs + D(quqS) - D(QT”QS)
< Ly + D(gsl[gs)- (4.40)

In other words the lower bound obtained from any sub-tree can not be better
than the lower bound obtained from the minimum entropy sub-tree by more than
D(qs||gg), a value that does not depend on ¢r. This gives us a quality guarantee
for the lower bound obtained from the minimum entropy sub-tree.

Theorem 4.4. Consider subsets Rg and R g of R with junction tree representations.
Also suppose the probability distribution gs over Rg, has the smallest entropy
and the probability distribution qp over Rp, gives the best lower bound, then the
following inequality holds

D(qBllgs) < D(qsl|qs)- (4.41)

Proof: Since H(qs) < H(qp) according to Theorem 4.1 we have

Lop < Lgs + Dlgsllas) — D(gsllas)- (4.42)

Since ¢p gives the best lower bound

Lo < Loy, (4.43)
Adding (4.42) and (4.43) completes the proof. |

Theorem 4.4 gives us another quality guarantee regarding the minimum en-
tropy sub-tree (which is the least random, least uncertain, and most biased sub-
tree). This theorem shows that the probability distribution on the tree that gives the
best lower bound and the minimum entropy distribution are close, where close-
ness is measured by relative entropy. The upper bound is D(gs||gy) which does
not depend on ¢p. See Fig. 4.2.

Remark 4.5. The inequality in (4.41) holds for any probability distribution that gives
a better lower bound compared to the lower bound derived from gs, i.e. £, .
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D(qIgy)

Figure 4.2: Upper bound for divergence between ¢z and gs

Corollary 4.6. In the case that Rg = R \ Rp we have the following inequality.

D(qpllas) < D(gsllgs)- (4.44)

Remark 4.7. We showed that the minimum entropy sub-tree has some interesting
optimality properties, namely the lower bound obtained from this tree can not be
far from the lower bound obtained from any other sub-tree, and the probability
distribution on this tree and the probability distribution on the tree that gives the
best lower bound are close in divergence. However, finding the minimum entropy
sub-tree does not seem like an easy task. One might still hope for approximate
algorithms to find this sub-tree.

Remark 4.8. In almost all Theorems and Corollaries we insisted that the subsets
of R have junction-tree representations. This assumption can be relaxed and the
Theorems and Corollaries are still valid for the sub-graphs. However, having a
junction tree representation makes the computation of the entropy and the parti-
tion function easier (using GDL or any other iterative message passing algorithm).

Remark 4.9. In the derivation of the lower bound in Section 4.1.2 we assumed that
qr(x), like p(x), depends on all the random variables and not only on the random
variables on the sub-tree. Similar results can be obtained by writing the distribu-
tion on subtrees as a function of the random variables on the sub-tree.

Let us assume the variables on the sub-tree by xr and the variables outside the
sub-tree by x\ 7.

Define

ZT = Z H OCR<XR). (445)

x7 RERT

Now it is easy to see that
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— D(gr(xr)||p(xr)) > ln +Z Z q(x7) In ag(xg).

XT RER\RT
Hence by the non-negativity of D (gr(x7)||p(xr)) we will obtain

S Y gr(xr) nag(xg) + In(Zr) < In(2).

X7 RER\Rr

The result in (4.47) should be compared to (4.8).

(4.46)

(4.47)



Chapter 5

A Greedy Algorithm to Compute
Upper and Lower Bounds on the
Partition Function

In Chapter 4 we derived upper and lower bounds on the partition function that de-
pend on the partition function of any sub-junction tree of a given junction graph.
We proved Theroem 4.1 that compares such lower bounds using the entropies of
the sub-trees. We also showed that the minimum entropy sub-tree has some inter-
esting optimality properties.

The number of all the sub-junction trees of a junction graph with moderate size
is simply too big to consider. For example, a complete graph with N vertices has
exactly NV=2 spanning trees. In this chapter by simplifying our previous bounds
on the partition function, we derive new and simpler upper and lower bounds
with a nice property that allows us to use a greedy scheme.

The outline of this chapter is as follows. In Section 5.1, we derive new and sim-
ple bounds on the partition function. We prove that the optimization for the new
bounds can be done over the maximal sub-trees and not on all sub-trees. Based on
new bounds, in Section 5.2 we propose a greedy algorithm that computes upper
and lower bound on the partition function. In Section 5.3 we report simulation
results for the greedy algorithm on two-dimensional square grids.

51 New Upper and Lower Bounds

Let us define

33
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o™ = max{ar(xp)}, (5.1)
ot 2 min{or(Xr)}- (5.2)

With the above definitions, we may still be able to simplify the bounds in (4.9)
and obtain the following simple and low-complexity upper and lower bounds on
the partition function.

: Z
Z lnaﬁmgln(z—) < Z In ap™. (5.3)

RER\Rr T

For a given junction graph, these bounds can be computed over its sub-junction
trees. However the following Theorem shows that we only need to consider maxi-
mal sub-trees and not all the sub-junction trees.

Theorem 5.1. If R, and R, are subsets of R with junction tree representations and
R2 C R4, then the bounds of (5.3) corresponding to R, are at least as good as those
corresponding to R.

Proof: Consider 7; = (Vi, £y, L;) the junction tree representing R, remove ver-
tices with indices in R; \ R, from V; and build a new junction tree 7; = (Va, E», Lo)
representing R..

Now starting from the lower bound obtained from 7;, we can write

In(Zy) + Z Inap™ > In(Zy) + Z In o™ + Z Inaly™  (5.4)
RG'R\Rl ReRl\RQ RGR\'Rl

= In(Z)+ ) Inap™ (5.5)

The proof for the upper bound follows from the same lines.

Definition 5.2. A sub-junction tree is maximal if it is not contained within any
other sub-junction tree.

According to Theorem 5.1 if R; and R, are subsets of R with junction tree
representations and R, C R4, the bounds of (5.3) corresponding to R, are at least
as good as those corresponding to R,. We can then propose the following greedy
algorithm.
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5.2 A Greedy Algorithm

Using the results of Theorem 5.1, we propose the following greedy algorithm to
find a maximal sub-junction tree that gives lower and upper bounds on the parti-
tion function. According to Theorem 5.1, the bounds are at least as good as, if not
better, the lower and upper bounds obtained from all the sub-junctiontrees of this
maximal sub-tree.

Algorithm 5.3 GREEDY-UPPER-LOWER-BOUNDS(G)

Input Junction graph G representing an inference problem

Output Upper and lower bounds on partition function

1. Set 7 a sub-junction tree, U the upper bound, and L the lower bound.
2. while junction tree condition not violated do
Recursively add nodes to 7
Compute bounds in (5.3) for the maximal tree
if new bound(s) tighter than old bound(s)

Replace old bound(s) with new bound(s): update U and L

N S O W

. Repeat for another maximal sub-junction tree |l

5.2.1 Properties of the Greedy Algorithm

Here we state a few remarks and methods to improve over the greedy algorithm
and existing bounds in (5.3).

1. The minimization and maximization as stated in (5.3) are done over single
local kernels (nodes) separately; better results can be obtained if we do this
over a group of neighboring nodes. In this case using max(min)-product
algorithms can be an option if after removing the maximal tree, the remaining
graph is cycle-free or has at most one cycle.

2. A kernel for which the values of o3*™ and o5 are close to each other, once
not included in the maximal tree, tries to make the bounds tight. Therefore it
seems reasonable to try to leave such weak nodes out of the sub-junction tree
to obtain better bounds.
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3. Consider a junction graph with only one cycle. In this case, only one kernel
(node) remains out of the maximal sun-junction tree. If on this kernel the
values of a’3** and o5 are close, so are the upper and lower bounds. We call
this property of our bounds linearization.

5.3 Simulation Results

Here we apply our greedy algorithm on two-dimensional square grids to compute
upper and lower bounds on the log partition function. The connectivity of a two-
dimensional grid is sparse enough so that each maximal tree (in this case being a
spanning tree) represents well enough the whole graph.

Our simulations are limited to 3 x 3 square grids with NV = 9 variables, and 5 x 5
square grids with N = 25 variables. We suppose variables are binary and consider
the spin representation where variables take their values in {—1, +1}.

We use the standard Ising model of statistical physics with the global probability
distribution expressed as

p(x) = %H eBss H eﬂstxsxt7 (5.6)

seV (s,t)eE

where [, is the node parameter for node s and jy, is the strength of edge (s, t).

For each node, f3; is uniformly and independently distributed in [—0.025, 0.025].
And for each edge, 3; ; is uniformly and independently distributed in [0, t] where
t represents the edge strength and ranges from 0 to 2. We performed 10 trials to
compute each value. For the edge strength ¢, we considered increments of 0.5 in
the interval [0, 2]. Our set-up is very similar to the one used in [WJW05, Section V]
to compute upper bounds on the partition function.

In Fig. 5.1, for a 3 x 3 grid we plot the average upper bound, GDL approxima-
tion, and the average lower bound on the log partition function versus the edge
strength ¢t where all values are normalized by N = 9. Shown in 5.2, are plots for a
5 x 5 grid where all values are normalized by N = 25.

For the two sizes of grids Fig. 5.3 shows =%, i.e. the gap between the bounds
when normalized by the upper bound, versus the edge strength.

Remark 5.4. Note that, in general, GDL approximation does not provide a bound
on the log partition function; but in our experiments it seems to always lie between
the upper and lower bounds obtained from the greedy algorithm.

Remark 5.5. As the size of the grid becomes larger, the number of maximal trees
also becomes very big, however, for each maximal tree our greedy algorithm guar-
antees bounds that are at least as good as all the bounds obtained from all the
sub-trees of this maximal tree. And a bound is a bound!
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Chapter 6

Simulation-Based Estimation of the
Partition Function

In Chapter 4 we discussed deterministic upper and lower bounds on the partition
function. There is also substantial literature on the use of Monte Carlo simula-
tion techniques for approximating the partition function. For example, in [PG93]
by expressing the partition function as an expectation, the authors introduce an
importance sampling approach to estimate the partition function. A randomised
algorithm to evaluate the partition function is proposed in [JS93]. Monte Carlo
methods are also proposed to estimate the ratio of partition functions of proba-
bilistic models [CS97].

In this chapter we will also use simulation techniques to approximate the par-
tition function. We present estimators that use samples drawn from the state space
according to different distributions. In one of the estimators, we demonstrate how
to efficiently combine Monte Carlo methods with message passing algorithms, like
GDL from Section 2.3.

The outline of this chapter is as follows. In Section 6.1, we describe Monte Carlo
methods and particularly focus on Gibbs sampling. In Section 6.2, we introduce
various estimators for the partition function and describe how they use Gibbs sam-
pling to estimate the partition function. Simulation results for our estimators on
two-dimensional square grids are reported in Section 6.3.

40
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6.1 Monte Carlo Methods

Historically, Monte Carlo methods, first introduced in [MRR "53], were developed
for performing calculations in statistical physics (like estimating the partition func-
tion which is also the goal of this chapter). However, today the range of applica-
tions of Monte Carlo methods is enormous, such as combinatorics (like approxi-
mate counting), Integration, combinatorial optimization, and economics. A good
survey on how Monte Carlo Methods has been used in practice is [RS95].

The aims of Monte Carlo methods are
1. to generate samples x), x® ... x®) from a probability distribution p(x) -
which we call target distribution.

2. to estimate expectations of functions under this distribution.

Solving the first problem allows us to solve the second one by using samples
xM x@ . x®) to give the estimator

R
f=22_1®). (61)
k=1

If the samples are generated from the target distribution p(x) then the expecta-
tion of f is equal to the expectation of f under p(x), [Mac03], [Nea93].

In other words, Monte Carlo methods give us the possibility to compute differ-
ent quantities by expressing them as expectations for some distribution and then
estimate this expectation by drawing samples from that distribution.

Except for a few densities, generating samples from a distribution (usually
high-dimensional) is a difficult task. In general there are two difficulties [Mac03].

1. The major difficulty is that we usually do not know the value of the partition
function (normalization constant).

2. Another difficulty is that typically the probability distributions are concen-
trated in regions of the state space that occupy a tiny fraction of the whole.
To generate samples from such distributions, the sampling procedure must
search for these relevant regions.

Sampling methods based on Monte Carlo methods incorporate the search as-
pect for large regions of high probability in a framework where it can be proved
that, as the number of samples grow, the correct distribution is generated.
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There are many sampling algorithms based on Monte Carlo methods such as
importance sampling, rejection sampling, Metropolis methods, and Gibbs sampling. In
the following we introduce one particular Monte Carlo method, namely Gibbs
sampling, and will propose estimators that use this method to estimate the value
of the partition function for a given probabilistic inference problem.

6.1.1 Gibbs Sampling

Gibbs sampling, also known as heat bath method, is one of the simplest Monte Carlo
methods. It was first introduced in the context of image processing in [GG84],
where authors presented a method to iteratively sample the value for each pixel
conditioned on the value of the neighboring pixels. However, Gibbs sampling is
widely applicable to a broad class of Bayesian problems, statistical physics, and
combinatorics.

As stated above, it is usually very difficult to draw samples directly from the
target distribution. The key to the Gibbs sampler is that it considers only condi-
tional distributions - the distributions where all random variables except for one
are assigned fixed values.

In our setup, such conditional distributions are easy to sample from. In fact this
is commonly the case in many Bayesian and likelihood computations, see [GS90].
As we will see in Section 6.2, for the target distribution defined in (6.5) it is enough
to be able to compute p(x) up to a (normalizing) constant and the knowledge of
the partition function is not necessary.

Let p(x) be a probability function over 1, zs, ..., z,. Suppose the conditional
distributions p(z;|x1, ..., %i—1, Tit1, . . ., x,) are given. The following iterative algo-
rithm, known as Gibbs sampling, generates samples with distribution p(x).

Algorithm 6.1 GIBBS SAMPLING 1
Input Conditional distributions p(z;|z1, ..., Zi—1, Tiy1, ..., Tn)

Output Samples with distribution p(x)

A

1. Choose an initial state X = (21, 2o, ..., Zp).
2. Choose a coordinate k equally likely from the coordinates 1,2,...,n.

3. Draw a sample z;, from

A

p(xk|:i“1,§:2, Ce 7:%’6—17:%]4:4-17 . ,xn).

4. Set the next state accordingly.
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5. Iterate 2 — 4 a large number of times. |

An alternative version of the Gibbs sampler scans the coordinates sequentially.
On iteration j, we start from the current state x\), then z; is sampled from

p(xl\xgj), xgj), . ,xg)). using the new value of x; a sample z, is then made from
p(azg\xgj ) xéj )., 2) and so on. One cycle of the algorithm is completed by sim-
ulating z;, zs, . . ., x, from the conditional distributions and recursively refreshing

the conditioning variables.

The Gibbs sampler in which the variables are revised in fixed order is defined
as follows

Algorithm 6.2 GIBBS SAMPLING 2

Input Conditional distributions p($i|l'1, B (7 T P A7 T I ,In)

Output Samples with distribution p(x)

1. Choose an initial state x© = (z\”, 2, ..., z{").

2. forj «— 1to M.

3. fork«— 1ton.

4. Draw a sample z;, from
i+1) (j+1 +1) () j
P20 G D x,(fll, o al)),
5. Set state k accordingly.

6. Return x 1

It can be proved that as the number of iterations grows, the probability distri-
bution of x\¥) tends to p(x), therefore for large values of M we expect the algorithm
to return vectors from the target distribution, [Nea93], [Bre95].

We use the latter implementation of the Gibbs sampling in Algorithm 6.2 in our
simulations.

There is a generalization for the Gibbs sampling algorithm called multigrid
Monte Carlo method (MGMC). Instead of updating one coordinate at time, MGMC
suggests moving several highly correlated ones simultaneously, see [LW99], [LS00].
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6.2 Estimators for the Partition Function

Similar to Section 2.1, consider a set {X;, Xs,..., Xy} of N discrete binary ran-
dom variables. Let z; represent the possible realizations of X;. Let x stand for
{z1,29,..., 25} and X for {X1, Xs,..., Xn}. Suppose Ry, R,,..., Ry are subsets
of {1,2,..., N} and suppose R = { Ry, Ra, ..., Ry} is a collection of subsets of the
indices of the random variables.

Let X represent the sample space, and assume that p(x) the joint probability
mass function, factors into the product of positive and finite local kernels as

p(x) = 5 T anloxn) ©2)

ReR

where each local kernel ag(xg) is a function of the variables whose indices appear
in R and 7 is the partition function.
Let us define

ax) £ ][] er(xs). (6.3)
ReR
o % (6.4)

Therefore, we can rewrite (6.2) as

1

p(x) = Za(x) = a(x). (6.5)

With these assumptions we can define Z as

Z=> ax) (6.6)

xeX

We assume that «(x) can be feasibly evaluated for any x.

In the following, we propose some estimators that use samples drawn with dif-
ferent distributions from X’ to estimate the value of Z (or ). In Section 6.2.1, we
present estimators that use samples drawn according to different target distribu-
tions. The estimators in Section 6.2.2 combine the message passing algorithms (to
compute the partition function on trees) with Monte Carlo methods. In Section
6.2.3 we present estimators that use samples drawn uniformly from X'.
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6.2.1 Estimating with Samples Drawn According to the Target Dis-
tribution p(x)
Here we propose estimators for the partition function that use samples drawn from

X according to the target distribution p(x). To generate these samples we use Gibbs
sampling explained in Section 6.1.1.

Theorem 6.3. LetxY) x® ... x®) be i.i.d. samples drawn with distribution p(x)
from X. For the estimators 7 and vk

1 < 1
V= Ra] 2 o ®) (6.7)
k=1
. 1 &1
i = m[(g(x(x@) (6.8)
we have
ER] = 1, (6.9)
ERk] = " (6.10)
Proof: For ¥ we can write
N 1 Koo
B = WEl;a<x(k))] (6.11)
L 3 gt 6.12
- i X L] .
1 1
- Bl 6.13
RS (619
_ Ly (6.14)
|X] iz alx)
1
- 6.15
‘ ngzxv (6.15)
= 7, (6.16)

where (6.12) follows from the linearity of expectation, (6.13) from the fact that the
samples are identically distributed, and (6.15) from the definition of v in (6.4).
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Similarly, for 4k one can write

Y

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

where (6.18) follows from the fact that samples are independent, (6.19) from the
fact that samples are identically distributed, and (6.21) from the definition of v in

6.4). 1

Remark 6.4. For the estimator 7 in (6.7), the samples do not have to be independent.
Since we only use the linearity of expectation, the same proof can be given if the

samples are i.d. (and not necessarily i.i.d.).

Remark 6.5. Since E[Y| = v, we can say that (6.7) is an unbiased estimator for ~.

For the estimator in (6.7), the following algorithm uses the Gibbs sampling to

estimate the value of 7.

Algorithm 6.6 ESTIMATING vy WITH TARGET DISTRIBUTION p(x)
Input Target distribution p(x) = ya(x)

Output Estimation for ~

1. Choose an initial state x© = (z{”, 2. .., 2.

2. fork «— 1to K.

3. forj < 1ton.



47

4. Draw a sample z; from
k1) (k1 k+1 k k
p(m)_ OZ(IE ),QZg ),...,SL’§~_1 )7xj7x§'+)17'--7x$b)>
a k41 k+1 k41 k k
ija(xg ),:vg ),...,x&l),x],xﬁl, , 7(1))
5. Set the next state accordingly.

k
6. Calculate ﬁ S ﬁ 1

Simulation results for Algorithm 6.6 on two-dimensional square grids are re-
ported in Section 6.3.

6.2.2 Estimating with Samples Drawn According to the Target Dis-
tribution p(z)

In general the probabilistic inference problem defined in Section 2.1 has a graph-
ical representation, in our case junction graphs, that contains cycles. From (2.16),
we know that on junction trees there is an efficient message passing algorithm to
compute the partition function.

Based on the estimators in Section 6.2.1, here we present new estimators for
the partition function that use both Monte Carlo methods and ideas from GDL to
estimate the partition function in a more structured manner.

Suppose we partition x into (y, z) and write a(x) as

a(x) = aly, z). (6.23)

Let us define
a(z) = Za(y, z). (6.24)
y

We assume that z is simply a subset of x. Later we will see that a suitable choice
of the variables in z enables us to use the ideas from message passing algorithms
on trees in our estimators.

With these assumptions, it is possible to show that the marginal of p(x) with
respect to z has the same partition function as of the global distribution.
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pz) = > p(y2) (6.25)
= 7> aly,z) (6.26)
= ap(z). (6.27)

Let us also suppose that Z represents the sample space for p(z). We propose
estimators for the partition function that use samples drawn from Z according to
p(z). To generate these samples we use Gibbs sampling explained in Section 6.1.1.

Theorem 6.7. Let z™M,z? ... z(5) be iid. samples drawn with distribution p(z)
from Z. For the estimators 7 and Y

1 &
5 = K’Z|;a(z(k)> (6.28)
K
ik = !;IK,Ha(;l(k)) (6.29)
we have
ERl = v (6.30)
ERfk] = "~ (6.31)

Remark 6.8. For the estimator ¥ in (6.28), the samples do not have to be indepen-
dent. Since we only use the linearity of expectation, the same proof can be given if
the samples are i.d. (and not necessarily i.i.d.)

Remark 6.9. Since E[7]| = ~, we can say that (6.28) is an unbiased estimator for ~.

For the estimator in (6.28), the following algorithm uses the Gibbs sampling to
estimate the value of ~.

Algorithm 6.10 ESTIMATING vy WITH TARGET DISTRIBUTION p(z)
Input Target distribution p(z) = ya(z)
Output Estimation for ~

1. Choose an initial state z(©) = (zio), zéo), e z,(LO)).
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2. fork «— 1to K.

3. forj < 1lton.

4. Draw a sample z; from
k1) (k+1 k+1 k k
p(z) = Zya(y,zi ),zé ),...,z](_l),zj,z](-ﬁl,...,zg))
Jj) k+1 k+1 k+1 k N
Zyz_a(y,zé ),Zé ),...,z](-fl),zj,z](-ﬁl,...,zfl))

5. Set the next state accordingly.

6. Calculateﬁzk — 1

7,:1 a(z(”)

In Algorithm 6.10, in order to draw samples according to p(z;), the following
computation is done in each iteration.

k1) (k41 k+1 k k
p(z) = Zya(y,% ),zé ),...,ZJ(-fl ),zj,z§+)1,...,zfl)) 6.32)
7] k+1 k+1 k+1 k k)N :
Zyzja(y,zf ),zé ),...,zj(-_l ),zj,zj(ﬁl,...,z?(l))

The question is whether by carefully choosing the variables in z, the calculation
in (6.32) can be done efficiently.

Assume that for each instance of z the probabilistic inference problem defined
in (6.5) has a junction-tree representation. With this assumption the following sum
is basically the partition function of the underlying junction tree

k k k+1 k
Za(y,z§ H),zé LR ,Z](_t ),zj,zj(.ﬁl 2%, (6.33)
y

Therefore the sum in (6.33) can be calculated efficiently with message passing
algorithms on trees, for example GDL on junction trees and using equation (2.16).

In the following examples, we show how a clever choice of z leaves the under-
lying graph cycle-free.
Example 6.11. Consider a 5 x 5 two-dimensional grid with junction graph repre-
sentation in Fig. 6.1. Here z consists of 6 variables, namely x3, 7, X9, 13, 17, T19,
out of 25 variables. Each instance of z leaves the underlying graph cycle free and
with a junction tree representation.

Example 6.12. On a 9 x9 two-dimensional grid there are 81 variables and z consists
of 26 variables. See Fig. 6.2.

Remark 6.13. In the above examples, 6 is the minimum number of variables in z on
ab x b grid, sois 26 for a 9 x 9 grid.
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Figure 6.1: On a 5 x 5 Grid z contains 6 Variables

Remark 6.14. Imagine that for a particular graph configuration, a certain choice
of z leaves the remaining graph cycle-free but not necessarily connected. In this
case, the remaining graph would be a disjoint union of junction trees. The par-
tition function of this graph is the multiplication of the partition functions of all
its sub-junction trees and still can be computed efficiently with message passing
algorithms. This is the case for both examples abovefe on grids.

Simulation results for Algorithm 6.10 on two-dimensional square grids are re-
ported in Section 6.3.

6.2.3 Estimating Using Uniform Sampling

In Section 6.1, we discussed the difficulty of sampling from p(x). In order to cir-
cumvent this problem one might draw samples uniformly from X'

Here we propose estimators for the partition function that use samples drawn
uniformly from X.
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Figure 6.2: On a 9 x 9 Grid z contains 26 Variables

Theorem 6.15. Let xV, x® ... x5 be iid. samples drawn uniformly from X.
For the estimators Z and Z

K
Z = mZa(XW) (6.34)
K
k=1
K
Zi = X ] ax®) (6.35)
k=1

we have
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E[Z] = Z (6.36)
ElZx] = ZX. (6.37)
Proof: For Z we can write

LIRS

E[Z] = TE[ZQ(XW)] (6.38)
k=1

_ s

- ?;E[a(x@)] 6.39)

= |X|E[a(X)] (6.40)

= |X| alx) (6.41)
m€X| ’

= Z, (6.42)

where (6.39) follows from the linearity of expectation, (6.40) from the fact that the
samples are identically distributed, and (6.41) from the fact that samples are drawn
uniformly.

Similarly, for Zx one can write

E[Zg] = \X|KE{ﬁa(x(k))} (6.43)
k=1
= X [] B|ax")] (6.44)
k=1
- (|X|E[a(X)})K (6.45)
(|X|;%)K (6.46)
= 7K, (6.47)

where (6.44) follows from the fact that samples are independent, (6.45) from the
fact that samples are identically distributed, and (6.46) from the fact that samples
are drawn uniformly. |
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Remark 6.16. For the estimator Z in (6.34), the samples do not have to be indepen-
dent. Since we only use the linearity of expectation, the same proof can be given if
the samples are i.d. (and not necessarily i.i.d.)

Here we propose estimators for the partition function that use samples drawn
from Z.

Theorem 6.17. Letz z? ... zU bei.i.d. samples drawn uniformly from Z. For
the estimator Z.

7 = @ia(z(k)) (6.48)
N K k=1 .
Zx = |ZF]]a=") (6.49)
k=1
we have
EZ] = Z (6.50)
ElZx] = Z¥. (6.51)

Remark 6.18. For K = |X| and K = |Z]|, i.e. if we sample from the whole space
(without repetition), the estimators in (6.34) and (6.48) eventually calculate the ex-
act value of the partition respectively.

Remark 6.19. Since E[Z] = Z, we can say that (6.34) and (6.48) are unbiased estima-
tors for Z.

As mentioned in Section 6.1, typically the high-dimensional probability distri-
butions that we deal with in practice are concentrated in regions of the state space
that occupy a tiny fraction of the whole. So uniform estimators will only give
good outputs if the number of samples K is sufficiently large that we are likely
to hit these regions. In the cases that the global distribution of a model tends to
a uniform distribution (for small values of ¢ for our set-up in Section 6.3), uni-
form sampling might be an option. But in general it gives poor results in practice,
see [Mac03], [Nea93].

We only used the estimator in (6.48) on 5 x 5 two-dimensional square grids to
compute the exact value of the partition function. Simulation results are reported
in Section 6.3.
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6.3 Simulation Results

Similar to Section 5.3, we use the standard Ising model of statistical physics for
our simulations. Ising model is a well-known and extensively researched model in
statistical physics.

For an Ising model the global probability distribution can be expressed as

p(x) = %H eBss H eﬁstxsfl‘t’ (6.52)

seV (s,t)eE

where (3, is the node parameter for node s and [, is the strength of edge (s, ).

For each node, we chose 3, uniformly and independently in [—0.025,0.025].
And for each edge, f3; ; is chosen uniformly and independently in [0,¢]. We con-
sidered only two values, 0.5 and 1 for ¢. Same as Section 5.3, we suppose binary
random variables and consider the spin representation where variables take their
valuesin {—1,+1}.

We ran our simulations on 5 x 5 square grids with N = 25 variables, and 9 x 9
square grids with N = 81 variables for one instance of the Ising model defined in
(6.52).

In the following, we report simulation results for the estimators in (6.7), (6.28),
and (6.48) for two sizes of grids and two different edge strengths.

6.3.1 5 x 5 Grids

Shown in Fig. 6.3 are plots of the estimator in (6.48) for both values of t = 0.5 and
t = 1. In both cases it is possible to compute the exact value of the Z with 64
samples, see remark 6.18. For the instance of the Ising model in our simulations,
the exact value of In(Z) is 19.759862 for ¢ = 0.5, and 25.717765 for ¢t = 1.

Shown in Figs. 6.4 and 6.5 are plots for the estimators in (6.7) and (6.28) respec-
tively. For both estimators we set t = 0.5 and use 10* samples. We plot In(Z) versus
number of samples for five random initial states.

Shown in Figs. 6.6 and 6.7 are plots for the estimators in (6.7) and (6.28) respec-
tively. For both estimators we set t = 1. We use 10° samples for the estimator
in (6.7) and 10* samples for the estimator in (6.28). The plots show ln(%) versus
number of samples for five random initial states.

6.3.2 9 x 9 Grids

Shown in Figs. 6.8 and 6.9 are plots for the estimators in (6.7) and (6.28) respec-
tively. For both estimators ¢ = 0.5. We use 107 samples for the estimator in (6.7)
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and 5 - 10* samples for (6.28). We plot ln(%/) versus number of samples for five
different random initial states.

Shown in Figs. 6.10 and 6.11 are plots for the estimators in (6.7) and (6.28) re-
spectively. For both estimators ¢ = 1. We use 10® samples for the estimator in
(6.7) and about 10° samples for the estimator in (6.28). The plots show ln(%) versus
number of samples for five random initial states.

6.4 Discussion

The simulation results on 5 x 5 and 9 x 9 two-dimensional grids show that if we
use p(z) as the target distribution and use Algorithm 6.10, we observe faster con-
vergence and less variance compared to Algorithm 6.6 - specially for bigger values
of t. The number of samples needed in Algorithm 6.10 for convergence is typi-
cally 10% to 10* times less than the number of samples needed in Algorithm 6.6.
However, in Algorithm 6.10 to generate each sample, we need to run the GDL on
a sub-junction tree of the grid. It is also important to notice that the correlation
between the variables in z is smaller than the set of all variables in x, since the
variables in z are not directly involved with each other in the kernels of the junc-
tion graph. Also by considering only the varibles in z the dimensionality of the
sample space reduces.

24~ =

Estimation for the Log Partition Function

I | I I I I
10 20 30 40 50 60 70
Number of Samples

Figure 6.3: Exact value of log(Z) ona 5 x 5 grid fort = 0.5and 1
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